Structure of near-threshold s-wave resonances

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto University

Compositeness 1 - Z

Weinberg's compositeness and deuteron

Z: probability of finding deuteron in a bare elementary state

S. Weinberg, Phys. Rev. 137, B672 (1965)

Model-independent relation for a shallow bound state

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right]R + \mathcal{O}(m_\pi^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right]R + \mathcal{O}(m_\pi^{-1})$$

a_s ~ 5.41 [fm] : scattering length r_e ~ 1.75 [fm] : effective range R ~ (2μB)^{-1/2} ~ 4.31 [fm] : deuteron radius (binding energy)

--> $Z \approx 0.2$: Deuteron is almost composite!

Application to resonances

Features of the Weinberg's argument:

- Model-independent approach (no potential, wave-fn, ...)
- Relation with experimental observables
- Only for bound states with small binding

Interesting (exotic) hadrons: resonances --> application to resonances by analytic continuation

$$1 - Z = \int d\boldsymbol{q} \frac{|\langle \boldsymbol{q}|V|B\rangle|^2}{[E(q) + B]^2} \sim -g^2 \left. \frac{dG(W)}{dW} \right|_{W=M_B}$$

<u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)</u> F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

- Z can be complex and larger than unity. Interpretation?

What about near-threshold resonances (~ small binding) ?

Effective range expansion

S-wave scattering amplitude at low momentum

$$f(k) = \frac{1}{k \cot \delta - ki} \to \left(\frac{1}{a} - ki + \frac{r_e}{2}k^2\right)^{-1}$$

Truncation is valid only at small k.

Scattering length a

- strength of the interaction
- cross section at zero momentum : 4πa²

Effective range r_e

- typical length scale of the interaction
- can be negative (energy-dep., Feshbach resonance, ...)
 - D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998)
 - E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

Positions of poles <--> scattering length + effective range

$$a = \frac{k^+ + k^-}{ik^+k^-}, \quad r_e = \frac{2i}{k^+ + k^-}$$

(a,r_e) are real for resonances

Field renormalization constant

Eliminate R from the Weinberg's relations

Z (residue) is determined by the pole position <-- Amplitude is given by two parameters. 1-Z is pure imaginary and $0 \le |1-Z| \le 1$

Validity of the effective range expansion

A model calculation

- solid lines: pole position in a scattering model
- dashed lines: position deduced from (a,r_e)

If the effective range is large, the expansion works well.

Example: $\Lambda_c(2595)$

Pole position of $\Lambda_c(2595)$ with $\pi\Sigma_c$ threshold in PDG

E [MeV]	Г [МеV]	a [fm]	re [fm]
0.67	2.59		10.5	-19.5

- Isospin symmetry is assumed.
- ππΛ channel is not taken into account.
- Decay of Σ_c is not taken into account.

 $|1-Z| \sim 0.6$ Interpretation ?

Larger effective range than typical hadronic scale Chiral interaction gives $r_e \sim -4.6$ fm

--> $\Lambda_c(2595)$ is not likely a $\pi\Sigma_c$ molecule

Summary

Summary

Near-threshold s-wave resonances

Effective range expansion : Resonance structure <--> (a, r_e) Compositeness 1-Z : pure imaginary and normalized \checkmark Application to $\Lambda_c(2595)$ Large r_e --> not likely a molecule T. Hyodo, arXiv:1305.1999 [hep-ph], to appear in Phys. Rev. Lett.