Structure of near-threshold s-wave resonances

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto University

Weinberg's compositeness and deuteron

Z: probability of finding deuteron in a bare elementary state
S. Weinberg, Phys. Rev. 137, B672 (1965)

Model-independent relation for a shallow bound state

$$
a_{s}=\left[\frac{2(1-Z)}{2-Z}\right] R+\mathcal{O}\left(m_{\pi}^{-1}\right), \quad r_{e}=\left[\frac{-Z}{1-Z}\right] R+\mathcal{O}\left(m_{\pi}^{-1}\right)
$$

$\mathrm{a}_{\mathrm{s}} \sim 5.41[\mathrm{fm}]$: scattering length
$\mathrm{r}_{\mathrm{e}} \sim 1.75$ [fm] : effective range
$R \sim(2 \mu B)^{-1 / 2} \sim 4.31[f m]$: deuteron radius (binding energy)
$-->Z \leq 0.2$: Deuteron is almost composite!

Application to resonances

Features of the Weinberg's argument:

- Model-independent approach (no potential, wave-fn, ...)
- Relation with experimental observables
- Only for bound states with small binding

Interesting (exotic) hadrons: resonances
--> application to resonances by analytic continuation

$$
1-Z=\int d \boldsymbol{q} \frac{|\langle\boldsymbol{q}| V| B\rangle\left.\right|^{2}}{[E(q)+B]^{2}} \sim-\left.g^{2} \frac{d G(W)}{d W}\right|_{W=M_{B}}
$$

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)
F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

- Z can be complex and larger than unity. Interpretation?

What about near-threshold resonances (~ small binding)?

Application to near-threshold resonances

Effective range expansion

S-wave scattering amplitude at low momentum

$$
f(k)=\frac{1}{k \cot \delta-k i} \rightarrow\left(\frac{1}{(a}-k i+\frac{\odot_{k^{2}}}{2}\right)^{-1}
$$

Truncation is valid only at small k .

Scattering length a

- strength of the interaction
- cross section at zero momentum : 4па²

Effective range r_{e}

- typical length scale of the interaction
- can be negative (energy-dep., Feshbach resonance, ...)
D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998)
E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

Application to near-threshold resonances

Poles of the amplitude

The amplitude has two poles

$$
\begin{aligned}
& f(k)=\left(\frac{1}{a}-k i+\frac{r_{e}}{2} k^{2}\right)^{-1} \\
& k^{ \pm}=\frac{i}{r_{e}} \pm \frac{1}{r_{e}} \sqrt{-\frac{2 r_{e}}{a}-1}
\end{aligned}
$$

Pole trajectories with a fixed $\mathrm{r}_{\mathrm{e}}<0$

Positions of poles <--> scattering length + effective range

$$
a=\frac{k^{+}+k^{-}}{i k^{+} k^{-}}, \quad r_{e}=\frac{2 i}{k^{+}+k^{-}}
$$

$\left(a, r_{e}\right)$ are real for resonances

Application to near-threshold resonances

Field renormalization constant

Eliminate R from the Weinberg's relations

$$
Z=1-\sqrt{1-\frac{1}{1+a /\left(2 r_{e}\right)}}=\frac{2 k^{-}}{k^{-}-k^{+}}
$$

Z (residue) is determined by the pole position <-- Amplitude is given by two parameters.
$1-Z$ is pure imaginary and $0 \leq|1-Z| \leq 1$

Application to near-threshold resonances

Validity of the effective range expansion

A model calculation

- solid lines: pole position in a scattering model
- dashed lines: position deduced from ($\mathrm{a}, \mathrm{r}_{\mathrm{e}}$)

small r_{e}

If the effective range is large, the expansion works well.

Application to near-threshold resonances

Example: $\Lambda_{c}(2595)$

Pole position of $\Lambda_{c}(2595)$ with $\pi \Sigma_{c}$ threshold in PDG

$\mathrm{E}[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	$\mathrm{a}[\mathrm{fm}]$	$\mathrm{r}_{\mathrm{e}}[\mathrm{fm}]$
0.67	2.59	10.5	-19.5

- Isospin symmetry is assumed.
- $\pi \pi \wedge$ channel is not taken into account.
- Decay of Σ_{c} is not taken into account.
$|1-Z| \sim 0.6$ Interpretation?
Larger effective range than typical hadronic scale Chiral interaction gives $\mathrm{r}_{\mathrm{e}} \sim-4.6 \mathrm{fm}$
$-->\Lambda_{c}(2595)$ is not likely a $\pi \Sigma_{c}$ molecule

\author{

Summary

}

\square
\square
\square

