Structure of near-threshold s-wave resonances

Tetsuo Hyodo

Yukawa Institute for Theoretical Physics, Kyoto

Introduction

Structure of hadron excited states

Various excitations of baryons

Quark model

What are 3q state, 5q state, MB state, ...?

- Comparison of data (spectrum, width,...) with quark models
- Analysis of scattering data by dynamical models

Clear (model-independent) definition of the structure?

Introduction

This may not be a good classification scheme.

Number of hadrons

Hadrons are asymptotic states. --> different kinematical structure

C. Hanhart, Eur. Phys. J. A 35, 271 (2008)

--> compositeness in terms of hadronic degrees of freedom

Introduction

Difficulty 2 : resonances

Excited states : finite width (unstable against strong decay)

- stable (ground) states
- unstable states

Mostly resonances!

 $| | \Lambda(1405) \rangle$

ø	3/2+	****	A(1232)	3/2+	****	T*	1/2*	****	20	3/2+	****	A2	$1/2^{+}$	
	1/2+		A(3600)	3/2+		20	1/2+			1/2+		A.(2595)*	1/2-	
N(1440)	1/2+	****	4(3620)	1/2-		2-	1/2**		E(1534)	3/2+	****	A.(2625)*	3/2-	
N(1530)	3/2-		A(1700)	3/2-		X(1385)	3/2*		37(1630)		•	A-(2765)*		
N(1535)	1/2-		A(1750)	$1/2^{+}$		27(1480)			E(1690)			A. (2880)*	5/2+	
N(1650)	1/2-		A(1900)	1/2-		27(1560)		**		3/2~	***	A.(2940)*		
N(1675)	5/2-		A(1905)	5/2+		X(1580)	3/2-		37(1950)		***	5.(2455)	1/2+	
N(1680)	5/2+		4(1910)	$1/2^{+}$		X(1620)	1/2-	**	E(2030)	$\geq 3^2$	***	E.(2520)	3/2+	
N(1685)			A(1920)	3/2+	•••	X(1660)	1/2+	***				E_(2800)		
N(1700)	3/2~	***	A(1930)	5/2-		X(1670)	3/2-		2(2250)			22	$1/2^{+}$	
N(1710)	1/2+		A(1940)	3/2-	••	X(1690)		**					1/2+	
N(1720)	3/2+		A(1950)	7/2+		27(1750)	1/2-	***	E(2500)				1/2+	
N(1860)	5/2+		A(2000)	5/2+	••	E(1770)	$1/2^{+}$					20	1/2+	
N(1875)	3/2-		4(2250)	1/2-	•	2(1775)	5/2-	****	Q*	3/2+		E.(2645)		
N(1880)	$1/2^+$		A(2200)	7/2-		X(1840)	$3/2^{+}$		£2(2250)**			5.(2790)	1/2-	
N(1895)	1/2	••	A(2300)	9/2+	••	X(1880)	1/2+	**	\$2(2384)**		••	E.(2815)	3/2-	
N(1900)	3/2+		A(2350)	5/2-	•	X(1905)	$5/2^{+}$		(2(2470)**		••	7.(2930)		
N(1990)	7/2+		A(2390)	7/2+	•	Z(1940)	$3/2^{-}$	***				2.(2980)		
N(2000)	5/2+	••	LA(2400)	9/2-		X(2000)	1/2**					E.(3055)		
N(2040)	3/2+		A(2420)	$11/2^+$		X(2030)	$7/2^+$							
N(2060)	5/2-	••	A(2750)	13/2~	••	X(2070)	$5/2^{+}$	•						
N(2100)	1/2+		A(2950)	$15/2^+$		X (2000)	$3/2^+$					09	1/2+	
N(2120)	3/2-					X(2100)	7/2-						3/2+	
N(2190)	7/2		A	$1/2^{+}$		X(2250)		***						
N(2220)	9/2+		/4(1405)	1/2-		X(2455)		••				21		
N(2250)	9/2-		/4(1520)	3/2-		X (2630)								
N(2600)	11/2		/4(1600)	$1/2^{+}$		X(3000)		•				10	$1/2^{+-}$	
N(2700)	$13/2^+$		/4(1670)	1/2~		X(3170)		•				E.	$1/2^{+}$	
			/4(16/90)	3/2-								51	3/2+	
			/4(1800)	1/2-								21.22	1/2+	
			/4(1810)	$1/2^{+}$	••••							0.	1/2+	
			/4(1820)	5/2+										
			/4(1830)	5/2-										
			/4(1890)	$3/2^{+}$										
			/4(2000)											
			/4(2020)	3/2*	•									
			/4(2100)	7/2-										
			/4(2110)	5/2*										
			4(2325)	3/2	1						D			
			/4(2350)	9/2+								1763		
			/4(2585)								- 1			

"Wave function" of resonance?

--> First consider stable states, then extend it to resonances.

Contents

Contents

- Introduction: ideal strategy
 - Model independent approach
 - Hadronic degrees of freedom
 - Extension to resonances

Field renormalization constant Z

S. Weinberg, Phys. Rev. 137, B672 (1965)

Application to near-threshold resonances

T. Hyodo, arXiv:1305.1999 [hep-ph]

Summary

Field renormalization constant Z

Compositeness of the deuteron

Z: probability of finding deuteron in a bare elementary state

S. Weinberg, Phys. Rev. 137, B672 (1965)

Model-independent relation for a shallow bound state

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right]R + \mathcal{O}(m_\pi^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right]R + \mathcal{O}(m_\pi^{-1})$$

a_s ~ 5.41 [fm] : scattering length r_e ~ 1.75 [fm] : effective range R ~ (2μB)^{-1/2} ~ 4.31 [fm] : deuteron radius (binding energy)

--> $Z \approx 0.2$: Deuteron is almost composite!

Field renormalization constant Z

Compositeness in quantum mechanics

Hamiltonian of a single channel scattering system $\mathcal{H} = \mathcal{H}_0 + V$

Complete set for free Hamiltonian: bare $|B_0 > +$ **continuum** $1 = |B_0\rangle\langle B_0| + \int d\mathbf{k} |\mathbf{k}\rangle\langle \mathbf{k}|$

Physical bound state |B> with binding energy B $(\mathcal{H}_0 + V)|B\rangle = -B|B\rangle$

Z : overlap of B and B_0

 $Z \equiv |\langle B_0 \, | \, B \, \rangle|^2$

 $0 \leq Z \leq 1$

For small B, Z is related to observables

$$a = \left[\frac{2(1-Z)}{2-Z}\right]R, \quad r_e = \left[\frac{-Z}{1-Z}\right]R$$

Application to resonances

Features of the Weinberg's argument:

- Model-independent approach (no potential, wave-fn, ...)
- Relation with experimental observables
- Only for bound states with small binding

Application to resonances by analytic continuation

$$1 - Z = \int d\boldsymbol{q} \frac{|\langle \boldsymbol{q} | V | B \rangle|^2}{[E(q) + B]^2} \sim -g^2 \left. \frac{dG(W)}{dW} \right|_{W=M_E}$$

<u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)</u> F. Aceti, E. Oset, Phys. Rev. D86, 014012 (2012)

- Z can be complex. Interpretation?
- |Z| can be larger than unity. Normalization?

What about near-threshold resonances (~ small binding) ?

Effective range expansion

S-wave scattering amplitude at low momentum

$$f(k) = \frac{1}{k \cot \delta - ki} \rightarrow \left(\frac{1}{a} - ki + \frac{r_e}{2}k^2\right)^{-1}$$

Truncation is valid only at small k.

Scattering length a

- strength of the interaction
- cross section at zero momentum : 4πa²

Effective range r_e

- typical length scale of the interaction
- can be negative
 - D. Phillips, S. Beane, T.D. Cohen, Annals Phys. 264, 255 (1998)
 - E. Braaten, M. Kusunoki, D. Zhang, Annals Phys. 323, 1770 (2008)

Positions of poles <--> scattering length + effective range

$$a = \frac{k^+ + k^-}{ik^+k^-}, \quad r_e = \frac{2i}{k^+ + k^-}$$

(a,r_e) are real for resonances

Field renormalization constant

Eliminate R from the Weinberg's relations

Z (residue) is determined by the pole position <-- Amplitude is given by two parameters. 1-Z is pure imaginary and $0 \le |1-Z| \le 1$

Validity of the effective range expansion

A model calculation

- solid lines: pole position in a scattering model
- dashed lines: position deduced from (a,r_e)

If the effective range is large, the expansion works well.

Example: $\Lambda_c(2595)$

Pole position of $\Lambda_c(2595)$ with $\pi\Sigma_c$ threshold in PDG

E [MeV]	Г [MeV]	a [fm]	r _e [fm]
0.67	2.59		10.5	-19.5

- Isospin symmetry is assumed.
- ππΛ channel is not taken into account.

 $|1-Z| \sim 0.6$ Interpretation ?

Larger effective range than typical hadronic scale Chiral interaction gives $r_e \sim -4.6$ fm

--> $\Lambda_c(2595)$ is not likely a $\pi\Sigma_c$ molecule

Summary

Summary

Near-threshold s-wave resonances

Effective range expansion : pole position <--> observables (a, r_e) Compositeness 1-Z : pure imaginary and normalized \checkmark Application to $\Lambda_c(2595)$ Large r_e --> not likely a molecule T. Hyodo, arXiv:1305.1999 [hep-ph]