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We explore the possibility to generate exotic hadrons dynamically in the scattering
of hadrons. The s-wave scattering amplitude of an arbitrary hadron with the
Nambu-Goldstone boson is constructed so as to satisfy the unitarity condition
and the chiral low energy theorem. We write down the general expression of the
coupling strength of the low energy interaction for flavor SU(3) case, and introduce
the exoticness quantum number in order to classify the flavor representations. We
find that the interaction for the exotic channels is in most cases repulsive, and that
the strength of the possible attractive interaction is uniquely determined. We show
that the attractive interaction in exotic channels is not strong enough to generate
a bound state, while the interaction in nonexotic channel generate bound states
which are considered to be the origin of some resonances observed in nature.

1 Introduction

Strong interaction of QCD exhibits a rich spectrum of hadrons, in which about
300 hadronic states have been identified1. It is important to investigate the
properties of hadrons to understand the low energy dynamics of QCD. Chiral
symmetry provides us the way to study hadron properties in connection with
the fundamental theory of QCD.

A dynamical model based on chiral symmetry, called chiral unitary ap-
proach, successfully describes the two-body scattering of a hadron with the
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Nambu-Goldstone (NG) boson, dynamically generating some s-wave reso-
nances in the scattering2,3,4,5. These studies are along the same line with
the coupled-channel dynamical models for the meson-baryon scattering6,7,
where the vector meson exchange interaction was adopted. This phe-
nomenological interaction is now identified as the Weinberg-Tomozawa (WT)
term8,9, which is the leading order term in chiral perturbation theory. In
this respect, one can introduce higher order corrections into the interaction
systematically5,10,11,12,13. The WT interaction was originally derived in cur-
rent algebra8,9. Since current algebra tells us about the interaction for arbi-
trary target hadrons, it is possible to apply the chiral unitary approach to the
system with JP = 3/2+ baryon target14,15 and to the heavy quark sectors16,17.
In the series of studies, the properties of the generated resonances are in fair
agreement with experimental data.

On the other hand, the hadrons observed so far can be classified by their
flavor quantum numbers. Empirically, there is a regularity in the quantum
numbers of the observed hadrons: the states with the valence quark contents
of q̄q or qqq were observed, while no state was established with larger number
of valence quarks (4, 5, 6,. . . quarks). The latter states, called exotic hadrons,
were intensively studied recently after the result by LEPS collaboration18. In
spite of the large amount of theoretical work, it is not clear why the exotic
hadrons are difficult (or impossible) to observe.

In order to clarify this issue, we have recently performed an analysis of
exotic hadrons in s-wave chiral dynamics19,20,21,22. We utilize the framework
of the chiral unitary approach, since it is naively expected that the resonances
produced in the dynamical model should have large component of the mul-
tiquark configuration, which is the flavor partner of the exotic hadrons. We
simplify the framework as possible, in order to obtain a general and model-
independent result.

We construct the scattering amplitude of an arbitrary hadron with the
Nambu-Goldstone boson t(

√
s) as

t(
√

s) → V chiral(
√

s) at low energy, (1)

Imt−1(
√

s) = ρ(
√

s), (2)

where V chiral(
√

s) is the low energy interaction based on chiral symmetry and
ρ(
√

s) is the phase space of the two-body scattering. Eq. (1) is the constraint
from the chiral low energy theorem, whereas Eq. (2) guarantees the unitarity
of the S-matrix. Utilizing this approach, we would like to study what chiral
dynamics tells us about the existence of the exotic hadrons.

2



Figure 1. Diagrammatic representation of the scattering. (a) : Notation of the representa-
tions α, Ad and T for the WT term. (b) : The bound state pole diagram after unitarization
of the amplitude.

2 Low energy theorem and chiral interaction

The low energy s-wave interaction of a target hadron (T ) with the NG boson
(Ad) in channel α is given by (see Fig. 1)

Vα = − ω

2f2
Cα,T , (3)

where ω and f are the energy and the decay constant of the NG boson, and
the group theoretical factor Cα,T is given for flavor SU(3) by

Cα,T = −〈2FT · FAd〉α = C2(T ) − C2(α) + 3, (4)

with C2(R) being quadratic Casimir of the representation R. The representa-
tion of the combined channel α corresponds to that of the bound state, if it is
generated after ressumation (Fig. 1, (b)). Since the low energy theorem is the
consequence of the chiral symmetry, Eq. (3) can be derived either in current
algebra19 or in chiral perturbation theory20. Note that the information of the
target hadron is reflected in the interaction only through its group theoretical
representation T .

We assign an arbitrary representation [p, q] to the target T . The possible
representations for α are read from the irreducible decomposition

[p, q] ⊗ [1, 1] =[p + 1, q + 1] ⊕ [p + 2, q − 1] ⊕ [p − 1, q + 2]
⊕ [p, q] ⊕ [p, q] ⊕ [p + 1, q − 2] ⊕ [p − 2, q + 1] ⊕ [p − 1, q − 1].

The coupling strength of each representation is summarized in Table 1. Notice
that the sign of the interaction is in most cases determined from the nonneg-
ativeness of the Dynkin indices, p, q ≥ 0. It is also interesting to recall that
the baryons in flavor SU(3) changes its representation when we vary Nc

23,24.
With Eq. (4), we can calculate the Nc dependence of the coupling strength.
The results are also shown in the fourth column of the Table 1.

At this moment, we do not know which state is exotic. Here we introduce
the exoticness quantum number E25,26,27,28 as the minimal number of valence
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quark-antiquark pairs to construct the given flavor multiplet [p, q] with the
baryon number B carried by the u, d, and s quarks. For B > 0, the exoticness
takes on the form19,20

E = εθ(ε) + νθ(ν),

with

ε ≡ p + 2q

3
− B, ν ≡ p − q

3
− B.

With this index, we can specify the exotic channels as the channel in which
α has the larger exoticness than the target T does. Since α is obtained by
multiplying [1, 1] to the target representation T , the increase of the exoticness
is at most unity. We denote ∆E as the difference between the exoticness of α
and that of T which are shown in Table 1. Taking into account that p, q ≥ 0,
we find that the interaction for ∆E = +1 channels is in most cases repulsive,
and the strength of the possible attractive interaction is uniquely determined
as

Cexotic = 1. (5)

In this way, we construct the low energy interaction Vchiral in Eq. (1).

Table 1. Properties of the WT interaction in the channel α of the NG boson scattering on
the target hadron with the T = [p, q] representation. The coupling strengths of the WT
term is denoted as Cα,T , ∆E is the differences of the exoticness E between the channel α
and the target hadron T , and Cα,T (Nc) denotes the coupling strengths for arbitrary Nc.

α Cα,T ∆E Cα,T (Nc)
[p + 1, q + 1] −p − q 1 or 0 3−Nc

2 − p − q
[p + 2, q − 1] 1 − p 1 or 0 1 − p
[p − 1, q + 2] 1 − q 1 or 0 5−Nc

2 − q
[p, q] 3 0 3

[p + 1, q − 2] 3 + q 0 or −1 3+Nc

2 + q
[p − 2, q + 1] 3 + p 0 or −1 3 + p
[p − 1, q − 1] 4 + p + q 0 or −1 5+Nc

2 + p + q
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3 Unitarity condition

Next we construct the scattering amplitude which satisfies Eq. (2). We utilize
the N/D method4. In this method, the scattering amplitude tα is given by

tα(
√

s) =
1

1 − Vα(
√

s)G(
√

s)
Vα(

√
s), (6)

where Vα determines the dynamics of the system and we choose the chiral
interaction Vα in Eq. (3). G is given by

G(
√

s) = −ã(s0) −
1
2π

∫ ∞

s+
ds′

(
ρ(s′)
s′ − s

− ρ(s′)
s′ − s0

)
,

with ρ(s) = 2MT

√
(s − s+)(s − s−)/(8πs) and s± = (m ± MT )2. This func-

tion can be identified as the meson-hadron loop function, renormalized by the
dimensional regularization.

We determine the renormalization constants from the requirement (1).
We first note that if G = 0 in Eq. (6), then the full amplitude tα coincides
with the kernel interaction Vα which is chosen to be the chiral interaction
in the present case. Therefore, in order to satisfy Eq. (1), we need to make
G(

√
s) = 0, which is only possible within MT −m ≤

√
s ≤ MT +m (otherwise

G is complex). Here we choose

G(MT ) = 0, (7)

where MT is the mass of the target hadron. This condition is consistent for the
requirement of the low energy, since the energy of the NG boson is zero ω = 0
at

√
s =

√
M2

T − m2 ∼ MT , (with on-shell kinematics). In fact, this condition
is the most advantageous to generate a bound state within the region where
a natural matching of the full amplitude to the low energy interaction can be
performed21,22.

Thus, we obtain the scattering amplitude tα(
√

s) which satisfies both
Eqs. (1) and (2). Now we search for the pole of the bound state in the
amplitude, which corresponds to zero of the denominator 1 − Vα(

√
s)G(

√
s).

From the energy dependence of the interaction and the loop function, we find
the critical value for the attractive interaction strength

Ccrit =
2f2

m
[
−G(MT + m)

] . (8)

If the interaction strength Cα,T is larger than this critical value, a bound state
is generated in the amplitude (6). In Fig. 2, we plot Ccrit as a function of MT ,
with m = 368 MeV and f = 93 MeV. We also plot the attractive interaction
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Figure 2. Critical coupling strength Ccrit for f = 93 MeV and m = 368 MeV (Solid
line). The dashed line denotes the universal attractive coupling strength in exotic channels
Cexotic = 1.

in the exotic channel (5). As we see in the figure, the interaction is not strong
enough to generate a bound state for the mass of the target hadron ≤ 6 GeV,
where possible target hadrons exist.

4 Summary and conclusion

We have studied the exotic states in the NG boson-hadron scattering. We
construct the scattering amplitude which satisfies the chiral low energy theo-
rem and unitarity condition. Considering the general target hadrons, we find
that the interaction in the exotic channels are in most cases repulsive, and
possible attractive interaction is uniquely given as Cexotic = 1. We show that
the strength of the attractive interaction is not sufficient to generate a bound
state for the physically known masses of the target hadrons.

In order to draw a general and model-independent conclusion, we have
simplified the framework. Our basic assumptions are 1) flavor SU(3) symmet-
ric limit and 2) convergence of the chiral expansion. Once we accept these
conditions, the subsequent arguments are straightforward. In practice, how-
ever, the SU(3) symmetry is broken and the higher order terms of the chiral
expansion would play a substantial role, especially for the larger mass of the
NG boson. These effects could be included in the kernel interaction based on
chiral perturbation theory, but we need experimental data to determine the
low energy constants.

In this study, we stress that the WT term is the leading order term of the
chiral expansion and the strength is only determined by the group theoretical
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factor. We can therefore argue that the leading order term does not provides
a bound state in exotic channel, without performing experiments. Given the
success of the chiral unitary approach in the nonexotic sectors, our result may
partly explain the difficulty to observe exotic hadrons in nature.
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