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Abstract

We study s wave meson-baryon scatterings using the chiral unitary model and investigate

properties of excited baryons which appear as resonances. In the chiral unitary model, we

sum up non-perturbatively the interactions of the chiral perturbation theory, which is one

of the effective theories of QCD respecting chiral symmetry, so that the model provides

a good description of hadron physics in low and intermediate energy region. Due to the

non-perturbative resummation, in s wave scatterings, 1/2− baryon resonances are generated

dynamically, and they are regarded as quasibound states of the low lying mesons (π, K, η)

and baryons (N,Λ, Σ, Ξ).

In this thesis, we first review the foundations of the model, chiral perturbation theory and

the method of unitarization. According to the previous works, the chiral unitary model has

two features. On one hand, the chiral unitary model needs several parameters whose origin

is not clear. On the other hand, with the use of proper parameters, the model is in excellent

agreement with experimental data. Therefore, we study theoretical aspects of the model and

apply it to the investigation of the resonance structure. We study flavor SU(3) breaking

effects and compute the magnetic moments of the baryon resonances.

In previous works of the chiral unitary model, the subtraction constants in loop integrals

largely depended on channels, where it was necessary to fit these constants to reproduce

the data. In order to extend this model to all channels with fewer parameters, we introduce

flavor SU(3) breaking interactions in the framework of chiral perturbation theory. It is found,

however, that the observed SU(3) breaking in meson-baryon scatterings cannot be explained

by the present SU(3) breaking interactions. The essential physics of the resonances seems to

lie in the subtraction constants.

As an application of the chiral unitary model, we calculate the magnetic moments of the

N(1535) resonance. So far, the magnetic moments of excited baryons have not been measured,

because they are unstable and decay quickly. However, with the recent developments of the

experimental technique, it is planned to extract the magnetic moments of N(1535) from

the reaction γp → γηp at LNS (Tohoku) and MAMI (Mainz). In the chiral unitary model,

we calculate the diagrams in which a photon couples to N(1535), and extract the magnetic

moments without using explicit resonance fields. The results are µp∗ ∼ +1.1µN and µn∗ ∼
−0.25µN , where µN is the nuclear magneton. Physical origin of these numbers is briefly

discussed.
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Chapter 1

Introduction

Today we understand that the strong interaction is governed by quantum chromodynamics

(QCD), which is the color SU(3) gauge theory with quarks as fundamental fields and gluons as

gauge fields. Because QCD has non-Abelian symmetry, the gluons interact with themselves,

so that the running coupling constant of QCD behaves asymptotically free, according to

the renormalization group equations. Inversely, the coupling constant becomes large at low

energy region, where the perturbative calculation breaks down. In this non-perturbative

region, the fundamental degrees of freedom become mesons and baryons due to the color

confinement. We call these mesons and baryons together as hadrons, and the investigation of

the hadron dynamics at low energy region is of our interest. In order to study the behavior

of hadrons, we adopt effective field theories using the principle of symmetry.

Chiral symmetry of QCD plays an important role in low energy hadron physics [1]. Several

low energy theorems are derived from chiral symmetry and its spontaneous breaking. Origi-

nally, before the establishment of QCD, the notion of the chiral symmetry has been developed

in current algebra [2]. Being started with the Goldberger-Treiman relation [3], an idea of par-

tially conserved axial current (PCAC) were introduced. PCAC was later understood by the

spontaneous breaking of chiral symmetry, where pions appear as the Nambu-Goldstone (NG)

bosons of the broken generators. Consideration of the process with more than one pion, such

as πN scatterings, determines the commutation relations of the broken generators, so that

the broken symmetry group is specified as SU(2)× SU(2). One of the reasons that QCD is

accepted is that SU(2)× SU(2) can be interpreted as the results of small masses of u and d

quarks.

The chiral perturbation theory (ChPT) [4, 5, 6, 7, 8] is one of the low energy effective

theory of QCD respecting chiral symmetry, where mesons and baryons are the fundamental

degrees of freedom. It is based on the nonlinear realization of chiral symmetry, and the

spontaneous breakdown of the symmetry is assumed from the beginning. Advantages of this
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Figure 1.1: Diagrammatic interpretation of dynamical generation of resonances. Solid, dashed
and double lines represent baryons mesons, and baryon resonance, respectively. Summing the
loops up to infinite order, we can generate a resonance dynamically.

theory are as follows. First, we can establish a power counting rule in terms of momenta

of the NG bosons. With this chiral counting rule, we can perform perturbative calculation,

which works well at low energy region. Second, the results of current algebra relations and

several mass formulae, such as Gell-Mann-Okubo mass relation, are easily derived from the

effective Lagrangian. Therefore, in order to study the low energy hadron dynamics, we adopt

the ChPT as the foundation.

1.1 Chiral unitary model

The study of meson-baryon scatterings in a unified way is important to understand hadron

dynamics at low and intermediate energy regions from the viewpoint of QCD. Especially the

properties of baryonic excited states observed in the meson-baryon scatterings as resonances

are investigated with great interest both theoretically and experimentally. So far, there are

several established approaches to describe the properties of the baryon resonances. A recent

development in this field has been made by the success of the chiral unitary model [9, 9, 11,

12, 13, 14], where 1/2− baryon resonances are dynamically generated in s wave meson-baryon

scatterings (Fig. 1.1). In this formulation, we regard the resonances as quasibound states of

mesons and baryons, and one of the advantage of the chiral unitary model is the dynamical

generation, with which the information of the resonances such as masses, widths and the

couplings to meson-baryon channels is produced only from mesons and baryons. This point

differs from the explicit resonance approach [15, 16], where the resonance fields are introduced

in ChPT and the information of the resonances are inputted by hand. The meson-baryon

picture of resonances is also superior than the conventional quark model approach, where

the baryon resonances are described as three-quark states with an excitation of one of the

quarks [17, 18]. Experimentally, it is known that the excited baryons strongly couple to the

meson-baryon channels, which cannot be described by simple quark model. This important

feature implies the meson-baryon picture of resonances.

The chiral unitary model is based on the ChPT. Imposing the unitarity condition, the

ChPT can be extended to higher energy regions than in the original perturbative calculation.

2



1.2. Flavor SU(3) breaking effects

In this way, we can study properties of resonances generated by non-perturbative resum-

mations. In the implementation of the unitarity condition, regularization of loop integrals

brings parameters into this model, such as the three-momentum cut-off and the “subtraction

constants” in the dimensional regularization.

In Refs. [9, 13], the s wave scatterings of the meson and baryon systems with the strangeness

S = −1 were investigated by solving the Lippman-Schwinger equation in the coupled chan-

nels, where the Λ(1405) resonance was dynamically generated by the meson-baryon scatter-

ings. In the regularization procedure, parameters were introduced for the finite ranges in

the kernel potential [9], and for the three-momentum cut-off in the loop integral [13]. In

Refs. [19, 20, 21], they extended the chiral unitary approach to other strangeness channels

and obtained the baryonic resonances, Λ(1405), N(1535), Λ(1670),Σ(1620) and Ξ(1620), as

dynamically generated objects. They used the dimensional regularization scheme with chan-

nel dependent subtraction constants (ai). In particular, the subtraction constants in S = 0

depended significantly on channels, while as reported in Ref. [22], a common subtraction

constant was found in the S = −1 channel to reproduce the total cross sections of the K−p

scattering as well as Λ(1405) properties.

Here, we would like to make two remarks on the chiral unitary model. On one hand, the

chiral unitary model needs channel dependent subtraction constants. However, their micro-

scopic origin is not clear. On the other hand, with the use of proper subtraction constants,

the chiral unitary model is very powerful to describe not only meson-baryon scatterings but

resonances. Based on these two remarks, we study the following two original works in this

thesis.

• Study of theoretical aspects : flavor SU(3) breaking effects

• Investigation of the resonance structure : magnetic moments of the baryon resonances

In sections 1.2 and 1.3, we present motivations and backgrounds of these studies in detail.

1.2 Flavor SU(3) breaking effects

In this work, we raise a question whether the channel dependence of the subtraction constants

could be dictated by the flavor SU(3) breaking effects of an underlying theory, or not. The

SU(3) breaking should have significant effects on observed quantities. This is expected from,

for instance, the large dependence of the threshold energies on the meson-baryon channels as

shown in Fig. 1.2. This is particularly the case for S = 0, where the lowest threshold energy

of the πN channel deviates considerably from the mean value.

In order to study the above questions, we consider the following two cases;
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Figure 1.2: Threshold energies of the meson-baryon scatterings in the S = −1 and S = 0
channels. The dotted line in the middle represents the averaged energy of all meson-baryon
thresholds.

• We use a common subtraction constant for all scattering channels and see whether this

simplified calculation works or not (chapter 4).

• When this method does not work, we introduce the flavor SU(3) breaking effects in the

interaction kernel (chapter 5).

In this way, we expect that the free parameters in the previous works could be controlled

with suitable physics ground, which allows us to extend this model to other channels with

predictive power. In this work, we concentrate on the s wave scatterings, since the p wave

contribution to the total cross sections is shown to be small in the S = −1 channel in Ref. [23].

1.3 Magnetic moments of the baryon resonances

As an application of the chiral unitary model to investigation of the structure of resonances,

we calculate the magnetic moments of the N(1535) resonance. In general, it is not easy

to measure the magnetic moments of excited baryons experimentally, because they have

too short lifetimes for the spin precession measurements. However, with the recent devel-

opments of the experimental technique, several experiments are performed and planned.

Indeed, through the reaction π+p → γπ+p, the measurements for the magnetic moments of

∆++(1232) have already been done in Refs. [24] and [25], although the result is not so precise,

µ∆++ = 3.7 ∼ 7.5µN , due to ambiguities of the reaction mechanism. In recent experiment [26]

the magnetic moments of ∆+(1232) are measured from γp → γπ0p, and further experiments

are planned at MAMI (Mainz). For N(1535), it is also planned to extract the magnetic

moments of the resonance from the reaction γp → γηp at LNS (Tohoku) and MAMI.

From theoretical point of view, calculation of the magnetic moments of N(1535) are done

in Ref. [27], where the constituent quark model is adopted. In the chiral unitary model, the
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Figure 1.3: Feynman diagram from which we extract the magnetic moments of the resonance.
Solid, dashed, wavy and double lines represent baryons, mesons, photon and baryon reso-
nances, respectively. We consider the limit where the photon has zero momentum. Note that
this diagram contains not only the magnetic moments but also electric parts.

magnetic moments of the Λ resonances are calculated in the S = −1 channel [28]. They com-

pute the diagrams in which a photon couples to resonance field (Fig. 1.3), and the magnetic

moments of the resonance are extracted. Here we follow the same procedure. The differences

from Ref. [28] are as follows.

• The N(1535) resonance is an isospin doublet, so that there are two components which

correspond to proton and neutron resonances.

• Because the N(1535) resonance carries isospin 1/2, the effect of the ground state Σ0Λ

transition becomes important, while this effect is almost negligible for the Λ resonances.

• We present a simple estimation of the magnetic moments based on meson-baryon picture

of resonances.

We study these points in detail, and compute the magnetic moments of N(1535) resonance in

the chiral unitary model. Compared with the results of the quark model [27] and the simple

estimation , we discuss the present results.

1.4 Organization of this thesis

Here we present the organization of this thesis. This thesis consists of two main parts, review

part (chapters 2 and 3) and research part (chapters 4, 5 and 6). In the review part, we show

the foundations of the model, chiral perturbation theory and the method of unitarization,

while original works and numerical results are presented in the research part.

In chapter 2, we present the formulation of the ChPT. We construct an effective La-

grangian, based on the spontaneous chiral symmetry breakdown. All the terms of chiral

Lagrangian, which will be used in later chapters are introduced. We then present the unita-

rization method in chapter 3. The analytic structure of the scattering amplitude are studied

and the unitarity condition of S-matrix is formulated in the N/D method. Performing ana-
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lytic continuation to the complex energy plane, we discuss the branches and Riemann sheets

of the scattering amplitudes.

In chapter 4, combining the interaction of the ChPT in chapter 2 and the unitarity condi-

tion in chapter 3, we formulate the chiral unitary model. The numerical calculation with a

common subtraction constant and comparison with the previous works are shown. We also

discuss how to extract the information of resonances from the scattering amplitude. In chap-

ter 5 we introduce the flavor SU(3) breaking terms of chiral Lagrangian. After deriving the

meson and baryon masses which satisfy the mass formulae, we formulate the chiral unitary

model with the SU(3) breaking effects. The contents of the chapters 4 and 5 are summarized

in Ref. [29]. Chapter 6 is devoted to the calculation of the magnetic moments of the N(1535)

resonance. We present an estimation of the magnetic moments, and the numerical results are

compared with the results obtained in Refs. [27] and [28].

In chapter 7 we discuss and summarize the results obtained in the chapters of research

part. The conclusion of this study and future plans are also presented. In Appendices, we

show various formulae in detail, which are useful in practical calculations.

6



Chapter 2

Chiral perturbation theory

In this chapter we construct the Lagrangian of the chiral perturbation theory (ChPT) for

meson and baryon systems. ChPT [4, 5, 6, 7] is a low energy effective field theory based on

the nonlinear realization of chiral symmetry of QCD. There are many excellent review papers

which deal with the ChPT [30, 31, 32, 33], where various examples of applications of ChPT,

not only to the processes of the strong interactions but also to weak and electromagnetic

processes are presented. The main purpose of this chapter is to show the effective Lagrangian

that we will use in the calculations of the chiral unitary model in later chapters. Therefore, we

concentrate on the construction of the chiral Lagrangian and do not discuss the applications

in detail.

In the following, we first discuss the chiral symmetry of the QCD Lagrangian and its spon-

taneous breakdown. When a continuous symmetry is spontaneously broken, there appears

the Nambu-Goldstone (NG) bosons, whose number corresponds to the broken generators of

the symmetry. Then we present a guiding principle to construct effective Lagrangians. In

section 2.3, from general point of view, we show a method to construct nonlinear Lagrangians

for the system which has a global symmetry and its spontaneous breakdown. The standard

transformation low, which is unique up to the redefinition of the NG boson fields, are con-

structed explicitly. In section 2.4 we deal with the case of the flavor SU(3) QCD, where

SU(3)L×SU(3)R breaks into SU(3)V . We construct an effective chiral Lagrangian for octet

mesons, which are the NG bosons of this case. Here we establish a counting rule, with which

we perform perturbative calculations. This is called chiral perturbation theory. We also

introduce the external fields into the effective Lagrangian, in the way consistent with the

underlying QCD. These external fields are used for later applications of the chiral unitary

model, namely, when introducing explicit SU(3) breaking effects and photon fields. Finally

we introduce the octet baryons into the chiral Lagrangian. Because of the large baryon

masses, we should reform the counting rule to include momenta of baryons.
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2.1. Chiral symmetry

2.1 Chiral symmetry

In this section we review the chiral symmetry of Nf flavor QCD and its spontaneous break-

down. Here we discuss the case of QCD with massless quarks, where the Lagrangian is

invariant under a global symmetry, which is called chiral symmetry. In real world, due to the

non-perturbative vacuum, chiral symmetry is spontaneously broken, which is accompanied

by the appearance of the NG bosons, such as pions. Furthermore, chiral symmetry holds only

approximately, because quarks have small but nonzero masses. Nevertheless, it is important

to discuss the low energy hadron physics respecting chiral symmetry, because the explicit

breaking effects are small, and we can neglect and treat them as perturbative collections.

Success of the low energy theorems and the current algebra also show the importance of the

chiral symmetry in low energy hadron physics [34].

2.1.1 Chiral symmetry of QCD Lagrangian

The Nf flavor QCD Lagrangian without quark masses is given by

L0
QCD = −1

2
GµνG

µν + q̄iγµDµq, (2.1.1)

Gµν = ∂µAµ − ∂νAµ + ig[Aµ, Aν ], Dµ = ∂µ + igAµ, Aµ =
∑

a

T aAa
µ,

where q is the quark field which is represented as a Nf component column vector, and

Aa
µ, (a = 1 ∼ 8) the gluon fields, which are associated with the color SU(3) gauge symmetry

of QCD. In Eq. (2.1.1), T a are the generators of the color SU(3) and g is the coupling constant

of QCD. We define the left-handed and right-handed quarks as

qL = PLq , PL =
1
2
(1− γ5) ,

qR = PRq , PR =
1
2
(1 + γ5) ,

(2.1.2)

where the projection operators PL,R have the properties

P 2
L,R = PL,R , PLPR = 0 , PL + PR = 1 . (2.1.3)

With qL and qR, the Lagrangian (2.1.1) is written as

L0
QCD = −1

2
GµνG

µν + q̄LiγµDµqL + q̄RiγµDµqR (2.1.4)

In the Lagrangian (2.1.4), qL and qR do not interact with each other, which means that the

Lagrangian has a global symmetry U(Nf )L × U(Nf )R. However, U(1)A is broken by axial

anomaly at loop level, while U(1)V holds trivially as the quark number conservation. Except

8



2.1. Chiral symmetry

for these U(1) parts, we refer to the global SU(Nf )L×SU(Nf )R as chiral symmetry of QCD.

Under chiral transformations, the quark fields transform as

qL → LqL, L = eiθa
Lta ∈ SU(Nf )L

qR → RqR, R = eiθa
Rta ∈ SU(Nf )R

(a = 1 ∼ N2
f − 1) , (2.1.5)

where θa
L,R are arbitrary real parameters and ta are the generators of SU(Nf ). When we

consider the group G = SU(Nf )L × SU(Nf )R, it is convenient to write an element of G in

two component form as

g = (R, L) ,

gR = (R, 1) , gL = (1, L) ,
(2.1.6)

where we follow the notation in Ref. [1]. Note that R is an element of SU(Nf )R, while gR is

an element of SU(Nf )L × SU(Nf )R. Then we define generators as

taR = (ta, 0) , taL = (0, ta) , (2.1.7)

where ta are the generators of SU(Nf ). Then the commutation relations among taL and taR

are given by

[taL, tbL] = ifab
ct

c
L ,

[taR, tbR] = ifab
ct

c
R ,

[taL, tbR] = 0 ,

(2.1.8)

where fab
c are the structure constants of SU(Nf ).

2.1.2 Spontaneous chiral symmetry breaking

In the previous subsection, the chiral symmetry is manifested among the field operators in

the Lagrangian (2.1.1). If an operator has a finite vacuum expectation value, which is not

invariant under chiral transformations, then the symmetry is spontaneously broken. If quark

condensate q̄q = q̄RqL + q̄LqR has a finite vacuum expectation value v

〈0|q̄RqL + q̄LqR|0〉 = v , (2.1.9)

then under g = (R, L) ∈ SU(3)L × SU(3)R, the expectation value transforms

〈0|q̄RqL + q̄LqR|0〉 g→ 〈0|q̄RR†LqL + q̄LL†RqR|0〉 , (2.1.10)

which is not invariant, because the parameters θa
L,R in L and R are arbitrary. In order

to consider the transformation which makes the expectation value invariant, we define the

generators taV and taA as

taV ≡taR + taL = (ta, ta) ,

taA ≡taR − taL = (ta,−ta) .
(2.1.11)

9
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Then it turns out that the group SU(Nf )V , which is a subgroup of G generated by taV ,

SU(3)V 3 h = eiθa
V taV

= (eiθa
V ta , eiθa

V ta)

preserves the symmetry, as we see

〈0|q̄RqL + q̄LqR|0〉 h→ 〈0|q̄Re−iθa
V taeiθa

V taqL + q̄Le−iθa
V taeiθa

V taqR|0〉 = v . (2.1.12)

In this way we see that the SU(Nf )L × SU(Nf )R symmetry is broken to the subgroup

SU(Nf )V . This is called spontaneous breaking of chiral symmetry, where the vacuum expec-

tation value breaks the symmetry of the Lagrangian. From Eq. (2.1.11), it is clear that the

commutation relations among taV and taA are given by

[taV , tbV ] = ifab
ct

c
V ,

[taV , tbA] = ifab
ct

c
A ,

[taA, tbA] = ifab
ct

c
V .

(2.1.13)

This relation is important for later sections.

When the symmetry is spontaneously broken, there is a theorem that the spectrum of

physical particles must contain one particle of zero mass and spin for each broken symme-

try [35]. These bosons are called the Nambu-Goldstone (NG) bosons. In the case of QCD

with two flavors (u and d), the NG bosons are three pions, while in the case of QCD with

three flavors (u, d and s), pions, kaons and eta are regarded as the NG bosons.

2.2 Effective field theory

An effective field theory well describes the low energy dynamics, using a phenomenological

Lagrangian determined by symmetry restrictions. The asymptotic fields in the effective

Lagrangian can be different from those of the fundamental theory, when we integrate out the

original degrees of freedom using the path integral formulation. The effects from the original

fields in the underlying theory are assumed to be included in the low energy constants of

the effective Lagrangian. In order to construct the effective Lagrangian, there is a guiding

principle [4, 36, 30];

For a given set of asymptotic states, perturbation theory with the most general

Lagrangian containing all terms allowed by the assumed symmetries will yield the

most general S-matrix elements consistent with analyticity, perturbative unitarity,

cluster decomposition and the assumed symmetries.

In order to construct the chiral Lagrangian, we adopt this principle in the following.

10



2.3. Nonlinear realization of chiral symmetry

2.3 Nonlinear realization of chiral symmetry

In this section, from general point of view, we construct an effective Lagrangian in terms of the

nonlinearly transforming NG bosons using the principle of symmetry. It is called nonlinear

realization of symmetry [2, 37, 38]. We consider a general system, where a global symmetry G

is broken spontaneously into a subgroup H ⊂ G. It is important that spontaneous symmetry

breaking of the system is already assumed from the beginning. We also assume that G and

H are compact, connected and semi-simple Lie groups.

Since we express a symmetry of certain system by a Lie group, in order to specify a rep-

resentation, we should define representation matrices for group elements D(g) and elements

of the representation space ψ, which are transformed by D(g). The meaning of the word

“linear” or “nonlinear” is related to the transformation low of the representation ψ. When a

field ψ transforms

ψa
g→ ψ′a =

∑

b

D(g)abψb , (2.3.1)

a component of ψ′ is written by linear combination of the components of the original ψ.

Hence, this is a linear representation of G. The QCD Lagrangian (2.1.1) is one of the

examples, where the quark fields linearly transform under SU(Nf )× SU(Nf ).

Historically, the nonlinear representation (of chiral symmetry) is derived from the linear

representation through the nonlinear transformation. However, in order to construct the

nonlinear Lagrangians it is not necessary to start with linear Lagrangian, such as the linear

sigma model [2]. In the following, we discuss the nonlinear representations without using

linear representations, parametrizing the transformation low (2.3.1) using the NG boson

fields, which make it nonlinear.

2.3.1 Commutation relations of generators

First we briefly summarize several words of the group theory. Let us consider a Lie group G.

In some neighborhood of the identity, any element of G is generated by a set of generators,

which satisfy commutation relations characterized by the structure constants of the group.

The space which spanned by the generators is called the Lie algebra. We can choose any set

of generators, as long as they span the Lie algebra. Once we specify the Lie group, associated

Lie algebra is determined uniquely. On the other hand, the Lie algebra only determines the

structure of the group in some neighborhood of the identity, and the global structure of the

group can not be determined by the Lie algebra. For instance, although O(N) and SO(N)

have the same generators, their global structures are different each other. In the following,

we denote the Lie group and its Lie algebra by G and G, respectively.
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2.3. Nonlinear realization of chiral symmetry

Now we consider the symmetry G, which spontaneously breaks into the subgroup H. We

separate the generators of the group G into ‘unbroken generators’ Sα ∈ H and ‘broken

generators’ Xa ∈ G −H;

{TA ∈ G} = {Sα ∈ H, Xa ∈ G −H} ,

where A = 1 · · · , dimG, α = 1, · · · ,dimH and a = dimH +1, · · · , dimG. From the definition,

H is a group, so that H form closed algebra.

Orthonormality of generators are given by

tr(T iT j) =
1
2
δij , (2.3.2)

where T i ∈ G. In order to calculate trace, we may specify a representation of the group G

in matrix form. However, Eq. (2.3.2) is satisfied for any representations, once we specify the

basis of the Lie algebra. In abstract way, Eq. (2.3.2) means that Cartan metric gij should

be δij/2. The Cartan metric only depends on the structure constant of the Lie algebra, and

therefore, Eq. (2.3.2) does not depend on representations. From Eq. (2.3.2), normalizations

of Sα and Xa are

tr(SαSβ) =
1
2
δαβ, tr(XaXb) =

1
2
δab,

tr(SαXa) = 0 .
(2.3.3)

Next we consider commutation relations of S and X. By definition, the subgroup H should

be closed in their operations. This means that commutators of generators should be expressed

by themselves.

[Sα, Sβ] = ifαβ
γSγ , (2.3.4)

where fAB
C are structure constants of G. From (2.3.4) and (2.3.3), we can derive

tr(Sα[Sβ, Xa]) =tr(SαSβXa − SαXaSβ)

=tr(SαSβXa − SβSαXa)

=tr([Sα, Sβ]Xa)

=ifαβ
γtr(SγXa)

=0 .

Since [Sα, Xa] is orthogonal to Sα, it is included in G −H.

[H,G −H] ⊂ G −H (2.3.5)

Note that this result comes from only the orthonormal condition (2.3.3) and we did not use

any other assumptions here.
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2.3. Nonlinear realization of chiral symmetry

In general, commutators among Xa are written as a linear combinations of Sα and Xa [2];

[Xa, Xb] = ifab
γSγ + ifab

cX
c. (2.3.6)

However, if the algebra is invariant under ‘Parity’ τ for generators, which is defined by,

τ : G → G
{

τ(Y ) = +Y Y ∈ H
τ(Y ) = −Y Y ∈ G −H ,

τ2 = 1 ,

then commutators among Xa can be written as linear combinations of Sα,

[G −H,G −H] ⊂ H . (2.3.7)

In the case of chiral symmetry of Nf flavor QCD, where G = SU(Nf )L × SU(Nf )R, H =

SU(Nf )V , tA ∼ X and tV ∼ S, Eq. (2.3.7) is valid as shown in Eq. (2.1.13).

Hence the commutation relations among the generators are given as

[H,H] ⊂ H ,

[H,G −H] ⊂ G −H ,

[G −H,G −H] ⊂ H .

(2.3.8)

It is worth noting that elements of G, which are generated by ‘the broken generators’, do not

form a group because the generators are not closed when taking commutators.

2.3.2 Standard transformation

Here we consider to construct a nonlinear representation ψ, which becomes linear when

restricted to a given subgroup H. The representation ψ transforms under g ∈ G and h ∈ H,

ψ
g→ D(g)ψ , D(g) : nonlinear

ψ
h→ D(h)ψ , D(h) : linear

. (2.3.9)

In order to make such a representation, we parametrize the coset space using the NG boson

fields φ, which also transforms nonlinearly under G. We will obtain a set of transformation

ψ
g→ ψ′(g, φ, ψ) = D(g, φ)ψ

φ
g→ φ′(g, φ)

, (2.3.10)

where φ′(g, φ) is a nonlinear function of φ, so the transformation low of φ is nonlinear. Explicit

transformation low of φ will be given later. In Eq. (2.3.10), although transformed ψ′ is written

as a linear combination of original ψ, their coefficients include φ, so that the transformation

low becomes nonlinear. We refer to Eq. (2.3.10) as the standard transformation [37, 38]. It is
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2.3. Nonlinear realization of chiral symmetry

Figure 2.1: A schematic diagram of coset decomposition of G. Here e is a unit element. Since
G has an infinite number of elements, the ellipsis denotes an infinite number of cosets, and
the number of the representative ni is also infinite.

shown that all the representations which satisfy the condition (2.3.9) can be made to have the

standard form (2.3.10) with suitable redefinition of the NG boson fields, for SU(2)×SU(2) [39]

and for general case [37]. Physically, this means that the redefinition of the NG boson fields

does not change the on-shell S-matrix. It is called representation independence, first shown

in Ref. [40].

Now we formulate the standard transformation (2.3.10) explicitly. We consider the left

coset of the group G. Using the subgroup H, we can decompose the elements of G into left

cosets gH. A coset is obtained by multiplying an element of G to all the elements of H from

left. Then we pick a representative element ni from each coset gH. Using ni, any element

of G is written as g = nih with h ∈ H. This decomposition is schematically interpreted as

in Fig. 2.1. Regarding each coset H, n1H, n2H, · · · as an element, we define the coset space

G/H A). If the subgroup H is an invariant subgroup of G, namely,

gHg−1 = H for ∀g ∈ G , (2.3.11)

then G/H form a group. In the present case, from Eq. (2.3.5) we see that generators in H
do not commute with those in G − H, which means the H is not an invariant subalgebra,

subsequently, H is not an invariant subgroup. Therefore, G/H does not form a group.

Next we consider the transformation of a representative n under g0 ∈ G. When we act an

element g0 for n, the image of n belongs to a coset n′H, such that (Fig. 2.2)

g0n = n′(n, g0)h(n, g0) . (2.3.12)

In the present case H is generated by the generators S and G/H by the broken generators

A)The coset is a set of elements of the group, so that “an elements of the coset space” is also a set of elements
of the group. The representative is an element of the group.
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2.3. Nonlinear realization of chiral symmetry

Figure 2.2: Schematic diagram of Eq. (2.3.12). A representative n transforms under g0.

X;

n = eiφ·X , φ ·X =
∑

a

φaXa . (2.3.13)

h = eiu·S , u · S =
∑
α

uαSα . (2.3.14)

with real parameters φ and u. Now we identify the NG boson fields with the variables φa.

Then φ becomes a representation of G, so that it transforms under g0. Eq. (2.3.12) requires

g0e
iφ·X = eiφ′(φ,g0)·Xeiu′(φ,g0)·S , (2.3.15)

and we have a transformation low

φ
G→ φ′(φ, g0) , (2.3.16)

which satisfy Eq. (2.3.15), and is a nonlinear transformation of φ. Simultaneously, we define

the transformation low of ψ as

ψ
G→ D(eiu′(φ,g0)·S)ψ

= D(h(φ, g0))ψ , (2.3.17)

which is also a nonlinear transformation due to the nonlinearity of the φ field. Eqs. (2.3.16)

and (2.3.17) give the standard form of the nonlinear representation. Both of the transforma-

tions depend on the NG boson field φa through Eq. (2.3.15).

When we consider the transformation low under h0 ∈ H, h0n is written as

h0n = eiu·Seiφ·X . (2.3.18)
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2.4. Chiral perturbation theory of mesons

Using the formula of Baker-Campbell-Hausdorff

eXeY = exp
{

X + Y +
1
2
[X, Y ] +

1
12

([X, [X,Y ]] + [Y, [Y, X]]) + · · ·
}

,

and Eq. (2.3.8), we obtain

h0n = eiu·Seiφ·X = eiφ′·Xeiu·S = eiφ′·Xh0 . (2.3.19)

Note that in general φ′ is different from φ. On the other hand, from Eq. (2.3.18) we have

h0n = h0e
iφ·Xh−1

0 h0 . (2.3.20)

Comparing Eqs. (2.3.19) with (2.3.20), we obtain

eiφ′·X = h0e
iφ·Xh−1

0

h0e
iφ·X = eiφ′·Xh0 , (2.3.21)

which is the transformation low of φ under h0, and is a special case of Eq. (2.3.15). We see that

h(n, g0) = eiu′(φ,g0) in Eq. (2.3.15) does not depend on φ here, therefore, the transformation

low of φ is linear. The transformation low for ψ becomes

ψ
H→ D(h0)ψ , (2.3.22)

where h0 does not depend on φ. Since the nonlinearity of the transformation (2.3.17) comes

from the dependence of φ, Eq. (2.3.22) gives a linear transformation.

2.4 Chiral perturbation theory of mesons

In this section we consider the QCD Lagrangian (2.1.1) with three flavors, where chiral

symmetry and its spontaneous breaking is denoted as SU(3)L × SU(3)R → SU(3)V . We

construct an effective Lagrangian of ChPT for pseudo scalar mesons of SU(3) octet, using

the standard transformation low for the NG bosons (2.3.15). In this case, the generators S

and X are

S ∼ taV = (ta, ta) , X ∼ taA = (ta,−ta) , a = 1 ∼ 8. (2.4.1)

Under g0 = (R0, L0) ∈ G = SU(3)L × SU(3)R, the transformation law of φ (2.3.15) is

(R0, L0)(exp{iφ·t}, exp{−iφ·t}) = (exp{iφ′·t}, exp{−iφ′·t})(exp{iu′·t}, exp{iu′·t}) . (2.4.2)

From each component, we obtain

R0 exp{iφ · t} = exp{iφ′ · t} exp{iu′ · t}
L0 exp{−iφ · t} = exp{−iφ′ · t} exp{iu′ · t}

. (2.4.3)
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2.4. Chiral perturbation theory of mesons

We take conjugation of the lower equation,

R0 exp {iφ · t} =exp
{
iφ′ · t} exp

{
iu′ · t}

exp {iφ · t}L†0 =exp
{−iu′ · t} exp

{
iφ′ · t}

. (2.4.4)

Multiplying both side of these equations each other, we obtain the transformation law of φ

as

R0 exp {2iφ · t}L†0 = exp
{
2iφ′ · t} . (2.4.5)

The NG bosons which appear due to the spontaneously symmetry breaking are pseudo scalar

octet mesons. We assign these mesons for the field φ as

φ · t ∼ Φ ≡
8∑

a=1

λa

√
2
Φa =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η


 . (2.4.6)

With proper normalization, we define the chiral fields U(Φ) and ξ(Φ) as

U(Φ) = exp

{
i
√

2Φ
f

}
, ξ(Φ) = exp

{
iΦ√
2f

}
, U(Φ) = ξ2(Φ), (2.4.7)

where f is a quantity of mass dimension, and will be identified with the meson decay con-

stant. From Eqs. (2.4.4) and (2.4.5), U and ξ satisfy the following transformation laws under

SU(3)L × SU(3)R;

U
g0→ RUL†, U † g0→ LUR† , (2.4.8)

ξ
g0→ h(Φ, g0)†ξL = R†ξh(Φ, g0) , (2.4.9)

where h(Φ, g0) ∈ H is defined as

h(Φ, g0) = exp
{
iu′(Φ, g0) · t

}
. (2.4.10)

The SU(3) matrix h(Φ, g0) gives a nonlinear transformation under G because of the depen-

dence of Φ field, which transforms nonlinearly.

In order to construct an effective Lagrangian, we organize the most general Lagrangian

with U(Φ) fields, following the principle in section 2.2. First we define a chiral counting rule,

which enables us to perform perturbative calculation in clear way. Since we consider the octet

mesons as the NG bosons, their masses are zero. This means that if the spatial momentum

of a meson p is small, we can also regard the four-momentum pµ = (|p|,p) as small. This is

also valid when we introduce small explicit breakings of chiral symmetry, where mesons do

have masses, so that the four momentum of a meson is expressed as

pµ = (
√

m2 + |p|2,p). (2.4.11)
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2.4. Chiral perturbation theory of mesons

As long as the mass m is small, pµ is also regarded as small. This point will be important

when we introduce baryons into ChPT.

In this way the Lagrangian is expanded in powers of momenta, or derivatives of meson

fields. At low energy region, where the momentum of each particle is small, lower order

terms should be dominant and we can neglect higher order terms. Chiral Lagrangian should

be invariant under chiral transformation (2.4.8), Lorentz transformation, charge conjugation,

parity and time reversal. Due to the Lorentz invariance, the Lagrangian contains even number

of derivatives

Leff(U) =
∑

n

LM
2n(U) , (2.4.12)

where 2n denotes the number of derivatives. Defining U as a quantity of order O(1), a term

with n derivative is counted as O(pn). In Eq. (2.4.12), the terms with n = 0 provide unity,

because of the unitarity of the field U . Therefore the lowest order Lagrangian consists of two

derivatives of U field and is uniquely given as

LM
2 =

f2

4
Tr(∂µU †∂µU) , (2.4.13)

which is of order O(p2). Another candidate

LM ′
2 = CTr(U∂µU †U∂µU †) , (2.4.14)

seems to be allowed, however, it can be rewritten in the same form as Eq. (2.4.13) with

C = −f2/4, using the property of trace and the following formula (2.4.15). Since the chiral

field U is a unitary matrix, U †U = 1. Taking derivative of both side,

∂µ(U †U) = 0

∂µU † · U + U † · ∂µU = 0

∂µU † · U = −U † · ∂µU . (2.4.15)

This formula is important to construct the chiral Lagrangian.

It is easy to show that Lagrangian (2.4.13) is invariant under SU(3)L × SU(3)R

f2

4
Tr(∂µU †∂µU) → f2

4
Tr(∂µ(LU †R†)∂µ(RUL†))

=
f2

4
Tr(L(∂µU †) ·R†R(∂µU)L†)

=
f2

4
Tr(∂µU †∂µU).
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2.5. External fields and local chiral transformation

We see that the trace in Lagrangian (2.4.13) is essential to be invariant under SU(3)L ×
SU(3)R. The factor f2/4 in Eq. (2.4.13) is fixed to provide the properly normalized kinetic

term for the NG bosons

f2

4
Tr(∂µU †∂µU) =

f2

4
Tr

[
∂µ

(
1− i

√
2Φ
f

+ · · ·
)

∂µ

(
1 +

i
√

2Φ
f

+ · · ·
)]

=
f2

4
Tr

[
2
f2

∂µΦ∂µΦ + · · ·
]

=
1
2
Tr(∂µΦ∂µΦ) + · · · ,

where the last line contains terms of even number of meson fields and derivatives. They

represent multimeson interactions with one coupling constant f . In the next order O(p4),

the most general Lagrangian contains three terms [5, 6, 7]

LM
4 =L1

[
Tr(∂µU †∂µU)

]2
+ L2Tr(∂µU †∂νU)Tr(∂µU †∂νU)

+ L3Tr(∂µU †∂µU∂νU
†∂νU) ,

(2.4.16)

where L1, L2 and L3 are the low energy constants. Here we use Eq. (2.4.15) in order to omit

the terms which can be rewritten in the same form. The higher order Lagrangians are also

constructed in the same way.

2.5 External fields and local chiral transformation

In chapters 5 and 6, we introduce explicitly SU(3) breaking effects and couplings to the

photon field. Therefore we need to contain these effects in the Lagrangian. In order to

introduce them in the framework of ChPT, we extend the QCD Lagrangian (2.1.1) with the

inclusion of the external fields. The Lagrangian with external fields is given as

Lext
QCD = L0

QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q, (2.5.1)

where the external fields vµ, aµ, s and p are vector current, axial vector current, scalar and

pseudo scalar field, respectively. For convenience, we define lµ and rµ as

lµ ≡ vµ − aµ, rµ ≡ vµ + aµ. (2.5.2)

Suppose that under SU(3)L×SU(3)R the external fields lµ, rµ, s and p obey the transforma-

tion law as

s + ip → R(x)(s + ip)L(x)†,

lµ → L(x)lµL(x)† + iL(x)∂µL(x)†,

rµ → R(x)rµR(x)† + iR(x)∂µR(x)†.

(2.5.3)
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2.5. External fields and local chiral transformation

Now the Lagrangian (2.5.1) is invariant under SU(3)L × SU(3)R. Note that this transfor-

mation is local because it contains a derivative. We then incorporate the external fields and

their transformation law with the effective chiral Lagrangian (2.4.12). As a consequence of

local transformation, derivative of the field U(Φ) should be replaced by covariant derivative.

The covariant derivatives are given by [5, 6, 7]

DµU = ∂µU − irµU + iUlµ, DµU † = ∂µU † + iU †rµ − ilµU †. (2.5.4)

It is straightforward to check the transformation low of DµU ;

DµU = ∂µU − irµU + iUlµ →∂µ(RUL†)− i(RrµR† + iR∂µR†)(RUL†)

+ i(RUL†)(LlµL† + iL∂µL†)

=(∂µR) · UL† + R∂µUL† + RU(∂µL†)

− iRrµUL† + R(−R†∂µR)UL† + iRUlµL† −RU(∂µL†)

=R∂µUL† − iRrµUL† + iRUlµL†

=R(DµU)L†.

For convenience, we define χ and field strength tensors as

χ =2B0(s + ip) , (2.5.5)

Fµν
L = ∂µlν − ∂ν lµ − i[lµ, lν ] , Fµν

R = ∂µrν − ∂νrµ − i[rµ, rν ] (2.5.6)

with a constant B0. Their transformation lows are

χ → RχL† , (2.5.7)

Fµν
L → LFµν

L L† , Fµν
R → RFµν

R R† . (2.5.8)

Up to order O(p2), the most general Lagrangian consistent with Lorentz invariance and local

chiral symmetry (2.5.3) is given as

LM
2 =

f2

4
Tr(DµU †DµU + U †χ + χ†U) . (2.5.9)

In the next order O(p4), there appear seven terms in addition to three terms in the La-

grangian (2.4.16), with changing derivatives into covariant derivative;

LM
4 =L1

[
Tr(DµU †DµU)

]2
+ L2Tr(DµU †DνU)Tr(DµU †DνU)

+ L3Tr(DµU †DµUDνU
†DνU) + L4Tr(DµU †DµU)Tr(U †χ + χ†U)

+ L5Tr
[
(DµU †DµU)(U †χ + χ†U)

]
+ L6

[
Tr(U †χ + χ†U)

]2

+ L7

[
Tr(U †χ + χ†U)

]2
+ L8Tr(χ†Uχ†U + U †χU †χ)

− iL9Tr(Fµν
R DµUDνU

† + Fµν
L DµU †DνU) + L10Tr(U †Fµν

R UFLµν) .

(2.5.10)
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2.6. Chiral perturbation theory of mesons and baryons

In this way, O(p4) Lagrangian contains ten low energy constants L1 ∼ L10.

In deriving the above Lagrangians, we use the counting rule for the external fields;

U, ξ : O(1) , aµ, vµ(lµ, rµ) : O(p) , s, p(χ) : O(p2) . (2.5.11)

Actually up to this level, there is no reason to include the terms containing χ at the same

order as two meson derivatives. For the moment, we just remark that χ is counted of order

O(p2), or, in other words, chiral expansion is a double expansion in the momentum and in χ,

with a fixed ratio χ/p2. The reason for this is due to the assignment of quark mass matrix

s ∼ m and the Gell-Mann-Oakes-Renner(GMOR) relation [41].

Using these external fields, we can introduce SU(3) breaking effects and photon couplings.

For example, in order to include the quark mass term, we choose

s = m, m =




mu

md

ms


 , (2.5.12)

or, to consider the couplings to photons, we choose

vµ = eQAµ, Q =
1
3




2
−1

−1


 , (2.5.13)

where Aµ is the photon field and e is the unit electric charge. It is worth noting that

once special directions in flavor space are selected in this way, chiral symmetry is explicitly

broken. Indeed, the expression (2.5.12) and (2.5.13) do not satisfy the transformation law

(2.5.3). However, the advantage of this method is that we break the chiral symmetry in

exactly the same way as the QCD Lagrangian (2.5.1) does.

2.6 Chiral perturbation theory of mesons and baryons

In this section, we introduce SU(3) octet baryon fields in the chiral Lagrangian [42]. For the

chiral Lagrangian obtained in previous sections, we can introduce any kinds of fields using

the transformation low (2.3.17). To do this, we need following procedures.

• We specify the representation of the additional field and make a transformation low (2.3.17).

• We construct the most general Lagrangian with respect to the symmetry constraints,

using the NG boson fields and the additional field.

In this way we can construct chiral Lagrangian not only with baryon octet fields but also, for

example, with vector meson fields or baryon decouplet fields.
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2.6. Chiral perturbation theory of mesons and baryons

As an example, in the SU(2) ChPT, we introduce the SU(2) baryon field, namely nucleon

field. Since the nucleon is classified as a doublet of SU(2) symmetry, we assign a fundamental

representation of SU(2) for the nucleon field N ;

N ≡
(

p
n

)
, N̄ = N †γ0 = (p̄, n̄) , (2.6.1)

and they transform as

N
G→ hN , N̄

G→ N̄h† , (2.6.2)

where h = h(φ, g0) ∈ SU(2)V . In the case of SU(3), we introduce the octet baryon field,

therefore we assign an adjoint representation of SU(3) for baryon field B;

B ≡
8∑

a=1

λaBa =




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 , B̄ = B†γ0 .

Because B and B̄ are adjoint representations, they transform under SU(3)L × SU(3)R as

B
G→ hBh† ,

B̄
G→ (hBh†)†γ0 = hB̄h† ,

(2.6.3)

where h = h(Φ, g0) ∈ SU(3)V defined in (2.4.10).

2.6.1 Difficulties of treating baryons in chiral perturbation theory

When we introduce the baryon fields into ChPT, a problem concerning the chiral counting

appears. As a consequence of the transformation law (2.6.3), a chiral invariant mass term

M0Tr(B̄B) can exist

M0Tr(B̄B) →M0Tr(hB̄h†hBh†)

=M0Tr(B̄B) .

The presence of the mass term in baryon sector can be understood by the spontaneous

breaking of chiral symmetry, but this is an important difference from the meson case. In the

meson sector, we define chiral counting rule using the fact that the meson mass is zero or very

small. However, we see that in the baryon sector a large mass can exist. This means that m

in the expression (2.4.11) might be large, so that the energy of baryon p0 =
√

m2 + |p|2 is

not small when |p| is small. We cannot treat the four-momentum of the baryons as a small

quantity any more.

This fact also causes the complicated counting for loops. In the meson sector, contri-

butions from n-loop diagrams are suppressed of order (p2)n, so that there is a one-to-one
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2.6. Chiral perturbation theory of mesons and baryons

correspondence between the loop and small momentum expansions of Lagrangian. However,

in the baryon sector, the baryon propagator gives a contribution of the baryon mass instead

of typical low momenta, since the baryon mass is not small.

Actually there is a method which allows us to perform power counting in a consistent

way [42]. In that case the counting rule becomes more complicated and many terms appear

even in the next-to-leading order. Another way to avoid this difficulty is to adopt the heavy

baryon chiral perturbation theory (HBchPT), where we take the limit p/M0 ¿ 1. With this

approximation, the number of terms are suppressed and counting rule becomes much simpler.

We will discuss briefly this formulation later.

2.6.2 Chiral counting rule for baryons

Here we discuss the counting rule for baryons. First we write down the quantities, with which

the chiral Lagrangian is constructed. Then we assign power counting of order O(pn) for these

quantities.

In order to construct a meson-baryon couplings, it is convenient to introduce the quantities,

which transforms

O → hOh† , (2.6.4)

because of the transformation low of B and B̄ (2.6.3). First we only use the meson fields

to construct O, which has physical meanings. Such quantities are the vector current Vµ and

axial vector current Aµ defined by

Vµ =− i

2
(ξ†∂µξ + ξ∂µξ†) ,

Aµ =− i

2
(ξ†∂µξ − ξ∂µξ†) .

(2.6.5)

Next we introduce the external fields. Using χ defined in Eq. (2.5.5), we construct scalar (σ)

and pseudo scalar (ρ) quantities

σ ≡ ξχ†ξ + ξ†χξ† ,

ρ ≡ ξχ†ξ − ξ†χξ† .
(2.6.6)

With the currents lµ and rµ in Eq. (2.5.2) we extend Eq. (2.6.5) as

Vµ =− i

2
(ξ†∂µξ + ξ∂µξ†) +

1
2
(ξ†rµξ + ξlµξ†) ,

Aµ =− i

2
(ξ†∂µξ − ξ∂µξ†) +

1
2
(ξ†rµξ − ξlµξ†) .

(2.6.7)

Using the field strength tensors (2.5.6), we define

F̃µν
R = ξ†Fµν

R ξ , F̃µν
L = ξFµν

L ξ† . (2.6.8)
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2.6. Chiral perturbation theory of mesons and baryons

From the transformation lows (2.4.9), (2.5.7) and (2.5.8), it is straightforward to show that

Vµ, Aµ, σ, ρ, F̃µν
R and F̃µν

L satisfy the transformation (2.6.4).

According to the detailed discussion of chiral power counting for the baryons in Ref. [42],

the quantities we defined above are counted as

σ, ρ : O(p2) , Aµ, Vµ : O(p) , F̃µν
R , F̃µν

L : O(p2) , (2.6.9)

and baryon fields are

B, B̄ : O(1) , [Dµ, B] : O(1) , iγµ[Dµ, B]−M0B : O(p) . (2.6.10)

With the rules (2.6.9) and (2.6.10), we construct the effective Lagrangian with mesons and

baryons.

2.6.3 Chiral Lagrangian of mesons and baryons

In baryon case, an effective Lagrangian can contain the terms of order odd number of mo-

mentum,

Leff(B, Φ) =
∑

n

LMB
n (B, Φ) . (2.6.11)

Considering the Lorentz structure of the currents, the most general Lagrangian with baryons

in the lowest order of the chiral expansion is given by

LMB
1 = Tr

(
B̄(i/D −M0)B −D(B̄γµγ5{Aµ, B})− F (B̄γµγ5[Aµ, B])

)
, (2.6.12)

DµB = ∂µB + i[Vµ, B] , (2.6.13)

where D and F are coupling constants and M0 denotes a common mass of the octet baryons.

Here we follow the notation in Ref. [43].

In next-to-leading order O(p2), we have twenty one terms in the most general effective

Lagrangian [42]. Among them, here we show the terms that we will use in later chapters, the

SU(3) breaking terms, which are given by

LMB
SB = b0Tr(B̄B)Tr(σ) + b1Tr

(
B̄{σ,B}) + b2Tr

(
B̄[σ,B]

)
, (2.6.14)

and photon coupling terms

LMB
(γ) = bd

6Tr
(
B̄σµν{F+

µν , B}
)

+ bf
6Tr

(
B̄σµν [F+

µν , B]
)

, (2.6.15)

where

Fµν
+ = Fµν

L + Fµν
R , σµν =

i

2
[γµ, γν ] . (2.6.16)
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2.6. Chiral perturbation theory of mesons and baryons

2.6.4 Heavy baryon chiral perturbation theory

The heavy baryon ChPT [44, 45] has been developed by introducing the techniques of heavy

quark effective theory [46, 47]. We consider heavy static baryons whose velocities are almost

unchanged during interactions with mesons. The momentum of a baryon pµ is written as

pµ = MBvµ + kµ, (2.6.17)

where MB is the mass of the baryon, kµ is off-shell part of momentum and vµ is the four-

velocity of the baryon, which satisfies vµvµ = 1. Because we consider the heavy baryon, MB

is large and kµ is small. We then define the velocity dependent fields [48]

Bv(x) ≡ eiMBvµxµ
P+

v B(x), P+
v =

1 + /v
2

, (2.6.18)

in Lorentz covariant way. In the baryon rest frame, the operator P+
v projects a relativistic

baryon to the non-relativistic one of the Dirac spinor. The advantage of the use of this field

is that this field Bv obeys a massless Dirac equation;

i/∂Bv =i/∂
(

eiMBvµxµ 1 + /v
2

B(x)
)

=
1
2

[
iγν∂

νeiMBvµxµ
B(x) + iγν∂

νγλvλeiMBvµxµ
B(x)

]

=
1
2

[
iγνiMBvνeiMBvµxµ

B(x) + ieiMBvµxµ
γν∂

νB(x)

+iγνγλvλiMBvνeiMBvµxµ
B(x) + iγνγλvλeiMBvµxµ

∂νB(x)
]

=
1
2

[
−MB/veiMBvµxµ

B(x) + eiMBvµxµ
i/∂B(x)

− /v/vMBeiMBvµxµ
B(x) + i/∂B(x)/veiMBvµxµ

]

=
1
2

[
−MB/veiMBvµxµ

B(x) + eiMBvµxµ
MBB(x)

−MBeiMBvµxµ
B(x) + MBB(x)/veiMBvµxµ

]

=0 , (2.6.19)

which means that we can avoid the appearance of the baryon mass term in the Lagrangian.

Using the Bv field, we can construct the lowest order Lagrangian which corresponds to LMB
1 +

LMB
SB

Lv =Tr
(
B̄v(ivµDµ)Bv −D(B̄vS

µ
v {ξµ, Bv})− F (B̄vS

µ
v [ξµ, Bv])

)

− Tr(b̃1B̄vσBv + b̃2B̄vBvσ)− b̃0Tr(σ)Tr(B̄vBv)
, (2.6.20)

where spin operators Sµ
v are defined as

v · Sv = 0 , S2
vBv = −3

4
Bv ,

{Sλ
v , Sσ

v } =
1
2
(vλvσ − gλσ) , [Sλ

v , Sσ
v ] = iελαβvα(Sv)β .

(2.6.21)
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Chapter 3

Unitarization and the analytic
structure of the T-matrix

In this chapter we study the N/D unitarization method [49] and the analytic structure of

the T-matrix. There are several methods which recover the unitarity of the S-matrix, such

as solving the Bethe-Salpeter Equation (BSE) [13], Inverse Amplitude Method (IAM) [50],

N/D method [22] and so on. In this work, we adopt the N/D method, since this method

provides a general form of the T-matrix, using the dispersion relation and the analyticity of

the inverse of the T-matrix. Recently the N/D method has been applied to coupled channel

meson-baryon scatterings [22, 51]. It was found that the final form of the T-matrix derived

from the N/D method is essentially equivalent to the result of Ref. [13], which is derived from

the BSE with an approximation. One of the advantages of this method is that we obtain the

T-matrix in an analytic form, so that we can perform analytic continuation to the complex

energy plane.

In sections 3.1 and 3.2, from general point of view, we derive the optical theorem from

the unitarity of the S-matrix, and discuss the analytic structure of the scattering amplitude,

where unitarity cut comes from the optical theorem and unphysical cut comes from the optical

theorem for crossing diagrams. We also show that the kinematical singularities appear in the

case of meson-baryon scatterings with non-relativistic reduction. We then concentrate on the

case of the meson-baryon scatterings, and obtain the general form of the T-matrix through

the N/D method, neglecting the contribution from the unphysical cut. In section 3.4, we

discuss the T-matrix amplitude in the complex plane, performing the analytic continuation

of the variable
√

s. Due to the discontinuities of unitarity cut, the complex variable z has two

Riemann sheets and the T-matrix amplitude has two branches. In order to search poles, we

choose the most relevant branches for scattering line, calculating the loop integral numerically

and comparing branches with the value on the scattering line.
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3.1. Unitarity of S-matrix

3.1 Unitarity of S-matrix

Here we derive the optical theorem from the unitarity condition of the S-matrix for coupled

channel scatterings. In order to conserve probability, scattering S-matrix should be a unitary

matrix satisfying

S†S = 1 . (3.1.1)

We define the T-matrix as S = 1− iT , then the unitarity condition requires that

(1− iT )†(1− iT ) = 1

1 + i(T † − T ) + T †T = 1

−i(T † − T ) = T †T . (3.1.2)

In order to compute the matrix element of Eq. (3.1.2), we multiply final and initial states

〈f |, |i〉, and insert a sum of complete sets for intermediate states which is labeled by k. Since

we consider the coupled channel problems, we denote several channels by the labels f, i and

k. Then Eq. (3.1.2) becomes

−i
[〈f |T †|i〉 − 〈f |T |i〉] =

∑

k

(∏
nk

∫
d3qnk

(2π)3
1

2Enk

)
〈f |T †|k〉〈k|T |i〉 , (3.1.3)

where qnk
and Enk

are the momentum and energy of the particle nk in the intermediate state

k. We take product over the label nk up to the number of particles in the state k, and we

take summation for all possible intermediate states k. We introduce the invariant T-matrix

amplitude Tfi(2π)4δ(4)(
∑

nf
pnf

−∑
ni

pni) = 〈f |T |i〉 and obtain

−i(T ∗if − Tfi) =
∑

k

(∏
nk

∫
d3qnk

(2π)3
1

2Enk

)
T ∗kfTki(2π)4δ(4)

(∑
ni

pni −
∑
nk

qnk

)
,

=
∑

k

ρkT
∗
kfTki , (3.1.4)

where pi is the momentum of the particle i in the initial state and we have dropped an overall

delta function for momentum conservation of initial and final states. In Eq. (3.1.4), we define

the phase space integral ρk for an intermediate state k as

ρk =
∫

dΠk ≡
(∏

nk

∫
d3qnk

(2π)3
1

2Enk

)
(2π)4δ(4)

(∑
ni

pni −
∑
nk

qnk

)
. (3.1.5)
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3.2. Singularities of the scattering amplitudes
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Figure 3.1: Diagrammatic interpretation of the optical theorem. Shaded bubbles denote the
T-matrix amplitude. The lines in channel k represent all possible intermediate states.

In the case of i = f , where the final state is the same as the initial state, we obtain the optical

theorem

i[Tii − T ∗ii] =
∑

k

ρkT
∗
kiTki (3.1.6)

−2Im[Tii] =
∑

k

ρk|Tki|2 , (3.1.7)

The expression (3.1.7) is interpreted diagrammatically as shown in Fig. 3.1. For later conve-

nience, we consider that the T-matrix amplitude is the function of s, the square of the total

energy in the center of mass frame, and we define the square of the energy of the threshold

of the intermediate state i as (s+)i. The phase space ρi takes non-zero value only above

the threshold s > (s+)i, so that the diagonal elements of the T-matrix amplitude Tii have

an imaginary part only above the threshold s > (s+)i. This result directly comes from the

unitarity of S-matrix, namely the conservation of the probability.

3.2 Singularities of the scattering amplitudes

In this section, we discuss the singularities of the scattering amplitudes in the complex energy

plane. In general, there are two kinds of cuts in the scattering amplitudes; the unitarity cut,

which is required by unitarity condition, and the unphysical left hand cut, which comes from

the unitarity condition for the crossing diagrams. In addition, there appear the kinematical

singularities when we apply the nonrelativistic reduction for the amplitude of meson-baryon

scatterings. In the following, we first discuss general properties of analytic function when the

branch cut appears, then consider the singularities of the scattering amplitudes one by one.

3.2.1 Branch point and branch cut

We first consider the branch cut of a general function f(z). In this subsection, we denote the

complex variable by z and real variable by x. Let us consider a function f(x) defined on the

real axis and
{

f(x) ∈ R for x ≤ xb

f(x) ∈ C for xb < x
. (3.2.1)
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3.2. Singularities of the scattering amplitudes

Figure 3.2: Schwarz reflection principle and analytic continuation of the function f(x).

We show that the analytic continuation of f(x) in the whole z plane has a branch point at xb.

If there is no singularity in the complex plane, we can use the Schwarz reflection principle [52];

If a function f(z) is 1) analytic over some region including the real axis

and 2) real when z is real, then

[f(z)]∗ = f(z∗) . (3.2.2)

In the present case, we can apply this theorem for the whole complex plane except for the

real axis of x > xb, because f(x) is not real there (Fig. 3.2). When x ≤ xb, in the vicinity of

the real axis, with a small real number ε, we have

f(x− iε) = [f(x + iε)]∗ . (3.2.3)

In the limit ε → 0, f(x + iε) → f(x) ∈ R, such that

f(x− i0) = [f(x + i0)]∗

= f(x + i0) for x ≤ xb . (3.2.4)

We see that the upper half plane and lower half plane are continuously connected. However,

when xb < x, Eq. (3.2.3) means that in the limit ε → 0, f(x + iε) → f(x) ∈ C, such that

f(x− i0) = [f(x + i0)]∗

= f(x + i0)− 2iIm[f(x + i0)] for xb < x . (3.2.5)

Eq. (3.2.5) indicates the existence of the branch point at xb and the discontinuity on the real

axis;

Disc[f(x)] ≡ f(x + i0)− f(x− i0) = 2iIm[f(x)] for xb < x . (3.2.6)
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3.2. Singularities of the scattering amplitudes

Unitarity cutUnphysical cut

Figure 3.3: Unitarity and unphysical cuts of the T-matrix in the complex s plane.

Usually we choose a branch cut from xb to +∞, however, in principle the direction of branch

cut is arbitrary, once the position of the branch point is fixed. The direction is determined

by our definition of the region of the argument of the first Riemann sheet.

3.2.2 Unitarity cut

From Eq. (3.1.7), we see that Tii is
{

Tii(s) ∈ R for s ≤ (s+)i

Tii(s) ∈ C for (s+)i < s
. (3.2.7)

As we have shown in the previous subsection, this implies the existence of a cut which runs

from (s+)i to +∞ (Fig. 3.3). Since this cut is caused by the unitarity condition, we call it

the unitarity cut, or the right hand cut. In later calculations of the chiral unitary model, we

take this cut into account in order to incorporate the unitarity condition with ChPT.

3.2.3 Unphysical cut

Next we consider the unphysical cut, which comes form the crossing diagrams. For the sake

of simplicity, we discuss the single channel scattering of two particles with the same mass m.

In this case the threshold s+ is 4m2, so that we have unitarity cut from 4m2 to +∞. The

cut comes from the existence of an imaginary part of the T-matrix in the region where the

s-channel process becomes on the mass shell

s > 4m2 . (3.2.8)

Similarly, the T-matrix amplitude also has imaginary part in the region where the u- and

t-channel processes become on the mass shell

t > 4m2 , u > 4m2 . (3.2.9)
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3.2. Singularities of the scattering amplitudes

In the center of mass frame, the Mandelstam variables s, t and u are given by [53]

s = 4(k2 + m2)

t = −2k2(1− cos θ)

u = −2k2(1 + cos θ)

, (3.2.10)

where θ is the scattering angle and k is the three momentum in the center of mass frame;

|k| =
√

s− 4m2

2
. (3.2.11)

The conditions (3.2.9) require that
(
2m2 − s

2

)
(1± cos θ) > 4m2

2m2 − s

2
>

4m2

1± cos θ

−s

2
>

4m2

1± cos θ
− 2m2

s < − 8m2

1± cos θ
+ 4m2 ,

where −1 ≤ cos θ ≤ 1. So we find

(3.2.9) ⇒ s < 0 , (3.2.12)

We have shown that the conditions (3.2.9) requires the existence of the cut on s < 0. When

the mass of the two particles are different, the unphysical cut runs from s− ≡ (m −M)2 to

−∞ [54] as shown in Fig. 3.3.

3.2.4 Kinematical singularities

Here we discuss the kinematical singularities [51], which appear in the meson-baryon scat-

terings with non-relativistic reduction. The unitarity and unphysical cuts appear for general

T-matrix amplitude of scatterings, while this kinematical singularities appear only for the

present case. When we take a relativistic approach for the meson-baryon scattering, the

scattering amplitudes are generally written as

Trel(s, t) = ū

[
A(s, t) +

1
2
(q1 + q2)µγµB(s, t)

]
u , (3.2.13)

where q1 and q2 are momenta of the incoming and outgoing mesons, respectively. The invari-

ant amplitudes A(s, t) and B(s, t) are functions of s and t, so that there is no kinematical

singularity. However, when we apply the nonrelativistic reduction for Eq. (3.2.13), in the
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3.3. N/D method for meson-baryon scatterings

center of mass frame, the T-matrix amplitude is written as [55]

TNR(
√

s, t) =
(

E + M

2M

)[
g(
√

s, t) + iσ · (q2 × q1)h(
√

s, t)
]

, (3.2.14)

g(
√

s, t) =
1

2(M + E)2
[
(4M(E + M)− t)A +

{
(
√

s + M)(t + 4|q|2)

+ 4Mw(E + M)
}
B

]
,

h(
√

s, t) =
1

(M + E)2
[
(
√

s + M)B −A
]

,

where M and E are the mass and energy of baryon, and w =
√

s−E is the energy of meson.

Here we use common masses for all baryons and mesons. We see that TNR is now a function

of t and
√

s, not s.

Since a point on the s plane corresponds to two points in the
√

s plane, the unitarity cut

on the s plane appears as two cuts in the
√

s plane, (−∞,−√s+) and (√s+,∞) (Fig. 3.5).

We discuss the effects of these singularities later.

3.3 N/D method for meson-baryon scatterings

In the previous section, we have discussed the general structure of the scattering amplitude

and found that there are two kinds of cuts in the T-matrix. Now we concentrate on the

coupled channel meson-baryon scatterings, and derive a general form of the T-matrix using

the N/D method [49]. Let us assume that the intermediate states of the meson-baryon

scatterings are composed of one octet meson and one octet baryon. We do not consider

multi-mesons and excited baryons, such as ππN and π∆. In this case, the phase space ρi in

Eq. (3.1.7) is written as

ρi(
√

s) =
2Miq̄i(

√
s)

4π
√

s
for

√
s+ <

√
s , (3.3.1)

where q̄i(
√

s) is the three-momentum of the intermediate meson, which is defined by

q̄i(
√

s) =

√
(s− (Mi −mi)2)(s− (Mi + mi)2)

2
√

s
. (3.3.2)

In the N/D method, we divide the T-matrix into numerator (N) and denominator (D) as

T (s) =
N(s)
D(s)

. (3.3.3)

The point of the N/D method is that we assign the effect of unitarity cut in the denominator,

and the unphysical cut in the numerator. The reason for this is that the inverse of the T-

matrix also has a branch cut due to the unitarity condition, as we see by multiplying (T ∗)−1
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3.3. N/D method for meson-baryon scatterings

Figure 3.4: Contour of the dispersion integral for D(s) in the complex s plane.

from left and (T )−1 from right for Eq. (3.1.6),

i[(T ∗)−1Tii(T )−1 − (T ∗)−1T ∗ii(T )−1] =
∑

k

ρk(T ∗)−1T ∗kiTki(T )−1

i[(T−1)∗ii − T−1
ii ] =

∑

k

ρkδik

2Im[(T )−1
ii ] = ρi . (3.3.4)

Following Ref. [22], we neglect the contribution of the unphysical cut, which means that we

take only the s-channel diagrams into account and crossing diagrams are neglected. Using

the contour of the integral shown in Fig. 3.4, we apply the dispersion relation to D(s) with

a constant subtraction

Nij(s) = δij

Dij(s) = T−1
ij (s) = δij

(
ãi(s0) +

s− s0

2π

∫ ∞

(s+)i

ds′
ρi(s′)

(s′ − s)(s′ − s0)

)
+ T −1

ij (s) . (3.3.5)

where (s+)i is the value of s at the threshold of the channel i, and s0 is the subtraction point.

The parameter ãi(s0) is a subtraction constant and is a free parameter within the N/D

method. The matrix Tij(s) indicates the contribution from CDD poles [56] and couplings

among the channels, which cannot be determined by the unitarity condition only. Later we

will determine this Tij(s) by the chiral perturbation theory.

Note that D(s) is a function of s because so far we have been considering it on the complex s

plane. As we have seen in subsection 3.2.4, however there appear kinematical singularities, the

two cuts in the complex
√

s plane, which give different dispersion integrals from Eq. (3.3.5).

In Fig. 3.5, we show the contour of the integral in the
√

s plane. However, it is shown that

we can absorb the effects from the kinematical singularities into the same dispersion integrals
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3.3. N/D method for meson-baryon scatterings

Figure 3.5: Contour of the dispersion integral for D(
√

s) in the complex
√

s plane. The radius
of the enclosing circle is extended to infinity.

in the complex s plane [51]. The contribution from the cut (√s+,∞) is
√

s−√s0

π

∫ ∞

(
√

s+)i

d(
√

s
′)

ImT−1
ii (

√
s
′)

(
√

s
′ −√s)(

√
s
′ −√s0)

, (3.3.6)

and the contribution from the cut (−∞,−√s+) is
√

s−√s0

π

∫ −(
√

s+)i

−∞
d(
√

s
′)

ImT−1
ii (

√
s
′)

(
√

s
′ −√s)(

√
s
′ −√s0)

=
√

s−√s0

π

∫ (
√

s+)i

∞
d(−√s

′)
ImT−1

ii (−√s
′)

(−√s
′ −√s)(−√s

′ −√s0)

=
√

s−√s0

π

∫ ∞

(
√

s+)i

d(
√

s
′)

ImT−1
ii (−√s

′)
(
√

s
′ +

√
s)(
√

s
′ +

√
s0)

. (3.3.7)

From the function (3.3.1), we see that

ImT−1
ii (−√s) = −ImT−1

ii (
√

s) = −ρi(
√

s)
2

. (3.3.8)

Summing Eqs. (3.3.6) and (3.3.7) up, and using Eq. (3.3.8), we obtain total dispersion integral

as
√

s−√s0

2π

∫ ∞

(
√

s+)i

d(
√

s
′)ρi(

√
s
′)

[
1

(
√

s
′ −√s)(

√
s
′ −√s0)

− 1
(
√

s
′ +

√
s)(
√

s
′ +

√
s0)

]

=
√

s−√s0

2π

∫ ∞

(
√

s+)i

d(
√

s
′)ρi(

√
s
′)

[
2
√

s′(
√

s−√s0)
(s′ − s)(s′ − s0)

]

=
s− s0

2π

∫ ∞

(
√

s+)i

2
√

s′d(
√

s
′)

ρi(
√

s
′)

(s′ − s)(s′ − s0)

=
s− s0

2π

∫ ∞

(s+)i

ds′
ρi(
√

s
′)

(s′ − s)(s′ − s0)
.
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3.3. N/D method for meson-baryon scatterings

Then we can use the same dispersion integral by only changing the variables of T-matrix and

CDD poles from s to
√

s, and obtain

T−1
ij (

√
s) = δij

(
ãi(s0) +

s− s0

2π

∫ ∞

(s+)i

ds′
ρi(s′)

(s′ − s)(s′ − s0)

)
+ T −1

ij (
√

s) , (3.3.9)

This is a general form of the T-matrix in the coupled channel scatterings which satisfies the

unitarity condition.

Let us define the G function by

Gi(
√

s) = −ãi(s0)− s− s0

2π

∫ ∞

(s+)i

ds′
ρi(s′)

(s′ − s)(s′ − s0)
, (3.3.10)

which takes the same form as, up to a constant, the ordinary meson-baryon loop function:

Gi(
√

s) = i

∫
d4q

(2π)4
2Mi

(P − q)2 −M2
i + iε

1
q2 −m2

i + iε
. (3.3.11)

This integral should be regularized by an appropriate regularization scheme. In the dimen-

sional regularization, the integral is calculated as

Gi(
√

s) =
2Mi

(4π)2

{
ai(µ) + ln

M2
i

µ2
+

m2
i −M2

i + s

2s
ln

m2
i

M2
i

+
q̄i√
s

[
ln(s− (M2

i −m2
i ) + 2

√
sq̄i) + ln(s + (M2

i −m2
i ) + 2

√
sq̄i)

− ln(−s + (M2
i −m2

i ) + 2
√

sq̄i)− ln(−s− (M2
i −m2

i ) + 2
√

sq̄i)
]}

,

(3.3.12)

where µ is a regularization scale and ai are the subtraction constants. In the tree level ap-

proximation, only the Tij term survives in Eq. (3.3.9), which is identified with the interactions

V obtained by ChPT at the tree level. Therefore, the resulting T-matrix is written as

T−1 = −G + (V )−1 , (3.3.13)

T = [1− V G]−1V . (3.3.14)

Since we know the analytic forms of V and G, we can write the T-matrix in analytic way

through Eq. (3.3.14). This is one of the advantages of this method, with which we can perform

the analytic continuation of the
√

s to the whole complex plane. Eq. (3.3.14) is rewritten as

T = V + V GT . (3.3.15)

This is the algebraic equation for the T-matrix, which corresponds to the integral BSE. The

diagrammatic interpretation of Eq. (3.3.15) is shown in Fig. 3.6.
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Figure 3.6: Diagrammatic interpretation of Eq. (3.3.15).

3.4 Scattering amplitudes in the complex plane

In this section, we discuss the analytic structure of the T-matrix and the loop function, which

are functions of
√

s. When a resonance is well pronounced in the scatterings, the T-matrix

amplitude can be approximated by a sum of the Breit-Wigner and background terms around

the resonance region [19];

Tij ∼ gigj√
s−MR + iΓR/2

+ TBG
ij , (3.4.1)

where MR and ΓR are the mass and decay width of the resonance, and gi and gj are the

coupling strength of the resonance R to the channel i and j, respectively. The background

TBG
ij is assumed to be a slowly varying function. This implies the existence of the pole of the

T-matrix amplitude at zR = MR − iΓR/2 in complex z plane. However, causality requires

the absence of poles in the physical (first Riemann) sheet [57]. Therefore, we search the

unphysical sheets for poles. The multivalued nature of T-matrix comes from the unitarity

cut of the T-matrix.

In the following, we deal with the case of single channel and drop the index i, for the

sake of simplicity. First we see that the formal solution of the T-matrix (3.3.14) satisfies the

unitarity condition (3.3.4), considering the loop function (3.3.12) on the real axis. Next we

perform the analytic continuation to the complex
√

s plane, and observe that the analytic

structure of T−1(
√

s) is same as the loop function G(
√

s). Using the discontinuity of G(
√

s),

we define the Riemann sheets where we search for poles.

Before going into technical details, we briefly note about the words “Riemann sheets” and

“branches”. Let us consider a multi-valued function w = f(z). In order to avoid multi-

valueness, we put a branch cut on the z plane. Then we connect usual z plane, which is

defined in the region 0 ≤ θ < 2π, to another “Riemann sheet”, which is defined in the

region 2π ≤ θ < 4π. Although we usually do not distinguish the difference between z1 and

z2 = z1e
2πi, the points z1 on the first Riemann sheet and z2 = z1e

2πi on the second Riemann

sheet are mapped to the different points w1 = f(z1) and w2 = f(z2 = z1e
2πi), respectively.

We call these w1 and w2 planes as “branches”. We show this schematically in Fig. 3.7. In this

way we extend z plane into several Riemann sheets, and the function w = f(z) is uniquely

defined on each Riemann sheet.

36



3.4. Scattering amplitudes in the complex plane

Riemann sheet II

Riemann sheet I

Branch II

Branch I

Figure 3.7: Riemann sheets and branches. The points z1 and z2 = z1e
2πi are mapped to the

different points w1 = f(z1) and w2 = f(z2)

3.4.1 Loop function on the scattering line

Here we consider the loop function (3.3.12) on the real axis. Since G(
√

s) is a multivalued

function even on the real axis due to the logarithmic and square root functions, we define

the value with respect to the first Riemann sheet, namely we restrict the arguments of the

variable 0 ≤ θ < 2π. We referred to this values as “on the scattering line”, which is used

in the practical calculation of the scattering problem. For convenience, we rewrite the loop

function as

G(
√

s) =
2M

16π2

{
a(µ) + ln

M2

µ2
+

m2 −M2 + s

2s
ln

m2

M2

+
λ1/2

2s

[
ln(s− (M2 −m2) + λ1/2) + ln(s + (M2 −m2) + λ1/2)

− ln(−s + (M2 −m2) + λ1/2)− ln(−s− (M2 −m2) + λ1/2)
]}

,

(3.4.2)
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3.4. Scattering amplitudes in the complex plane

with the Källen function

λ1/2(s,M2,m2) =
√

s2 + M4 + m4 − 2sM2 − 2sm2 − 2m2M2

=
√

(s− (M −m)2)(s− (M + m)2) = 2
√

sq̄ .
(3.4.3)

In Eq. (3.4.2), the terms in the first line are always real for real values of
√

s. The imaginary

part of the loop function is produced from the terms

λ1/2

2s
[ln(A) + ln(B)− ln(C)− ln(D)] ,

where we define

A = s− (M2 −m2) + λ1/2 ,

B = s + (M2 −m2) + λ1/2 ,

C = −s + (M2 −m2) + λ1/2 ,

D = −s− (M2 −m2) + λ1/2 .

Below the threshold, λ1/2 is pure imaginary, so that A ∼ D are complex numbers. In

this case, we define log(z) on the first Riemann sheet, namely, we restrict the argument of z

within 0 ≤ θ < 2π. Then we see that [ln(A)+ln(B)− ln(C)− ln(D)] becomes pure imaginary.

But λ1/2 is also pure imaginary, and hence, we obtain the real G(
√

s) below the threshold.

Above the threshold, λ1/2 is real, so that A ∼ D are real numbers. The real logarithmic

function is defined in the region 0 ≤ x < ∞. In order to avoid this multivalued nature,

we then consider whether A ∼ D are positive or negative. If x is real negative number, we

rewrite log(x) as log(−x) + iπ, because −1 = eiπ and we restrict the argument of z within

0 ≤ θ < 2π. When
√

s >
√

s+, we see that

A > 0 , B > 0 ,

C < 0 , D < 0 ,
for

√
s >

√
s+ . (3.4.4)

Then we define Eq. (3.4.2) as

G(
√

s) =
2M

16π2

{
a(µ) + ln

M2

µ2
+

m2 −M2 + s

2s
ln

m2

M2

+
λ1/2

2s
[ln(A) + ln(B)− ln(−C)− ln(−D)− 2πi]

}
, for

√
s >

√
s+ ,

(3.4.5)

without multivalued nature. In the expression (3.4.5), λ1/2 and all logarithmic function are

real, so we extract the imaginary part of the G function as

Im[G(
√

s)] = −Mλ1/2(s,M2,m2)
8sπ

= −1
2
·
(

2M |q̄|
4π
√

s

)
= −ρ(

√
s)

2
, (3.4.6)
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3.4. Scattering amplitudes in the complex plane
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Figure 3.8: Real and imaginary parts of the loop function on the scattering line. Here we
plot the loop function of the πN channel.

for
√

s >
√

s+. This result guarantees the unitarity condition, as we will see later. In Fig. 3.8,

we show the value of the loop function for the πN channel on the scattering line.

3.4.2 Loop function in the complex plane

Here we compute the loop function numerically, and see which branch of the T-matrix is

closest to the scattering line. When we deal with multi-valued functions, several Riemann

sheets appear and the value on the first Riemann sheet is defined by the restriction of the

arguments 0 ≤ θ < 2π. Eq. (3.3.4) represents the discontinuity of the inverse of the T-matrix

due to the unitarity cut, which runs from
√

s+ to +∞. Using Eqs. (3.2.6) and (3.3.4), above

the threshold, the discontinuity of the inverse of the T-matrix is given by

Disc[T−1(
√

s)] ≡ T−1
I (

√
s + i0)− T−1

I (
√

s− i0) = iρ(
√

s), (3.4.7)

where TI(z) is the branch whose variable z is on the first Riemann sheet. The definition of

the second branch T−1
II (z) with z on the second Riemann sheet is

T−1
II (

√
s + i0) ≡ T−1

I (
√

s− i0), for
√

s >
√

s+ . (3.4.8)

According to the result of the N/D method (3.3.13), the relation between the T-matrix and

the G function is given by

T−1 = V −1 −G . (3.4.9)

Now V is a tree vertex, so that it is always real. Using the unitarity condition (3.3.4) and

Eq. (3.4.9), we find

2ImG(
√

s) = −ρ(
√

s), for
√

s >
√

s+ . (3.4.10)

39



3.4. Scattering amplitudes in the complex plane
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Figure 3.9: Real and imaginary parts of the GI(z) function. Here we plot the loop function
of the πN channel. White line in the figure denotes the values on the scattering line (real
axis).

This relation is valid above the threshold and consistent with the result (3.4.6). Since the

T-matrix amplitude has the same branch cut as the G function, we investigate the G function

instead of the T-matrix. We perform analytic continuation of G(
√

s) to the whole complex

z plane. In Fig. 3.9, real and imaginary parts of the G function for πN channel on the first

Riemann sheet are shown, where we see the discontinuity of the imaginary part. The origin

of this discontinuity lies in the square root in the function ρ(
√

s). In the complex z plane,

ρ(z) is a double-valued function with the cut along the real axis (
√

s+,+∞) due to square

root

ρ(
√

s + i0) = −ρ(
√

s− i0), for
√

s >
√

s+ , (3.4.11)

Therefore the discontinuity of the loop function G and relation between branches of G on the

first and second Riemann sheets are given as

GI(
√

s + i0) = GI(
√

s− i0)− iρ(
√

s + i0)

GII(
√

s + i0) = GI(
√

s− i0)
, for

√
s >

√
s+ , (3.4.12)

where GI(z) and GII(z) represent the first and second branches, respectively. Using Eq. (3.4.12),

we obtain the expression of the second branch

GII(z) = GI(z) + iρ(z) . (3.4.13)

In Fig. 3.10, real and imaginary parts of the GII function for the πN channel, where we again
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3.4. Scattering amplitudes in the complex plane
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Figure 3.10: Real and imaginary parts of the GII(z) function. Here we plot the loop function
of the πN channel. White line in the figure denotes the values on the scattering line (real
axis).

see the discontinuity of imaginary part. From Eqs. (3.4.5) and (3.4.13), the explicit form of

the function GII(z) is given as

GII(z) =
2M

16π2

{
a(µ) + ln

M2

µ2
+

m2 −M2 + z2

2z2
ln

m2

M2

+
λ1/2(z)

2z2
[ln(A) + ln(B)− ln(−C)− ln(−D) + 2πi]

}
,

(3.4.14)

for Re[z] >
√

s+.

From Eqs. (3.4.13) and (3.4.10), on the real axis and above the threshold, it seems to be

valid to write

GII(
√

s) = GI(
√

s)∗.

However, Eq. (3.4.10) is valid only on the real axis. We must not use this form for complex

plane, because, when we extend
√

s to complex value, the loop function (3.4.2) can have

imaginary part at s and so on. We should define the analytic form on the real axis first, then

we can extend
√

s to complex value. This is due to the fact that the operation of taking

imaginary is not an analytic operation.

In practical calculations to find poles, we use the most relevant branches for scattering line

(Fig. 3.8). The white lines in Figs. 3.9 and 3.10 indicates the corresponding values. From

these lines, we see that

• below the threshold, the first branch contains the scattering line.
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3.4. Scattering amplitudes in the complex plane
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Figure 3.11: Diagrammatic expression of the definition of Gpole.
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Figure 3.12: Real and imaginary parts of the Gpole(z) function. Here we plot the loop function
of the πN channel. White line in the figure denotes the values on the scattering line (real
axis).

• above the threshold and Imz > 0, the first branch is connected with the scattering line.

• above the threshold and Imz < 0, the second branch is connected with the scattering

line.

For this purpose, we define the function Gpole(z) as

Gpole(z) =





GI(z) for Re[z] ≤
√

s+

GI(z) for Re[z] >
√

s+ and Im[z] > 0
GII(z) for Re[z] >

√
s+ and Im[z] < 0

. (3.4.15)

The function Gpole is shown diagrammatically in Fig. 3.11 and is plotted in Fig. 3.12, where

we see that the scattering line is included in the sheet. In this way we search poles in the

branch which is the closest to the scattering line, namely which includes the scattering line.
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3.4. Scattering amplitudes in the complex plane

Finally we consider the third branch, which is defined as

GIII(
√

s + i0) ≡ GII(
√

s− i0), for
√

s >
√

s+ . (3.4.16)

However, using Eqs. (3.4.11) and (3.4.12), if we go through the unitarity cut once again,

GIII(
√

s + i0) = GI(
√

s− i0) + iρ(
√

s− i0)

= GI(
√

s + i0) + iρ(
√

s + i0) + iρ(
√

s− i0)

= GI(
√

s + i0)− iρ(
√

s− i0) + iρ(
√

s− i0)

= GI(
√

s + i0) ,

we back to the first branch. This means that there are only two Riemann sheets. Note that

this result is expected from the fact that λ1/2(
√

s) is double-valued function (3.4.11).
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Chapter 4

Chiral unitary model

In this chapter we review the formulation of the chiral unitary model, and show the numerical

results. Since we are interested in 1/2− resonances, we calculate s wave meson-baron scat-

terings throughout this thesis. We derive the basic interaction of meson-baryon scatterings

from the lowest order chiral Lagrangian (2.6.12), and construct the S-matrix using the N/D

method keeping the unitarity condition. In order to see the role of channel dependence in the

subtraction constants, we study the chiral unitary model with a single subtraction constant

a. We calculate T-matrix amplitudes, total cross sections and invariant mass distributions

numerically. In section 4.3, we discuss the properties of the T-matrix around the resonance

regions. We perform analytic continuation to the complex energy plane, and search poles

which indicate resonances.

4.1 Formulation

As shown in section 2.6, the chiral Lagrangian for baryons in the lowest order of the chiral

expansion is given by

LMB
1 =Tr

(
B̄(i/D −M0)B −D(B̄γµγ5{Aµ, B})− F (B̄γµγ5[Aµ, B])

)
,

DµB = ∂µB + i[Vµ, B] .
(4.1.1)

In the Lagrangian (4.1.1), M0 denotes a common mass of the octet baryons. However, we use

the observed values of the baryon masses in the following calculations. The mass splitting

among the octet baryons in the Lagrangian level will be introduced consistently with the

SU(3) breaking in section 5.2.

The s wave interaction at the tree level is described by the Weinberg-Tomozawa (WT)

interaction, which is in the vector coupling term Vµ = −i(ξ†∂µξ + ξ∂µξ†)/2 in the covariant

derivative;

LWT = Tr
(
B̄iγµ 1

4f2

[
(Φ∂µΦ− ∂µΦΦ), B

])
. (4.1.2)
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4.1. Formulation
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Figure 4.1: Definition of the momentum variables. Dashed and solid lines represent mesons
and baryons, respectively.

We do not include diagrams with meson-baryon Yukawa terms in the axial couplings in the

Lagrangian (4.1.1), because they are p wave couplings. From the Lagrangian (4.1.2), the

meson-baryon scattering amplitude at the tree level is given by

V
(WT )
ij =− Cij

4f2
ū(pi)(/ki + /kj)u(pj)

=− Cij

4f2
(2
√

s−Mi −Mj)
√

Ei + Mi

2Mi

√
Ej + Mj

2Mj
, (4.1.3)

where the indices (i, j) denote the channels of the meson-baryon scatterings and Mi and

Ei are the observed mass and the energy of the baryon in the channel i, respectively. The

kinematics of this vertex is shown in Fig. 4.1 and s in Eq. (4.1.3) is defined as s = (k + p)2.

The channels (i, j) are shown in Table B.1 in Appendix B. The coefficient Cij is fixed by

chiral symmetry and the explicit form of Cij is shown in Tables C.3∼C.7 in Appendix C.

The last line is obtained in the center of mass frame with the nonrelativistic reduction.

Following the result of N/D method (3.3.9), the resulting T-matrix is written as

T = [1− V G]−1V , (4.1.4)

with a tree level vertex V and the loop function G, which is defined as

Gi(
√

s) =
2Mi

(4π)2

{
ai(µ) + ln

M2
i

µ2
+

m2
i −M2

i + s

2s
ln

m2
i

M2
i

+
q̄i√
s

[
ln(s− (M2

i −m2
i ) + 2

√
sq̄i) + ln(s + (M2

i −m2
i ) + 2

√
sq̄i)

− ln(−s + (M2
i −m2

i ) + 2
√

sq̄i)− ln(−s− (M2
i −m2

i ) + 2
√

sq̄i)
]}

,

(4.1.5)

In this section we identify V as the WT interaction (4.1.3), and obtain

T = [1− V (WT )G]−1V (WT ) . (4.1.6)

This is a solution of the algebraic equation for the T-matrix, which corresponds to the integral

Bethe-Salpeter equation.
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4.2. Calculation with a common subtraction constant

channel K̄N πΣ πΛ ηΛ ηΣ KΞ
ai −1.84 −2.00 −1.83 −2.25 −2.38 −2.67

channel πN ηN KΛ KΣ
ai 0.711 −1.09 0.311 −4.09

Table 4.1: Channel dependent subtraction constants ai used in Refs. [19, 20] with the regu-
larization scale µ = 630 MeV. For the S = 0 channel, although the original values of ai are
shown with µ = 1200 MeV, here we show the values of ai corresponding to µ = 630 MeV by
using the relation a(µ′) = a(µ) + 2 ln(µ′/µ).

The subtraction constants ai(µ) in Eq. (4.1.5), in principle, would be related to the counter

terms in the higher order terms in the chiral perturbation Lagrangian. In the previous

works [19, 20], they hae fitted these subtraction constants(ai) by using the data of K̄N(S =

−1) and πN(S = 0) scatterings. In Table 4.1 we show the subtraction constants used in

Refs. [19, 20]. In the table, in order to compare the channel dependence of the subtraction

constants, we take the regularization scale at µ = 630 MeV in the both channels. Changing

the regularization scale, the subtraction constants are simply shifted by a(µ′) = a(µ) +

2 ln(µ′/µ), as we see in Eq. (4.1.5). From this table we see that the values of ai in S = 0 are

very much different from each other. In the rest of this thesis, we refer to these parameter

sets as “ channel dependent ai ”.

4.2 Calculation with a common subtraction constant

In this section, we show calculations in which a single subtraction constant a is commonly used

in the meson-baryon loop function (3.3.12), in order to see the role of the channel dependent

ai to reproduce the observed cross sections and the resonance properties. First, we discuss the

case of S = −1, where the subtraction constants ai are not very dependent on the channels

as shown in Table 4.1. Therefore, it is expected that the calculation with a common a gives

a good description by choosing a suitable value. Next we study the S = 0 channel using

a common subtraction constant. Here we will find that the common a cannot reproduce

simultaneously the resonance properties and the S11 amplitude at low energy region.

In order to concentrate on the role of the subtraction constants and to see the channel

dependence, we assume the following simplifications for the calculations of the S = −1 and

S = 0 channels;

• We use an averaged value for the meson decay constants, f = 1.15fπ = 106.95 MeV,

while in Ref. [20] physical values were taken as fπ = 93 MeV, fK = 1.22fπ, fη = 1.3fπ.

• We do not include the effect of vector meson exchanges and ππN channels to reproduce
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4.2. Calculation with a common subtraction constant

γ Rc Rn

experiment 2.36± 0.04 0.664± 0.011 0.189± 0.015
channel dependent ai 1.73 0.629 0.195
common a = −1.96 1.80 0.624 0.225
common a = −2.6 2.41 0.569 0.759

Table 4.2: Threshold branching ratios calculated with the channel dependent ai, the common
a = −1.96 and the common a = −2.6. The experimental values are take from Refs. [58, 59].

the ∆(1620) resonance, which were considered in Ref. [20].

With these simplifications, the calculations in the S = −1 and S = 0 channels are based

on exactly the same formulation; the differences are in the flavor SU(3) coefficients Cij in

Eq. (4.1.3) and in the channel dependent subtraction constants.

4.2.1 The S = −1 channel (K̄N scattering)

In the S = −1 channel, the subtraction constants ai obtained in Ref. [19] are not very much

dependent on the channels, as shown in Table 4.1. In Ref. [22], they used a common a ∼ −2

with µ = 630 MeV, which was “naturally” obtained from the matching with the three-

momentum cut-off regularization with Λ3 = 630 MeV. In the both works, they reproduced

very well the total cross sections of the K−p scatterings and the mass distribution of the πΣ

channel with I = 0, where the Λ(1405) resonance is seen. In Ref. [19], the Λ(1670) resonance

was also obtained with the channel dependent subtraction constants, and its property was

discussed by analyzing the speed plots in the I = 0 channels.

Here we search one common a to be used in all channels in S = −1. In order to fix the

common a, we use threshold properties of the K̄N scatterings, which are well observed in

the branching ratios [58, 59]:

γ =
Γ(K−p → π+Σ−)
Γ(K−p → π−Σ+)

∼ 2.36± 0.04 ,

Rc =
Γ(K−p → charged particles)

Γ(K−p → all)
∼ 0.664± 0.011 ,

Rn =
Γ(K−p → π0Λ)

Γ(K−p → neutral particles)
∼ 0.189± 0.015 .

(4.2.1)

After fitting, we find the optimal value a = −1.96, with which the threshold branching ratios

are obtained as shown in Table 4.2. The result using the common a = −1.96 does not

differ very much from that of channel dependent ones, and also the value a = −1.96 is close

to an averaged value of the channel dependent subtraction constants ai, namely ∼ −2.15.

Therefore, the threshold properties are not sensitive to such a fine tuning of the subtraction

constants.
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Figure 4.2: Total cross sections of K−p scatterings (S = −1) as functions of Plab, the three-
momentum of initial K− in the laboratory frame. Dotted lines show the results with the
channel dependent ai, solid lines show the results with the common a = −1.96, and dash-
dotted lines show the results with the common a = −2.6. Open circles with error bars are
experimental data taken from Refs. [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71].

Using the common a = −1.96, we calculate the total cross sections of the K−p scatterings

(Fig. 4.2, solid lines), the T-matrix amplitude of the K̄N scattering with I = 0 and the mass

distributions of the πΣ channel with I = 0 (Fig. 4.3, solid lines). We also plot the calculations

with the channel dependent ai obtained in Ref. [19] in Figs. 4.2 and 4.3 as the dotted lines.

Here we find that the present calculations are slightly different from the calculations with the

channel dependent ai in the total cross sections and the πΣ mass distributions. Therefore,

the Λ(1405) resonance is well reproduced with the common a = −1.96, which is consistent

with the results in Ref. [22]. However, the resonance Λ(1670) disappears when the common a

is used, as we see in the T-matrix amplitude of K̄N → K̄N with I = 0 in Fig. 4.3. As pointed

out in Ref. [19], the Λ(1670) resonance structure is very sensitive to the value of aKΞ. Indeed

we have checked that the Λ(1670) resonance is reproduced when we choose aKΞ ∼ −2.6 with

the other ai unchanged, −1.96.
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Figure 4.3: Real and imaginary parts of the T-matrix amplitude of K̄N → K̄N with I =
0 (a,b) and mass distributions of the πΣ channel with I = 0 (c). Dotted lines show the results
with the channel dependent ai, solid lines show the results with the common a = −1.96, and
dash-dotted lines show the results with the common a = −2.6. Open circles and histogram
are experimental data taken from Ref. [72, 73].

If we choose a = −2.6 for all subtraction constants, the threshold branching ratios are

calculated as in Table 4.1, and the agreement with the experimental data becomes poor, as

shown in Figs. 4.2 and 4.3. In particular, the K−p → K̄0n cross section is underestimated,

and also the resonance structure of Λ(1405) disappears in the πΣ mass distribution (Fig. 4.3).

As we change all subtraction constants from a = −1.96 to a = −2.6 gradually, the position of

the peak of Λ(1405) moves to lower energy side and finally disappears under the πΣ threshold.

Therefore, taking common a ∼ −2 is essential to reproduce the resonance properties of

Λ(1405) and the total cross sections of the K−p scatterings in the low energy region.

4.2.2 The S = 0 channel (πN scattering)

In Ref. [20], the total cross sections of the π−p inelastic scatterings and the resonance prop-

erties of the N(1535) were reproduced well by using the channel dependent ai. After the

simplification for f and inelastic channels, the agreement with the data is still acceptable, as

shown in Figs. 4.4 and 4.5 by dotted lines, as long as the channel dependent ai are employed.

In the T-matrix elements of the πN scattering in the S11 channel, we see a kink structure

around the energy
√

s ∼ 1500 MeV, which corresponds to the N(1535) resonance [20].

In the previous subsection, we obtained the common subtraction constant a = −1.96 with

which the K̄N total cross sections and the Λ(1405) properties are reproduced well. First,

we use this common a for the S = 0 channel. Shown in Figs. 4.4 and 4.5 by dash-dotted

lines are the results with a = −1.96 for the total cross sections of the π−p → π0η, K0Λ and

K0Σ scatterings, and the S11 T-matrix amplitude of πN → πN . As can be seen in Figs. 4.4
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4.3. Resonance in the scattering amplitude

and 4.5, the results with a = −1.96 in the S = 0 channel are far from the experimental

data. In particular, in the π−p → ηn cross section, the threshold behavior disagrees with

the experiment, and the resonance structure of N(1535) disappears. In addition, as shown in

Fig. 4.5, the T-matrix amplitude of the S11 πN channel is overestimated and an unexpected

resonance has been generated at around
√

s ∼ 1250 MeV.

Next we search the single optimal subtraction constant within the S = 0 channel, since

the unnecessary resonance are obtained with a = −1.96 at low energy. In order to avoid the

appearance of such an unphysical resonance, we determine the common subtraction constant

a so as to reproduce observed data up to
√

s = 1400 MeV. The optimal value is found to

be a = 0.53. The calculated S11 amplitude as well as the total cross sections are plotted in

Figs. 4.4 and 4.5 by the solid lines. With this subtraction constant, the low energy behavior

of the S11 amplitude of πN scatterings (
√

s < 1400 MeV) is well reproduced, while, however,

the N(1535) resonance structure is not still generated. We have also checked that there is

no pole in the scattering amplitudes in the second Riemann sheet. Therefore, we conclude

that in the S = 0 channel we cannot reproduce simultaneously the N(1535) resonance and

the S11 amplitude at low energy if a single subtraction constant is used.

4.3 Resonance in the scattering amplitude

In this section, we show the way to extract the information of the resonance from the scatter-

ing amplitude. We study the behavior of the T-matrix around the pole on the real axis. Then

we perform the analytic continuation of the variable
√

s, and search poles in the complex z

plane by calculating the T-matrix in the complex plane numerically. In order to estimate the

coupling strength to each channel, we calculate the residues of the poles for each channel.

From Eq. (3.4.1), around a resonance, the T-matrix amplitude is written as

Tij(
√

s) ∼ gigj√
s−MR + iΓR/2

+ TBG
ij , (4.3.1)

which indicates the existence of a pole at

zR = MR − i
ΓR

2
. (4.3.2)

In this way, through the Breit-Wigner term, the position of the pole zR gives the mass MR

and the width ΓR of the corresponding resonance.

We first discuss the property of the T-matrix amplitude on the real axis around the reso-

nance region. Eq. (4.3.1) can be written as

Tij(
√

s) ∼ gigj(
√

s−MR − iΓR/2)
(
√

s−MR)2 − (ΓR/2)2
+ TBG

ij , (4.3.3)
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4.3. Resonance in the scattering amplitude

which imply that if the background term is negligible, Tij(
√

s) becomes pure imaginary when√
s = MR. When we differentiate Tij(

√
s) in terms of

√
s, we have

∂

∂
√

s
Tij(

√
s) = − gigj

(
√

s−MR + iΓR/2)2
+

∂

∂
√

s
TBG

ij

= − gigj

(
√

s−MR)2 − (ΓR/2)2 + iΓR(
√

s−MR)
+

∂

∂
√

s
TBG

ij

= −gigj(
√

s−MR)2 − (ΓR/2)2 − iΓR(
√

s−MR)
[(
√

s−MR)2 − (ΓR/2)2]2 − [ΓR(
√

s−MR)]2
+

∂

∂
√

s
TBG

ij (4.3.4)

which imply that if the first derivative of the background term is negligible, ∂
∂
√

s
Tij(

√
s)

becomes pure real when
√

s = MR. Since the derivative of the imaginary part is zero, Im[Tij ]

has an extreme value at
√

s = MR. Hence, if the background term and its first derivative are

negligible, or in the other words, if the Breit-Wigner term is dominant, the T-matrix has the

following properties;

• Re[T ] becomes zero at
√

s = MR.

• Im[T ] has an extreme value at
√

s = MR.

As an example, in Fig. 4.3, we see that zero of the real part and extreme value of imaginary

part of dotted lines are around
√

s = 1670 MeV, which corresponds to the mass of the Λ(1670)

resonance. Since the background term is assumed to be slowly varying function of
√

s, its first

derivative seems to be negligible. However, it is not always true that the background term

itself is negligible. Therefore, in general, the zero of the real part and the extreme value of

imaginary part might not coincide. This discrepancy is referred to as the background effects.

As we have seen, the use of the channel dependent subtraction constants gives reasonable

results on the scattering line. Using the method presented in section 3.4.2, we plot the

absolute value of the T-matrix amplitudes |T | of K̄N → K̄N in Fig. 4.6 and of πN → πN

with I = 1/2 in Fig. 4.7. In the S = −1 channel, around the energy region of Λ(1405), we

find two poles at

z1 = 1428.98− 13.81i , z2 = 1396.50− 73.35i . (4.3.5)

As reported in Refs. [22, 28, 95], there are two poles around this energy region. They seem

to construct a distorted shape in the πΣ mass distribution (Fig. 4.3). Around the energy

region of Λ(1670), we also find a pole and the position of the pole is

z = 1689.59− 21.82i . (4.3.6)

The values in Eqs. (4.3.5) and (4.3.6) are different from the values in Ref. [19], because here

we use f = 1.15 × 93 [MeV] for the meson decay constant, while f = 1.123 × 93 [MeV] is

used in Ref. [19]. In the S = 0 channel, we find a pole at
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z = 1495.89− 31.29i , (4.3.7)

which corresponds to the N(1535) resonance.

Next we calculate residues of the poles,

lim
z→zR

[(z − zR)Tij(z)] ∼ lim
z→zR

[
(z − zR)

gigj

z − zR
+ (z − zR)TBG

ij

]

∼ lim
z→zR

[
gigj + (z − zR)TBG

ij

]

∼ gigj . (4.3.8)
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4.3. Resonance in the scattering amplitude

|gK̄N |2 |gπΣ|2 |gηΛ|2 |gKΞ|2
Λ(1405) z1 6.57 1.88 1.74 0.100

z2 3.83 8.20 0.497 0.383
Λ(1670) 0.585 0.725 1.10 11.3

Table 4.3: Coupling strengths of the Λ(1405) and Λ(1670) resonances to meson-baryon chan-
nels. All channels are in I = 0. Around the Λ(1405) resonance, there are two poles z1 and
z2 (4.3.5).

|gπN |2 |gηn|2 |gKΛ|2 |gKΣ|2
N(1535) 0.895 2.65 2.11 8.61

Table 4.4: Coupling strengths of the N(1535) resonance to meson-baryon channels. All
channels are in I = 1/2.

These values determine the coupling strengths gi and gj of the resonance to meson-baryon

states, which are well defined even if these states are closed in the decay of the resonance.

From Eq. (4.3.8), we evaluate

|gi|2 = lim
z→zR

|(z − zR)× Tii(z)| . (4.3.9)

Mathematically, this quantity is well defined. However, numerically it is unstable if z ap-

proaches zR too much. Therefore it is important to fix the position of the pole precisely, and

we should check that Eq. (4.3.9) gives a stable value when z approach in different directions.

The values of |gi|2 are shown in Tables 4.3 and 4.4.

From the Table 4.3, we see that Λ(1670) strongly couples to the KΞ channel, and this

agrees with the fact that the position of the Λ(1670) structure is dominated by aKΞ parameter

(Fig. 4.3). Concerning with the N(1535) resonance, the πN and ηN channels are opened

at the energy of resonance. Therefore, the decay of N(1535) is dominated by ηN channel,

which also corresponds to the experimental fact.
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Chapter 5

Flavor SU(3) breaking effects in the
chiral unitary model

In this chapter, we first derive the masses of mesons and baryons from flavor SU(3) breaking

terms in the chiral Lagrangian, and see the mass relations among them. Next we extract

the meson-baryon interaction including the SU(3) breaking effects, and combine it with the

previous WT interaction. The numerical results with the SU(3) breaking interaction are also

presented.

5.1 Flavor SU(3) breaking terms in the chiral Lagrangian

Here we introduce the flavor SU(3) breaking effects in the chiral Lagrangian by the quark

masses up to order O(mq). From the second order chiral Lagrangian (2.5.9), these terms for

mesons are

LM
SB =

f2

4
Tr(U †χ + χ†U) , χ = 2B0m , (5.1.1)

and the SU(3) breaking terms for baryons in Eq. (2.6.14) can be written as

LMB
SB =− Z0

2
Tr

(
dmB̄{ξmξ + ξ†mξ†, B}+ fmB̄[ξmξ + ξ†mξ†, B]

)

− Z1

2
Tr(B̄B)Tr(mU + U †m) ,

(5.1.2)

where fm + dm = 1 and the quark mass matrix m is defined by

m =




mu

md

ms


 . (5.1.3)

Here we follow the notation in Ref. [43].
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5.2 Mass relations

If there is no quark mass term in ChPT, chiral symmetry is not broken explicitly, where

all mesons are massless and baryons have a common mass M0 in the Lagrangian (2.6.12).

Introduction of the quark mass term generates meson masses and baryon mass splittings.

In ChPT, the masses derived from the terms (5.1.1) and (5.1.2) automatically satisfy the

Gell-Mann Okubo (GMO) mass relations [96, 97].

5.2.1 Mesons

In order to derive the meson masses, we need terms which is proportional to Φ2. Expanding

Eq. (5.1.1) and taking these terms,

LM
mass =

2B0f
2

4
Tr

(
− 1

f2
Φ2m−m† 1

f2
Φ2

)

=− B0

2
Tr

(
Φ2m + mΦ2

)

=−B0Tr(Φ2m)

=−B0

(
π+π−(mu + md) + K+K−(mu + ms) + K̄0K0(md + ms)

+
1
2
π0π0(mu + md) +

1
6
ηη(mu + md + 4ms) +

1√
3
π0η(mu −md)

)
. (5.2.1)

If we break isospin symmetry(mu 6= md), there appear mixing terms such as π0η, because

the basis that we adopt does not diagonalize the mass term of Hamiltonian. Physical π0
phys

and ηphys are linear combinations of π0 and η in Eq. (5.2.1).

Among octet mesons, π0, η are real fields and the others are complex fields. The definition

of the mass term for real boson field φR and complex boson field φC are

−1
2
m2

Rφ2
R , −m2

CφCφ†C , (5.2.2)

where φC and φ†C have the same mass mc. Using Eqs. (5.2.1) and (5.2.2), the masses of the

octet mesons are

M2
π0 = B0(mu + md) ,

M2
η =

1
3
B0(mu + md + 4ms) ,

M2
π+ = M2

π− = B0(mu + md) ,

M2
K+ = M2

K− = B0(mu + ms) ,

M2
K0 = M2

K̄0 = B0(md + ms) .

(5.2.3)

These masses satisfy the Gell-Mann-Oakes-Renner (GMOR) mass relation [41]

M2
π±

mu + md
=

M2
K±

mu + ms
=

M2
K0

md + ms
=

3Mη

mu + md + 4ms
. (5.2.4)
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5.2. Mass relations

If we assume the isospin symmetry (mu = md = m̂), the masses of mesons are

M2
π = 2B0m̂ ,

M2
K = B0(m̂ + ms) ,

M2
η =

2
3
B0(m̂ + 2ms) ,

(5.2.5)

which satisfy the GMO mass relation for mesons [30]

3M2
η =2B0(m̂ + 2ms) (5.2.6)

=4B0(m̂ + ms)− 2B0m̂ (5.2.7)

=4M2
K −M2

π . (5.2.8)

From Eqs. (5.2.5) we also derive the quark mass ratio

m̂

ms
=

m2
π

2m2
K −m2

π

∼ 26 , (5.2.9)

with the physical meson masses.

5.2.2 Baryons

Up to order O(p2), the terms which contribute to the baryon masses are

LB
mass =−M0Tr(B̄B)− Z1

2
tr(B̄B)tr(m)

− Z0

2
tr

(
dm

(
B̄mB + B̄Bm}) + fm

(
B̄mB − B̄Bm

)) . (5.2.10)

Under the isospin symmetry, the baryon masses derived from the Lagrangian (5.2.10) are

MN : M0 + Z0dm(m̂ + ms) + Z0fm(m̂−ms) + Z1(2m̂ + ms) ,

MΣ : M0 + 2Z0dmm̂ + Z1(2m̂ + ms)

MΞ : M0 + Z0dm(m̂ + ms) + Z0fm(ms − m̂) + Z1(2m̂ + ms) ,

MΛ : M0 +
2
3
Z0dm(m̂ + 2ms) + Z1(2m̂ + ms) ,

which satisfy the GMO mass formula

1
2
(MΞ −MN ) +

3
4
(MΣ −MΛ) =

1
2
2Z0fm(ms − m̂) +

3
4

[
−4

3
Z0dm(ms − m̂)

]

= Z0(fm − dm)(ms − m̂)

= MΣ −MN .
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5.3 Flavor SU(3) breaking interactions

In the previous chapter, it has been found that the channel dependent subtraction constants

ai are crucial in order to reproduce important features of experimental data. In this section,

we consider SU(3) breaking interactions of the chiral Lagrangian in order to see if the channel

dependence in the subtraction constants can be absorbed into those terms. In this way, we

are hoping that the number of free parameters could be reduced and that the origin of the

channel dependence would be clarified. According to the chiral counting rule, these quark

mass terms are regarded as quantities of order O(p2). In this study, since we concentrate

on the SU(3) breaking effect, we take into account only the terms of Eq. (5.1.2), and other

terms of order O(p2) are not included. From the mass splitting among the octet baryons

and the πN sigma term, which we take here σπN = 36.4 MeV, all the parameters in the

Lagrangian (5.1.2) are determined as

Z0 = 0.528 , Z1 = 1.56 , fm/dm = −0.31 , (5.3.1)

and M0 = 759 MeV in the Lagrangian (2.6.12).

The meson-baryon interaction Lagrangian with the SU(3) breaking is obtained by picking

up the terms with two meson fields. We find

L(2)
SB =

Z0

4f2
Tr

(
dmB̄

{
(2ΦmΦ + Φ2m + mΦ2), B

}
+ fmB̄

[
(2ΦmΦ + Φ2m + mΦ2), B

])

+
Z1

f2
Tr(B̄B)Tr(mΦ2) . (5.3.2)

From this Lagrangian the basic interaction is given by

V
(SB)
ij =− 1

f2

[
Z0

(
(Ad

ijdm + Af
ijfm)m̂ + (Bd

ijdm + Bf
ijfm)ms

)

+ Z1δijD
Z1
i

]√Ei + Mi

2Mi

√
Ej + Mj

2Mj
. (5.3.3)

The explicit forms of the coefficients Aij and Bij are given in Appendix C. These interaction

terms are independent of the meson momenta unlike the WT interaction (4.1.3).

Adding Eq. (5.3.3) to Eq. (4.1.3) and substituting them into Eq. (3.3.14), we obtain the

unitarized T-matrix with the flavor SU(3) breaking effects as

T =
[
1−

(
V (WT ) + V (SB)

)
G

]−1 (
V (WT ) + V (SB)

)
. (5.3.4)

Since we have already fitted the all parameters in the chiral Lagrangian from physical quan-

tities, the free parameters in the chiral unitary model with the SU(3) breaking effects are

only the subtraction constants.
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Figure 5.1: Total cross sections of K−p scatterings (S = −1) as functions of Plab, the three-
momentum of initial K− in the laboratory frame. Dotted lines show the results with the
common a = −1.96, dash-dotted lines show the results including the SU(3) breaking with
the common a = −1.59, and solid lines show the results including the SU(3) breaking and
the physical f with the common a = −1.68. Open circles with error bars are experimental
data taken from Refs. [58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 66, 69, 70, 71].

5.3.1 The S = −1 channel

We follow the same procedures as in the calculations without the SU(3) breaking terms. First

of all, we determine a common subtraction constant a from the threshold branching ratios

(4.2.1). Then the optimal value is found to be a = −1.59. With this value, the total cross

sections of the K−p scatterings, the πΣ mass distribution and the scattering amplitude of

K̄N → K̄N with I = 0 are plotted in Figs. 5.1 and 5.2 by dash-dotted lines. As seen in the

Fig. 5.1, for all the total cross sections, the inclusion of the SU(3) breaking terms with the

common a makes the agreement with data worse, although the threshold branching ratios

are produced much better than the previous works, as seen in Table 5.1.

In the πΣ mass distribution shown in Fig.5.2 (dash-dotted line), a sharp peak is seen, in
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Figure 5.2: Real and imaginary parts of the T-matrix amplitude of K̄N → K̄N with I =
0 (a,b) and mass distributions of the πΣ channel with I = 0 (c). Dotted lines show the
results with the common a = −1.96, dash-dotted lines show the results including the SU(3)
breaking with the common a = −1.59, and solid lines show the results including the SU(3)
breaking and the physical f with the common a = −1.68. Open circles are experimental data
taken from Ref. [72, 73].

γ Rc Rn

experiment 2.36± 0.04 0.664± 0.011 0.189± 0.015
common a = −1.96 1.80 0.624 0.225

SU(3) breaking with a = −1.59 2.19 0.623 0.179
SU(3) breaking with a = −1.68, physical f 2.35 0.626 0.172

Table 5.1: Threshold branching ratios calculated with common a = −1.96, a = −1.59 with
the SU(3) breaking interaction, and a = −1.68 with the SU(3) breaking interaction using
the physical meson decay constants. The experimental values are take from Refs. [58, 59].

obvious contradiction with the observed spectrum, which means that the important resonance

structure of Λ(1405) has been lost. However, we find two poles of the T-matrix amplitude

at z1 = 1424 + 1.6i and z2 = 1389 + 135i in the second Riemann sheet. It is reported

that there are two poles in the T-matrix amplitude around the energy region of Λ(1405) in

Refs. [22, 28, 95]. The inclusion of the SU(3) breaking terms does not change this conclusion,

although the positions of the poles change.

We also calculate the total cross sections and the πΣ mass distribution with the physical

values of the meson decay constants, fπ = 93 MeV, fK = 1.22fπ, fη = 1.3fπ. The calculated

results are shown in Figs. 5.1 and 5.2 by solid lines. The optimal value of the subtraction

constants is a = −1.68 to reproduce the threshold branching ratios as shown in Table 5.1. The

SU(3) breaking effect on the meson decay constants is not so large in the total cross sections,

as seen in the figures. However, the shape of the peak seen in the πΣ mass distribution

becomes wider than that in the calculation with the averaged meson decay constant.
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5.3. Flavor SU(3) breaking interactions

Indeed we find again two poles in the scattering amplitudes at z′1 = 1424 + 2.6i and

z′2 = 1363+87i in the second Riemann sheet. Compared with the poles z1 and z2 obtained in

the above calculation, the position of the pole z′2 moves to lower energy side and approaches

the real axis. The reason why the position of z′2 changes is understood as follows. Since

z2 has large imaginary part, which means large width, and only the πΣ channel opens in

this energy region, the resonance represented by the pole z2 has strong coupling to the πΣ

channel. This fact implies that the position of the pole z2 is sensitive to the πΣ interaction.

In the present calculation, the pion decay constant (93 MeV) is smaller than the averaged

value (106.95 MeV) used in the above calculation, so that the attractive interaction of πΣ

becomes stronger. It shifts the position of the pole z2 to lower energy side. Simultaneously,

this suppresses the phase space of the decay of the resonance to the πΣ channel, and hence,

the position of the pole approaches the real axis.

5.3.2 The S = 0 channel

Here we show calculations in the S = 0 channel with the SU(3) breaking terms. With a

common a ∼ −1.5, in which the threshold properties are reproduced well in the S = −1

channel, we obtain still the large contribution in the S11 πN scattering amplitude at the low

energy as in the calculation without the SU(3) breaking effects. From this analysis, it is

found that the low energy behavior of the πN scatterings cannot be reproduced as long as

we use the common a ∼ −2, even if we introduce the SU(3) breaking effects.

In order to search the optimal value of the common subtraction constant within the S = 0

channel, we perform fitting of the T-matrix elements in the πN S11 channel in low energy

region up to 1400 MeV. We find a = 1.33. The results including the SU(3) breaking effects

with a = 1.33 are shown as dash-dotted lines in Figs. 5.3 and 5.4. As seen in Fig. 5.4, the

fitting is well performed up to
√

s ∼ 1400 MeV, while, however, the resonance structure does

not appear around the energies of N(1535).

Finally we show the calculations with the physical values of the meson decay constants

in Figs. 5.3 and 5.4 (solid lines). The optimal value of the common subtraction constant is

found to be a = 2.24. The results with the physical meson decay constants and a = 2.24 are

very similar to the calculation with the averaged value of the decay constants and a = 1.33.

In this sense, the SU(3) breaking effect of the meson decay constant f is absorbed into the

change of the common subtraction constant a.

In closing this section, we conclude that even if we introduce the SU(3) breaking effects

in the Lagrangian level, the SU(3) breaking in the channel dependent subtraction constants

ai cannot be absorbed into the SU(3) breaking effects in the fundamental interactions in the

both S = −1 and S = 0 channels.
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Figure 5.3: Total cross sections of π−p scatterings (S = 0) as functions of Plab, the three-
momentum of initial π− in the laboratory frame. Dotted lines show the results with the
common a = 0.53, dash-dotted lines show the results including the SU(3) breaking interaction
with the common a = 1.33, and solid lines show the results including the SU(3) breaking and
the physical f with the common a = 2.24. Open circles with error bars are experimental data
taken from Refs. [74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93].
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Figure 5.4: Real and imaginary parts of the S11 T-matrix amplitudes of πN → πN . Dotted
lines show the results with the common a = 0.53, dash-dotted lines show the results including
the SU(3) breaking interaction with the common a = 1.33, and solid lines show the results
including the SU(3) breaking and the physical f with the common a = 2.24. Open circles
with error bars are experimental data taken from Refs. [94].
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Chapter 6

Magnetic moments of the baryon
resonances

In this chapter, we study the magnetic moments of baryons. First, using the chiral La-

grangian, we calculate the magnetic moments of the ground state baryons. Then we formu-

late a method to calculate the magnetic moments of the resonances, following the procedure

of Ref. [28], where the magnetic moments of Λ(1405) and Λ(1670), and the transition mo-

ment between them are calculated within the chiral unitary model. Since our final goal is

to calculate the magnetic moments of the N(1535) resonance, we choose a parameter set

with which the generated resonance has proper mass and width. Here we do not include the

SU(3) breaking effects. We calculate in both the Q = 1 and Q = 0 channels, in which there

appear the proton and neutron resonances. Using coupling strengths of the resonance to

meson-baryon channels and the magnetic moments of the ground state baryons, we estimate

the magnetic moments of the resonances. In the present case of N(1535), the Σ0Λ transition

magnetic moment has moderate effects, which were almost negligible in S = −1, because of

the isospin of the Λ resonances. We calculate the magnetic moments of the N(1535) reso-

nance in two different ways, on the real axis and in the complex plane. Combining both the

results, we determine the values of the magnetic moments of the N(1535) resonance.

6.1 Magnetic moments of the ground state baryons in ChPT

In this section we calculate the magnetic moments of the ground state baryons in the frame-

work of the chiral perturbation theory. For the octet baryons, there are eight magnetic

moments of eight baryons and one Σ0Λ transition magnetic moment, which have been mea-

sured experimentally with high precision. At the tree level, the results are in good agreement

with data, and also satisfy the Coleman-Glashow relations [98], which is derived from the

SU(3) symmetry.
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6.1. Magnetic moments of the ground state baryons in ChPT

� �

Figure 6.1: Electromagnetic vertex for a fermion. Solid and wave lines represent fermions
and photon.

In general, the electromagnetic interaction vertex for a spin 1/2 fermion (Fig. 6.1) is written

in terms of two form factors F1(q2) and F2(q2) [53];

ū(p′)
[
γµF1(q2) +

iσµνqν

2m
F2(q2)

]
u(p) , (6.1.1)

where σµν = i[γµ, γν ]/2, u and ū are the spinors of initial and final fermions, p and p′ are the

momenta of the initial and final fermions, and m is the mass of the fermion. The magnetic

moment is calculated as

µ =
e

2m
[F1(0) + F2(0)] =

e

2m
[1 + F2(0)] . (6.1.2)

We refer to e
2m as the normal magnetic moment and e

2m · F2(0) as the anomalous magnetic

moment.

In the ChPT, we have electromagnetic couplings in the covariant derivative of baryon

kinetic term in the chiral Lagrangian (2.6.13). In the order O(p2) chiral Lagrangian (2.6.15),

the photon coupling terms can be rewritten as

LMB
(γ) =− i

4MP
bF
6 Tr

(
B̄[Sµ, Sν ][F+

µν , B]
)− i

4MP
bD
6 Tr

(
B̄[Sµ, Sν ]{F+

µν , B}
)

, (6.1.3)

where F+
µν = −e(ξ†QFµνξ + ξQFµνξ

†), Q = diag(2,−1,−1)/3 and Sµ is a covariant baryon

spin operator, which is defined in Eq. (2.6.21). This Lagrangian has contributions to anoma-

lous magnetic moments. In the rest frame of a baryon, a commutation relation of spin

operators takes the form

[Sµ, Sν ]Fµν → −(σ × q) · ε (6.1.4)

Thus the Lagrangian (6.1.3) is written as

LMB
(γ) = e

σ × q

2MP
·ε

(
− i

2
bF
6 TrB̄[(u†Qu + uQu†), B]− i

2
bD
6 TrB̄{(u†Qu + uQu†), B}

)
(6.1.5)

For the magnetic moments of the ground state baryons, we take u = 1 to obtain the vertex

of Fig. 6.1. We then obtain

LBBγ = −ie
σ × q

2MP
· ε (

bF
6 TrB̄[Q,B] + bD

6 TrB̄{Q, B}) . (6.1.6)
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6.1. Magnetic moments of the ground state baryons in ChPT

baryon µth µexp

p
1
3
bD
6 + bF

6 2.56 2.792847337± 0.000000029

n −2
3
bD
6 −1.60 −1.9130427± 0.0000005

Σ+ 1
3
bD
6 + bF

6 2.56 2.458± 0.010

Σ−
1
3
bD
6 − bF

6 −0.97 −1.160± 0.025

Σ0 1
3
bD
6 0.80

Λ −1
3
bD
6 −0.80 −0.613± 0.004

Ξ−
1
3
bD
6 − bF

6 −0.97 −0.6507± 0.0025

Ξ0 −2
3
bD
6 −1.60 −1.250± 0.014

Σ0Λ
1√
3
bD
6 1.38 ±1.61± 0.08

Table 6.1: The magnetic moments of the ground state baryons. The left column of µth are
extracted from the tree graph with the term (6.1.6), and the values in the right column of
µth are obtained with the parameters in Eq. (6.1.8). µexp are experimental data taken from
Ref. [99]

Therefore, after taking trace of Eq. (6.1.6), the magnetic moments of the ground state baryons

are obtained as shown in Table 6.1 (left column of µth). From the table, we see the following

Coleman-Glashow relations are satisfied

µΣ+ =µp , 2µΛ = µn , µΣ− = µΞ− , µΞ0 = µn ,

µΣ− + µn = −µp , 2µΣ0Λ = −
√

3µn , 2µΣ0 = µΣ+ + µΣ− .
(6.1.7)

There are only two parameters, bD
6 and bF

6 .

Recall that the magnetic moments derived from the Lagrangian (6.1.3) are the anoma-

lous magnetic moments, while the normal magnetic moments come from the vector current

coupling in the covariant derivative. However, the contributions from the normal magnetic

moments are exactly the same as the first term of Eq. (6.1.6). Indeed the normal magnetic

moments just shift bF
6 → bF

6 + 1. Therefore we absorb the normal magnetic moments into bF
6

in the rest of this thesis. We need to be careful that the values we show are different from

the low energy constant bF
6 which appears in the ChPT.

Fitting the magnetic moments written in terms of bD
6 and bF

6 in Table 6.1, we find the

fitted parameters [100]

bD
6 = 2.39, bF

6 = 1.77, (6.1.8)

and obtain the magnetic moments as shown in Table 6.1 (right column of µth). In spite of

the use of only two parameters, they are in good agreement with data.
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6.2. Formulation
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Figure 6.2: Feynman diagrams of Tij(
√

s) and −it̃ij(
√

s). In calculating −it̃ij(
√

s), we con-
sider the diagrams which contribute to the magnetic moments, and extract a factor in order
to make the coupling of resonance to photon to be magnetic moment in units of the nuclear
magneton.

Beyond the tree level with the lowest order ChPT, many calculations including the higher

order contributions have been done [42, 101, 102]. In the one loop calculation, there appears

the non-analytic corrections of the form √
mq and mq ln mq.

6.2 Formulation

In this section, we show a formulation to calculate the magnetic moments of resonances in

the chiral unitary model [28]. There are two ways to calculate them, on the real axis and in

the complex plane. Both two methods have advantages and disadvantages, which would be

compensated each other.

As in the previous chapters, the chiral unitary model provides an amplitude

Tij(
√

s) =
gigj√

s−MN∗ + iΓN∗/2
+ TBG

ij , (6.2.1)

From the terms of photon couplings (6.1.5), we have the vertex of BBγ and BBMMγ. Using

them, we calculate the photon coupling diagrams as

−it̃ij(
√

s) =
(

gi√
s−MN∗ + iΓN∗/2

+ TBG

)
· µN∗ ·

(
gj√

s−MN∗ + iΓN∗/2
+ TBG

)
.

Feynman diagrams of Tij(
√

s) and −it̃ij(
√

s) are shown in Fig. 6.2. In the following, we first

calculate the −it̃ij(
√

s) diagrams in the chiral unitary model, and present two ways to extract

µ using Tij(
√

s).

6.2.1 Photon coupling diagrams

Here we compute the diagram −it̃ij(
√

s). Since we consider the baryon resonances as multi-

scatterings of meson-baryon states, we have three kinds of diagrams of the photon couplings

as shown in Fig. 6.3. Among them, the diagram (c) does not contribute to the present
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6.2. Formulation

a) b) c)

Figure 6.3: Photon coupling diagram in −it̃ij(
√

s). We consider that there are meson-baryon
loops on the left and right sides of these vertices.

calculation, because we consider s wave scatterings. Therefore, we consider the diagrams (a)

and (b), and we divide −it̃ij(
√

s) into two parts,

−it̃ij(
√

s) = T̃ (a)(
√

s) + T̃ (b)(
√

s) , (6.2.2)

where T̃ (a)(
√

s) and T̃ (b)(
√

s) are the diagrams like −it̃ij(
√

s) with (a) and (b) photon cou-

plings, respectively.

The five point vertex (a) is derived from the Lagrangian (6.1.5), by taking the terms of

two mesons, as

LBBMMγ =− e
σ × q
2Mp

· ε i

4f2
Tr

(
bD
6 B̄

{
(2ΦQΦ− Φ2Q−QΦ2), B

}

+ bF
6 B̄

[
(2ΦQΦ− Φ2Q−QΦ2), B

])
. (6.2.3)

With this term, we calculate the amplitude of the tree vertex (a) as

V BBMMγ
ij = ie

σ × q
2Mp

· ε 1
2f2

[Xijb
D
6 + Yijb

F
6 ]ūi(pi)uj(pj)

= ie
σ × q
2Mp

· εAij ,

where we define

Aij =
1

2f2
[Xijb

D
6 + Yijb

F
6 ]ūi(pi)uj(pj) , (6.2.4)

in order to extract a factor. Coefficients Xij and Yij are shown in tables in Appendix C.

Combining the T-matrix amplitude and Aij , we obtain

T̃
(a)
ij (

√
s) = Til(

√
s)Gl(

√
s)AlmGm(

√
s)Tmj(

√
s) . (6.2.5)

The diagram (b) is calculated by magnetic moments of the ground state baryons µi in Ta-

ble 6.1, multiplying the propagator G̃(
√

s). In later calculations, we need to perform analytic

continuation of
√

s, however, it is impossible to calculate the loop G̃(
√

s) in analytic form.
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Figure 6.4: Diagrams of off-diagonal components in G̃ including Σ0Λ transition. Upper
diagram corresponds to S = 0 channel and lower diagrams correspond to S = −1 channel.

Therefore, we neglect the small momentum of the photon in the second baryon propagator,

and write

G̃ii(
√

s) ∼ i

∫
d4q

(2π)4
2Mi

(P − q)2 −M2
i + iε

2Mi

(P − q)2 −M2
i + iε

1
q2 −m2

i + iε
(6.2.6)

= − ∂

∂
√

s
Gi(

√
s) , (6.2.7)

which can be calculated analytically. Then we obtain

T̃
(b)
ij (

√
s) = Til(

√
s)G̃ll(

√
s)µlTlj(

√
s) , (6.2.8)

where µl are the magnetic moments of the ground state baryons.

However, since there is the Σ0Λ transition moment in the ground state, off-diagonal com-

ponents exist in G̃. We need further approximation, because the masses in the first and

second propagators in Eq. (6.2.6) are different. In Fig. 6.4, we show the diagrams where Σ0Λ

transition occurs, in the S = −1 and S = 0 scatterings. These off-diagonal components are

calculated by taking average of the Σ0 and Λ propagators, namely,

G̃MΣ0,MΛ(
√

s) =
1
2

(
G̃MΣ0,MΣ0(

√
s) + G̃MΛ,MΛ(

√
s)

)
, (6.2.9)

where M denotes K0, K+, π0 and η. Then Eq. (6.2.8) is modified as

T̃
(b)
ij (

√
s) = Til(

√
s)G̃lm(

√
s)µlmTmj(

√
s) , (6.2.10)

where G̃lm(
√

s)µlm is diagonal plus components G̃MΣ0,MΛ(
√

s)× µΣ0Λ. In this way, through

Eqs. (6.2.2), (6.2.5) and (6.2.10), we calculate the diagram −it̃ij(
√

s).
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6.2. Formulation

6.2.2 Magnetic moments

Here we extract the magnetic moments of the resonances in two ways. When we differentiate

Tij(
√

s) in terms of
√

s, we have

∂

∂
√

s
Tij(

√
s) = − gigj

(
√

s−MN∗ + iΓN∗/2)2
+

∂

∂
√

s
TBG

ij (6.2.11)

Therefore, if the derivative of the background term TBG
ij is small, we can calculate the mag-

netic moments as

−it̃ij(
√

s)
− ∂

∂
√

s
Tij(

√
s)
∼

(
gi√

s− zR
+ TBG

)
· µN∗(

√
s) ·

(
gj√

s− zR
+ TBG

)

gigj

(
√

s− zR)2
− ∂

∂
√

s
TBG

∼ µN∗(
√

s) + TBG

√
s− zR

gi
+ TBG

√
s− zR

gj
+

(
TBG

)2 (
√

s− zR)2

gigj
,

(6.2.12)

where we neglect the derivative of the background term in the second line. Note that the

second and third terms in Eq. (6.2.12) are not always regarded as small, because zR has an

imaginary part, so that (
√

s− zR) can not be zero. In order to make the background small,

we take the value of µN∗ around the position of the pole and for the channel whose coupling

|gi|2 is large.

When we calculate on the complex plane, we can make the background effects negligible,

because we can take the limit z → zR. We calculate

lim
z→zR

(z − zR)
−it̃ij(z)
Tij(z)

∼ lim
z→zR

(z − zR)
[(

gi

z − zR
+ TBG

)
· µN∗(z) ·

(
gj

z − zR
+ TBG

)]

gigj

z − zR
+ TBG

= lim
z→zR

[
µN∗(z)

1 + (z − zR)TBG/(gigj)
+O(z − zR)

]

=µN∗(zR) . (6.2.13)

In this way we obtain a value without background effects. However, this is the value at

z = zR, so that it has a complex phase.

Since the T-matrix amplitude contains a background term, the results on the real axis are

unstable and channel dependent as we see in Eq. (6.2.12). Therefore, we need to choose the

most relevant channel to calculate using the coupling strengths of the pole in Eq. (6.2.11).

An advantage in this case is that the sign of the magnetic moments are fixed. On the other

hand, the results in the complex plane, which are obtained at the position of the pole, have

almost no background so that they are channel independent. However, in the complex plane,
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6.3. The N(1535) resonance in the chiral unitary model

|gπN |2 |gηN |2 |gKΛ|2 |gKΣ|2
n∗ 0.623 2.30 1.93 7.29
p∗ 0.619 2.35 1.88 7.37

Table 6.2: Coupling strengths of the N(1535) resonance to meson-baryon channels with
physical meson decay constants. All channels are in I = 1/2.

we cannot fix the sign of the magnetic moments because of the complex phase. Hence, our

strategy here is to determine the sign on the real axis and to fix the absolute value in the

complex plane.

6.3 The N(1535) resonance in the chiral unitary model

Since the N(1535) resonance is an isospin doublet, there are two charge states of Q =

1(proton) and Q = 0(neutron), as the ground state nucleons. In the rest of this thesis,

we denote them as p∗ and n∗. We calculate magnetic moments for both cases, and compare

the results. The corresponding meson-baryon channels are shown in Table B.1. Note that

before including the photon couplings, the difference between Q = 1 and Q = 0 is only a

small isospin violation due to the particle masses.

In order to calculate the magnetic moments of the N(1535) resonance, we need to gen-

erate the corresponding pole at proper position. Therefore, we use the channel dependent

subtraction constants in Table 4.1 and physical meson decay constants,

fπ = 93 [MeV] , fK = 1.22× fπ , fη = 1.3× fπ . (6.3.1)

Here we do not include the SU(3) breaking effects. Using the same procedure in section 4.3,

we calculate the scattering amplitudes and find poles, whose positions are

zn∗ = 1536.01− 37.06i (Q = 0) ,

zp∗ = 1531.01− 36.38i (Q = 1) .
(6.3.2)

The difference between p∗ and n∗ comes from the isospin violation of the physical masses of

the particles. Their coupling strength to the meson-baryon channels are shown in Table 6.2.

Qualitatively, they correspond to the results in section 4.3, where common meson decay

constant f = 1.15× 93 MeV is used.

6.4 Estimation of the magnetic moments

Using the coupling strengths in Table 6.2, we present a simple estimation of the magnetic

moments of the N(1535) resonance. In Ref [27], considering N(1535) as quasibound state of
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6.4. Estimation of the magnetic moments

KΣ, they decomposed the KΣ state into physical states by Clebsh-Gordan coefficients,

|n∗〉 = −
√

1
3
|K0Σ0〉+

√
2
3
|K+Σ−〉 ,

|p∗〉 =

√
1
3
|K+Σ0〉+

√
2
3
|K0Σ+〉 .

(6.4.1)

Using the magnetic moments of the ground state baryons, they obtained

µn∗ =
1
3
µΣ0 +

2
3
µΣ− ∼ −0.56µN ,

µp∗ =
1
3
µΣ0 +

2
3
µΣ+ ∼ 1.86µN ,

(6.4.2)

where µN is the nuclear magneton.

In the present case, we know the coupling strengths between meson-baryon channels and

N(1535), therefore we sum up all the channels multiplying |gi|2 as weight. Using the Clebsh-

Gordan coefficients, the magnetic moments of each channel is

µπN (Q = 0) =
1
3
µn +

2
3
µp ∼ 1.22µN , µπN (Q = 1) =

2
3
µn +

1
3
µp ∼ −0.343µN ,

µηN (Q = 0) = µn ∼ −1.91µN , µηN (Q = 1) = µp ∼ 2.79µN ,

µKΛ(Q = 0) = µΛ ∼ −0.613µN , µKΛ(Q = 1) = µΛ ∼ −0.613µN ,

µKΣ(Q = 0) =
1
3
µΣ0 +

2
3
µΣ− ∼ −0.557µN , µKΣ(Q = 1) =

1
3
µΣ0 +

2
3
µΣ+ ∼ 1.86µN ,

where we adopt µΣ0 = 0.649, as predicted by the quark model. Multiplying the weight |gi|2,
we obtain

µN∗ =
|gπN |2∑

j |gj |2 µπN +
|gηN |2∑

j |gj |2 µηN +
|gKΛ|2∑

j |gj |2 µKΛ +
|gKΣ|2∑

j |gj |2 µKΣ . (6.4.3)

The results are

µn∗ ∼ −0.74µN ,

µp∗ ∼ 1.55µN ,
(6.4.4)

which qualitatively agree with Eq. (6.4.2), because in Eq. (6.4.3) the KΣ component (|gKΣ|2)
dominates the N(1535) resonance.

In the same way, we estimate the magnetic moments of the Λ resonances. In S = −1 and

I = 0, there are four channels

µK̄N (I = 0) =
1
2
µn +

1
2
µp ∼ 0.44µN ,

µπΣ(I = 0) =
1
3
µΣ+ +

1
3
µΣ0 +

1
3
µΣ− ∼ 0.649µN ,

µηΛ(I = 0) = µΛ ∼ −0.613µN ,

µKΞ(I = 0) =
1
2
µΞ0 +

1
2
µΞ− ∼ −0.95µN ,
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6.5. Effects of the Σ0Λ transition

|gK̄N |2 |gπΣ|2 |gηΛ|2 |gKΞ|2
Λ(1405) z1 7.4 2.3 2.0 0.12

z2 4.5 8.3 0.57 0.37
Λ(1670) 0.61 0.073 1.1 12

Table 6.3: Coupling strengths of the Λ(1405) and Λ(1670) resonances to meson-baryon chan-
nels, with the parameter sets in Ref. [19, 28], where f = 1.123×93 MeV is used. All channels
are in I = 0.

and the coupling strengths are shown in Table 6.3. Using them, we calculate Eq. (6.4.3),

then obtain

µΛ(1405),z1 ∼ 0.287µN ,

µΛ(1405),z2 ∼ 0.485µN ,

µΛ(1670) ∼ −0.853µN ,

(6.4.5)

which qualitatively agree with the results of the chiral unitary model are [28]

µΛ(1405),z1 ∼ 0.41µN ,

µΛ(1405),z2 ∼ 0.30µN ,

µΛ(1670) ∼ −0.29µN .

(6.4.6)

Although the absolute values of estimation (6.4.5) are different from the final results, we

obtain the same signs. Since this estimation essentially corresponds to the amplitude T̃ (b),

the rest correction is considered to be given from the amplitude T̃ (a).

6.5 Effects of the Σ0Λ transition

In the calculation of the diagrams T̃
(b)
ij (

√
s), there are couplings between the ground state

octets and photon, and the Σ0Λ transition can take place. In the S = 0 channel, we show

the corresponding diagram in the upper side of Fig. 6.4. In order to consider the N(1535)

resonance, which has I = 1/2, we take isospin combination at the end of calculations. Now

KΣ0 and KΛ channels have the I = 1/2 components, so that this diagram can contribute to

the I = 1/2 amplitudes after isospin combination. This is different from the S = −1 channel,

where the corresponding diagrams are shown in the lower side of Fig. 6.4. The Λ(1405) and

Λ(1670) resonances have I = 0, therefore, after isospin combination, these terms are dropped.

In Fig. 6.5 we plot the N = −it̃ij(
√

s) = T̃
(a)
ij (

√
s)+ T̃

(b)
ij (

√
s) amplitudes of πN → πN(I =

1/2) in S = 0 and K̄N → K̄N(I = 0) in S = −1, with and without the Σ0Λ transition. We

see that in S = 0, the Σ0Λ transition has moderate effects. The small difference in S = −1

channel is caused by the effect of isospin violation from particle masses.
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Figure 6.5: Effects of Σ0Λ transition. we plot the N = −it̃ij(
√

s) amplitudes of πN →
πN(I = 1/2) in S = 0 and K̄N → K̄N(I = 0) in S = −1 with and without the Σ0Λ
transition.

6.6 Results

Here we show the results. As we mentioned, there are two ways to calculate the magnetic

moments. We first show the results on the real axis, then go to the complex plane. Finally

we combine both the results and compare them with the estimation obtained in section 6.4.

In Fig. 6.6, we plot the T-matrix amplitudes N = −it̃ij(
√

s) and D = − ∂
∂
√

s
tij(

√
s), and

the magnetic moments µ ∼ N/D. According to Table 6.2, the N(1535) resonance strongly

couples to the KΣ channel. In order to make the background small, we plot the amplitudes

of KΣ → KΣ(I = 1/2). It is important that in Q = 0, the sign of the amplitude N is

opposite to the sign of D, while in Q = 1, the amplitudes D and N have same signs, because

this determines the sign of the magnetic moments.

Next we consider to evaluate µ(
√

s). If there is no background, for both N and D, extreme

values of real parts and zeros of imaginary parts would take place at
√

s = MR, where

µ = N/D becomes pure real. However, in actual calculations these points differ slightly,

especially in Q = 0, due to background contributions. Therefore, we evaluate the magnetic

73



6.6. Results

40

20

0

-20

-40

 N
 [

a.
u.

]

1560154015201500
sqrt s [MeV]

 Re[N]
 Im[N]

-100

-50

0

50

100

 D
 [

a.
u.

]

1560154015201500
sqrt s [MeV]

 Re[D]
 Im[D]

-2

-1

0

1

2

 µ
 [µ

N
]

1560154015201500
sqrt s [MeV]

 Re[N]/Re[D]
 Re[N/D]

K Σ  K Σ (Q=0)

-150

-100

-50

0

50

100

 N
 [

a.
u.

]

1560154015201500
sqrt s [MeV]

 Re[N]
 Im[N]

-100

-50

0

50

100

 D
 [

a.
u.

]
1560154015201500

sqrt s [MeV]

 Re[D]
 Im[D]

-2

-1

0

1

2

 µ
 [µ

N
]

1560154015201500
sqrt s [MeV]

 Re[N]/Re[D]
 Re[N/D]

K Σ  K Σ (Q=1)

Figure 6.6: Magnetic moments on the real axis. We plot the T-matrix amplitudes N =
−it̃ij(

√
s) and D = − ∂

∂
√

s
tij(

√
s), and the magnetic moments µ = [N/D] and µ = [N ]/[D] in

units of the nuclear magneton.

moments at all these points. Since µ = N/D has a small imaginary part, we calculate µ in

the following two ways,

Re[N/D] ≡ Re

[
−it̃ij(

√
s)

− ∂
∂
√

s
tij(

√
s)

]
, Re[N ]/Re[D] ≡ Re

[−it̃ij(
√

s)
]

Re
[
− ∂

∂
√

s
tij(

√
s)

] , (6.6.1)

and we show the results in Table 6.4. The results of Re[N ]/Re[D] for n∗ at Re[N ]Ext. and

Im[N ]Zero are unstable as compared with those of Re[N/D]. The reason for this is that

those points are close to the zero of Re[D], which makes the ambiguity of Re[N ]/Re[D] large.

Therefore, we take average value of Re[N/D] for the resonance the magnetic moments

µn∗ = (−0.266± 0.01)µN ,

µp∗ = (1.26± 0.02)µN ,
(6.6.2)

with small uncertainties.
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6.6. Results

at Re[N ]Ext. at Im[N ]Zero at Re[D]Ext. at Im[D]Zero

n∗ Re[N/D] −0.256 −0.260 −0.272 −0.274
Re[N ]/Re[D] −0.933 −1.30 −0.294 −0.275

p∗ Re[N/D] 1.26 1.25 1.28 1.28
Re[N ]/Re[D] 1.40 1.42 1.31 1.29

Table 6.4: Magnetic moments on the real axis in units of the nuclear magneton. Re[N ]Ext. and
Im[N ]Zero represent the extreme value of real part and zero of imaginary part, respectively.

In the complex plane, the magnetic moment of resonance is defined by Eq. (6.2.13). This

is in general a complex value. So we take the absolute value. The results are

|µn∗ | = 0.248µN

|µp∗ | = 1.13µN

(6.6.3)

which are almost channel independent.

Finally we summarize the results in Table 6.5. Compared with the estimation in section 6.4,

we obtain the values with the same signs. The signs of the results also agree with the results

in Ref. [27], where the constituent quark model is used. However, the magnitudes are different

almost factor two for p∗ and factor five for n∗. Since these two approaches have completely

different picture for baryon resonances, the experimental results will give us insight of the

baryon resonances.

Combining the present results with those of Ref. [28], we obtain the magnetic moments of

the resonances in the chiral unitary model as

µp∗(1535) ∼ 1.1µN , µn∗(1535) ∼ −0.25µN , µΛ∗(1670) ∼ −0.29µN . (6.6.4)

These values imply that 1/2− resonances form an SU(3) octet. If the SU(3) symmetry of is

exact, and they are precisely the member of the octet, then their magnetic moments should

satisfy the Coleman-Glashow relations (6.1.7), which tell us that

µn∗ = 2µΛ∗ . (6.6.5)

This relation is satisfied up to the sign in the present calculation.

n∗ p∗

µ (estimation) −0.74 1.55
µ (real axis) −0.266± 0.01 1.26± 0.02
|µ| (complex plane) 0.248 1.13
µ (quark model Ref. [27]) −1.28 1.89

Table 6.5: The magnetic moments of the N(1535) resonance in units of the nuclear magneton.
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Chapter 7

Summary

In this thesis, we have studied properties of baryon resonances in meson-baryon scatterings

using the chiral unitary model. In the review part (chapters 2 and 3), we have formulated

the chiral perturbation theory (ChPT), where, based on the nonlinear realization of chiral

symmetry, the Lagrangians have been constructed. The method of unitarization has been

presented and we have discussed the analytic structure of scattering amplitudes in detail. In

the research part (chapters 4, 5 and 6), we have investigated the flavor SU(3) breaking effects

in the chiral unitary model, and computed the magnetic moments of the N(1535) resonance.

Here we discuss the results obtained in research part.

In chapter 4, we have tried to reproduce the observed cross sections and the resonance

properties using a single common subtraction constant. In the S = −1 channel, a ∼ −2 is

fixed from the threshold branching ratios of the K−p scatterings. With this parameter, the

total cross sections of the K−p scatterings are reproduced well, as well as the mass distribution

for Λ(1405) is. However, in this case the Λ(1670) resonance cannot be reproduced. The

subtraction constant a ∼ −2 corresponds to Λ3 = 630 MeV in the three-momentum cut-off

reguralization of the meson-baryon loop integral [22]. This value is consistent with the one

often used in single nucleon processes [103]. The elementary interaction of the K̄N system

is sufficiently attractive, and a resummation of the coupled channel interactions provides the

Λ(1405) resonance at the correct position, by imposing the unitarity condition and by using

the natural value for the cut-off parameter. Hence the wave function of Λ(1405) is largely

dominated by the K̄N component.

On the other hand, in the S = 0 channel, if one uses the natural value for the subtraction

constant as in the S = −1 channel, the attraction of the meson-baryon interaction becomes

so strong that an unexpected resonance is generated at around
√

s ∼ 1250 MeV. Therefore,

repulsive component is necessary to reproduce the observed πN scattering. The fitted sub-

traction constant using the low energy πN scattering amplitude is a ∼ 0.5. With this value,
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however, the N(1535) resonance is not generated, while the agreement in the cross sections

of π−p → ηn is rather good due to the threshold effects.

The unitarized amplitudes are very sensitive to the attractive component of the inter-

action. The interaction terms of the ChPT alone do not explain all scattering amplitudes

simultaneously, but they must be complemented by the subtraction constants in the chiral

unitary model. For small a, the interaction becomes more attractive, and for large a, less

attractive. For S = 0, we need to choose a ∼ 0.5 in order to suppress the attraction from the

πN interaction in contrast to the natural value a ∼ −2 in the S = −1 channel. Therefore, it

is not possible to reproduce both the Λ(1405) resonance properties and the low energy πN

scattering with a common subtraction constant.

In chapter 5 we have introduced the flavor SU(3) breaking Lagrangian, with the hope that

the channel dependence in the subtraction constants would be absorbed into the coefficients

in the chiral Lagrangian. The coefficients can be determined from other observables, and

hence they are more controllable than the subtraction constants which have to be fitted by

the experimental data. However, the channel dependence of the subtraction constants in

each strangeness channel cannot be replaced by the SU(3) breaking Lagrangian, although

we have taken into account all possible breaking sources up to order O(mq). Therefore, the

suitable choice of the channel dependent subtraction constants is essential. Investigation of

their microscopic origin is an important work in future.

From the results of the chapters 4 and 5, we conclude that the chiral unitary approach can

reproduce cross sections and generate s wave resonances dynamically, once the subtraction

constants are determined appropriately, using experimental data. This model is one of the

powerful phenomenological methods, although it is not straightforward to apply the method

to the channels where there are not sufficient experimental data, since they are required to

determine the subtraction constants. As long as we concern with the S = −1 and S = 0

channels, the chiral unitary model gives satisfactory prediction.

In chapter 6, we have calculated the magnetic moments of the N(1535) resonance in the

chiral unitary model. We have estimated the magnetic moments based on the meson-baryon

picture of the resonances, obtaining µp∗(1535) ∼ +1.55µN and µn∗(1535) ∼ −0.74µN , where

µN is the nuclear magneton. As the results of the chiral unitary model, we have obtained

the magnetic moments of the resonances as µp∗(1535) ∼ +1.1µN and µn∗(1535) ∼ −0.25µN .

The sign of the present results agree with simple estimation and the results in Ref. [27],

where the constituent quark model is used. However, the absolute values of these results

are different at least factor two, so the experimental measurement will bring the information

of the structure of the baryon resonances. Compared with the results of Λ resonances in

Ref. [28], the Coleman-Glashow relations (6.1.7), which comes from the SU(3) symmetry of
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octet, are satisfied up to the sign among Λ∗(1670) and n∗(1535) in the chiral unitary model.

This implies that 1/2− resonances form an SU(3) octet.

In closing this thesis, we briefly comment on the future plans. As we have studied in this

thesis, there are two different directions of research in chiral unitary model. Although this

model works in an excellent way, the origin of the channel dependent subtraction constants

should be considered and clarified from microscopic point of view, such as quark degrees

of freedom. Furthermore, approximations adopted in the present calculations, for instance

the s-channel dominance, should be checked in more quantitative discussions. On the other

hand, the success of the chiral unitary model enable us to apply it to the processes in the

experiments, such as photoproduction of the N(1535) resonance and the process γp → γηp.

They are linked to the current experiments and the prediction will give us an insight of the

picture of the baryon resonances.
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Appendix A

Kinematics and formulae

Here we summarize the kinematic variables used in this thesis and formulae with which we

calculate several observables.

A.1 Kinematics

We consider scatterings of a meson with mass m and a baryon with mass M . The kinematics

of the scattering is shown in Fig. A.1, and s is defined as s = (k + p)2.

In the center of mass frame, the absolute value of three momenta of the meson and the

baryon are same and given by

|pi| = |ki| =
√

(s− (Mi −mi)2)(s− (Mi + mi)2)
2
√

s
. (A.1.1)

The energy of the baryon Ei is

Ei =
s−m2

i + M2
i

2
√

s
, (A.1.2)

which is used in Eqs. (4.1.3) and (5.3.3).

���

� �

���

� �

Figure A.1: Definition of the momentum variables. Dashed and solid lines represent mesons
and baryons, respectively.
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A.2. Formulae of observables
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Figure A.2: Three momentum of the initial meson in the laboratory frame Plab(
√

s). Here
we show the K̄N and πN scatterings.

In the laboratory frame, the energy and momentum of initial meson are given by

Elab =
s−m2 −M2

2M
(A.1.3)

|Plab| =
√

E2
lab −m2 , (A.1.4)

which are used when we plot the total cross sections. In Fig. A.2 we plot Plab(
√

s) in terms

of
√

s.

A.2 Formulae of observables

Here we summarize the formulae used in the calculation in chapters 4 and 5. From T-matrix

amplitude |Tij | given in Eqs. (4.1.6) and (5.3.4), the total cross sections plotted in Figs. 4.2,

4.4, 5.1 and 5.3 are given by

σij =
1

4πs

|kj |
|ki|MiMj |Tij |2 [MeV]−2

=
1

4πs

|kj |
|ki|MiMj |Tij |2 × 10× (h̄c [MeV· fm])2 [mb] .

(A.2.1)

The mass distributions and T-matrix amplitudes plotted in Figs. 4.3, 4.5, 5.2 and 5.4 are

given by
dσ

dmα
= |ki||T |2 . (A.2.2)

T plot
ij = − 1

8π
√

s

√
ki

√
kj

√
2Mi

√
2MjTij (A.2.3)
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A.2. Formulae of observables

Threshold branching ratios are given explicitly by

γ =
|T (K−p → π+Σ−)|2
|T (K−p → π−Σ+)|2

Rc =
|T (K−p → π+Σ−)|2 + |T (→ π−Σ+)|2 + |T (→ K−p)|2

|T (K−p → π+Σ−)|2 + |T (→ π−Σ+)|2 + |T (→ π0Σ0)|2 + |T (→ π0Λ)|2 + |T (→ K−p)
|2

Rn =
|T (K−p → π0Λ)|2

|T (K−p → π0Σ0)|2 + |T (→ π0Λ)|2
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Appendix B

Classification of meson-baryon
channels

Here we classify the meson-baryon channels in terms of the conserved quantum numbers.

There are 64 kinds of meson-baryon channels when we consider scatterings of octet mesons

and octet baryons. They are coupled within groups which have the same quantum number.

B.1 Conservation of quantum numbers

Since we are considering the strong interaction, several quantum numbers should be con-

served. The channels of the meson-baryon scatterings are specified by two quantum numbers,

the hypercharge Y and the third component of isospin I3, or equivalently the strangeness S

and the electric charge Q, through the Gell-Mann-Nakano-Nishijima relation [104, 105]

Q = T3 +
Y

2
,

S = Y −B ,
(B.1.1)

where the baryon number B = 1 for the meson-baryon scatterings. In Table B.1, all channels

of octet mesons and octet baryons are classified in terms of quantum numbers. The channels

with the same quantum numbers can couple each other.

In practical calculations, there is a small isospin violation effect when we use the physical

masses for the particles. Because we have not broken the isospin symmetry in the interaction

throughout this thesis (except for the photon couplings), isospin violation originates in the

masses of the particles. This effect is proportional to the mass difference of the isospin

multiplets, so that the effect is very small.

As an example, we consider the following process (S = −1, T3 = 0).

π0Λ(T = 1) → ηΛ(T = 0)
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B.1. Conservation of quantum numbers

Table B.1: Channels of meson-baryon scatterings in particle basis. In this work we calculate
the channels in (S = −1, Q = 0), (S = 0, Q = 0) and (S = 0, Q = 1).

Y S I3 Q channels
−2 −3 1 0 K̄0Ξ0

0 −1 K−Ξ0, K̄0Ξ−

−1 −2 K−Ξ−

−1 −2 3
2 1 π+Ξ0, K̄0Σ+

1
2 0 π0Ξ0, π+Ξ−, ηΞ0, K̄0Λ, K̄0Σ0, K−Σ+

−1
2 −1 π0Ξ−, π−Ξ0, ηΞ−, K−Λ, K−Σ0, K̄0Σ−

−3
2 −2 π−Ξ−, K−Σ−

0 −1 2 2 π+Σ+

1 1 K̄0p, π0Σ+, π+Σ0, π+Λ, ηΣ+, K+Ξ0

0 0 K−p, K̄0n, π0Λ, π0Σ0, ηΛ, ηΣ0, π+Σ−, π−Σ+, K+Ξ−, K0Ξ0

−1 −1 K−n, π0Σ−, π−Σ0, π−Λ, ηΣ−, K0Ξ−

−2 −2 π−Σ−

1 0 3
2 2 π+p, K+Σ+

1
2 1 π0p, π+n, ηp, K+Λ, K+Σ0, K0Σ+

−1
2 0 π0n, π−p, ηn, K0Λ, K0Σ0, K+Σ−

−3
2 −1 π−n, K0Σ−

2 1 1 2 K+p
0 1 K+n, K0p
−1 0 K0n

In the Weinberg-Tomozawa (WT) interaction (4.1.3) and the SU(3) breaking interaction (5.3.3),

direct coupling of these channels is zero, due to the isospin symmetry of Lagrangian. How-

ever, both π0Λ and ηΛ can couple to the K−p state, which is a linear combination of T = 0

and T = 1

K−p =
1√
2
K̄N(T = 0)− 1√

2
K̄N(T = 1) . (B.1.2)

In the same way, K̄0n and other channels which is a linear combination of T = 0 and T = 1

also couple to both π0Λ and ηΛ. Therefore, through the K̄N channel, the amplitude of the

process π0Λ → ηΛ is sum of the amplitudes

π0Λ → K−p → ηΛ

π0Λ → K̄0n → ηΛ
. (B.1.3)

When we adopt the Isospin averaged mass for the K̄N channels, these two amplitudes cancel

each other. If we adopt the physical masses for K−p and K̄0n, the sum does not vanish any

longer. The breaking effect is proportional to the mass difference of K−p and K̄0n, which is

very small.
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B.2. Particle basis and isospin basis

B.2 Particle basis and isospin basis

In Table B.1, we show the meson-baryon channels in particle basis. It is also useful to express

them in isospin basis using the SU(2) Clebsch-Gordan coefficients. We define particle basis

(P ) as

(P ) ≡




channel 1 in particle basis
channel 2 in particle basis

·
·
·
·
·




.

Here we choose the channels which can couple each other. Since these channels are specified by

Y and I3, there are several isospin multiplets among them, such as (K−p, K̄0n) and (π+Σ−,

π0Σ0, π−Σ+). Using the Clebsch-Gordan coefficients, we perform isospin combination and

the resulting channels are written in isospin basis (I)

(I) ≡




channel 1 with I1 in isospin basis
channel 2 with I1 in isospin basis

·
channel 1 with I2 in isospin basis
channel 2 with I2 in isospin basis

·
·




,

where Ii means each values of total isospin I. The numbers of the channels in (P ) and (I)

are the same. In Table B.2 the channels in isospin basis are shown.

Now we define the transformation matrix (Ω) between particle basis and isospin basis as

(I) ≡ (Ω) · (P ) , (P ) = (Ω)−1 · (I) .

The components of Ω is determined by the Clebsch-Gordan coefficients and suitable phase

conventions of the fields. Mathematically this is a transformation between bases of finite

dimension complex vector space, therefore, it is expressed by a unitary matrix in order to

conserve the norm of basis.

Ω−1 = Ω†

In practice, all elements of Ω are real numbers, so that it becomes orthogonal matrix Ω−1 =

Ωt, where t denotes transpose of matrices.
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B.2. Particle basis and isospin basis

Table B.2: Channels of meson-baryon scatterings in isospin basis. The number in the bracket
denotes the total isospin I.

Y S I3 Q channels
−2 −3 1 0 K̄Ξ(1)

0 −1 K̄Ξ(0), K̄Ξ(1)
−1 −2 K̄Ξ(1)

−1 −2 3
2 1 πΞ(3/2), K̄Σ(3/2)
1
2 0 πΞ(1/2), ηΞ(1/2), K̄Λ(1/2), K̄Σ(1/2), πΞ(3/2), K̄Σ(3/2)
−1

2 −1 πΞ(1/2), ηΞ(1/2), K̄Λ(1/2), K̄Σ(1/2), πΞ(3/2), K̄Σ(3/2)
−3

2 −2 πΞ(3/2), K̄Σ(3/2)
0 −1 2 2 πΣ(2)

1 1 K̄N(1), πΣ(1), πΛ(1), ηΣ(1), KΞ(1), πΣ(2)
0 0 K̄N(0), πΣ(0), ηΛ(0), KΞ(0), K̄N(1), πΣ(1), πΛ(1), ηΣ(1), KΞ(1), πΣ(2)
−1 −1 K̄N(1), πΣ(1), πΛ(1), ηΣ(1), KΞ(1), πΣ(2)
−2 −2 πΣ(2)

1 0 3
2 2 πN(3/2), KΣ(3/2)
1
2 1 πN(1/2), ηN(1/2), KΛ(1/2), KΣ(1/2), πN(3/2), KΣ(3/2)
−1

2 0 πN(1/2), ηN(1/2), KΛ(1/2), KΣ(1/2), πN(3/2), KΣ(3/2)
−3

2 −1 πN(3/2), KΣ(3/2)
2 1 1 2 KN(1)

0 1 KN(0), KN(1)
−1 0 KN(1)

Relation between a matrix M (for example, Cij coefficients or the T-matrix) in (P ) basis

and (I) basis is

¯(I) ·M I · (I) = ¯(P ) ·MP · (P )

= ¯(I) · (Ω) ·MP · (Ω)−1 · (I)

So we have relations

M I = (Ω) ·MP · (Ω)−1

MP = (Ω)−1 ·M I · (Ω)

In this way we can change basis for any matrices. The form of these basis and Ω are given

explicitly as follows.
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B.2. Particle basis and isospin basis

S = −1, T3 = 0

(P ) ≡




K−p
K̄0n
π0Λ
π0Σ0

ηΛ
ηΣ0

π+Σ−

π−Σ+

K+Ξ−

K0Ξ0




(I) ≡




K̄N(0)
πΣ(0)
ηΛ(0)
KΞ(0)
K̄N(1)
πΣ(1)
πΛ(1)
ηΣ(1)
KΞ(1)
πΣ(2)




(Ω) =




√
1
2

√
1
2 0 0 0 0 0 0 0 0

0 0 0 −
√

1
3 0 0 −

√
1
3 −

√
1
3 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 −
√

1
2 −

√
1
2

−
√

1
2

√
1
2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −
√

1
2

√
1
2 0 0

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 −
√

1
2

√
1
2

0 0 0 2√
6

0 0 −
√

1
6 −

√
1
6 0 0




S = 0, T3 = −1/2

(P ) ≡




π0n
π−p
ηn

K0Λ
K0Σ0

K+Σ−




(I) ≡




πN(1/2)
ηN(1/2)
KΛ(1/2)
KΣ(1/2)
πN(3/2)
KΣ(3/2)




(Ω) =




√
1
3 −

√
2
3 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0

0 0 0 0
√

1
3 −

√
2
3√

3
2

√
1
3 0 0 0 0

0 0 0 0
√

3
2

√
1
3



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Appendix C

Coefficients of the interactions

We summarize the coefficients of meson-baryon vertex obtained from the Lagrangian of the

chiral perturbation theory. Here we show the coefficients of the Weinberg-Tomozawa (WT)

terms, flavor SU(3) breaking terms and the photon coupling terms in the meson-baryon

interactions. Tables of specific channels which we have used in this thesis are presented.

C.1 Lagrangian and coefficients

We use the following terms in the Lagrangian of the chiral perturbation theory

L(B)
1 =Tr

(
B̄(i/D −M0)B −D(B̄γµγ5{Aµ, B})− F (B̄γµγ5[Aµ, B])

)
,

LSB =− Z0

2
Tr

(
dmB̄{ξmξ + ξ†mξ†, B}+ fmB̄[ξmξ + ξ†mξ†, B]

)

− Z1

2
Tr(B̄B)Tr(mU + U †m) ,

LMB
(γ) =e

σ × q
2Mp

· ε
(
− i

2
bD
6 Tr

(
B̄

{
(ξ†Qξ + ξQξ†), B

})
− i

2
bF
6 Tr

(
B̄

[
(ξ†Qξ + ξQξ†), B

]))
.

The terms corresponding to the meson-baryon scattering are given by

LWT =
1

4f2
Tr

(
B̄iγµ [(Φ∂µΦ− ∂µΦΦ), B]

)
,

L(2)
SB =

Z0

4f2
Tr

(
dmB̄

{
(2ΦmΦ + Φ2m + mΦ2), B

}
+ fmB̄

[
(2ΦmΦ + Φ2m + mΦ2), B

])

+
Z1

f2
Tr(B̄B)Tr(mΦ2) ,

LMMBBγ =− e
σ × q
2Mp

· ε i

4f2
Tr

(
bD
6 B̄

{
(2ΦQΦ− Φ2Q−QΦ2), B

}

+ bF
6 B̄

[
(2ΦQΦ− Φ2Q−QΦ2), B

])
.
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C.1. Lagrangian and coefficients

Table C.1: DZ1
i .

meson π K, K̄ η

DZ1
i 2m̂ m̂ + ms

2
3(m̂ + 2ms)

From these terms, the basic interaction at the tree level is given by

V
(WT )
ij =− Cij

4f2
ūi(pi)(/ki + /kj)uj(pj) , (C.1.1)

V
(SB)
ij =− 1

f2

[
Z0

(
(Ad

ijdm + Af
ijfm)m̂ + (Bd

ijdm + Bf
ijfm)ms

)

+ Z1δijD
Z1
i

]
ūi(pi)uj(pj) , (C.1.2)

V MMBBγ
ij =ie

σ × q
2Mp

· ε 1
2f2

[Xijb
D
6 + Yijb

F
6 ]ūi(pi)uj(pj) . (C.1.3)

where the coefficients C, A, B, D, X and Y are the numbers in matrix form and the indices

(i, j) denote the channels of the meson-baryon scatterings as shown in Table B.1.

The coefficient DZ1
i is specified only by the meson in channel i independently of baryons,

because Tr(B̄B) in the last term of Eq. (C.1.2) gives a common contribution to all baryons.

Also, there is no off-diagonal component when the isospin symmetry is assumed. The explicit

form of DZ1
i is shown in Table C.1.

The values of the coefficients C (WT interactions) are shown in the following tables;

• Table C.3 (S = 0 Isospin basis)

• Table C.4 (S = 0, Q = 0)

• Table C.5 (S = 0, Q = 1)

• Table C.6 (S = −1 Isospin basis)

• Table C.7 (S = 0, Q = 0).

The values of the coefficients A and B (Flavor SU(3) breaking interactions) are shown in

the following tables;

• Tables C.8 and C.9 (S = 0, Q = 0)

• Tables C.10,C.11, C.12 and C.13 (S = −1, Q = 0).

The values of the coefficients X and Y (photon coupling interactions) are shown in the

following tables;

• Table C.14 (S = 0, Q = 0)
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C.2. Relations among coefficients

Table C.2: Quantum numbers of channels i, j, i′ and j′

channel hypercharge third component of isospin
meson baryon total meson baryon total

i yi Y − yi Y i3i I3 − i3i I3

j yj Y − yj Y i3j I3 − i3j I3

i′ −yi −Y + yi −Y −i3i −I3 + i3i −I3

j′ −yj −Y + yj −Y −i3j −I3 + i3j −I3

• Table C.15 (S = 0, Q = 1)

• Tables C.16 and C.17 (S = −1, Q = 0).

C.2 Relations among coefficients

There are two symmetry relations among coefficients. Using these relations, we can derive

the coefficients which are not shown in the tables.

First, the channels, which have the same strangeness S and different charge Q, are related

through the SU(2) Clebsch-Gordan coefficients due to the isospin symmetry. This relation

is valid for the WT interactions and the SU(3) breaking interactions because they do not

break the isospin symmetry. This is the relation among the channels in the block separated

by the horizontal lines in Table B.1.

Second, the coefficients of the sector (Y, I3) are related with those of (−Y,−I3). Let us

consider the channels (i, j) and (i′, j′) in the sectors (Y, I3) and (−Y,−I3), respectively, as

shown in Table C.2. Then the coefficients of the sector (−Y,−I3) are given by

Ci′j′(−Y,−I3) = Cij(Y, I3) ,

Ad
i′j′(−Y,−I3) = Ad

ij(Y, I3) , Af
i′j′(−Y,−I3) = −Af

ij(Y, I3) ,

Bd
i′j′(−Y,−I3) = Bd

ij(Y, I3) , Bf
i′j′(−Y,−I3) = −Bf

ij(Y, I3) ,

Xi′j′(−Y,−I3) = Xij(Y, I3) , Yi′j′(−Y,−I3) = −Yij(Y, I3) .

(C.2.1)

Also, using the relation (C.2.1), the coefficients of the sector (S = −2, Q = 0) are obtained

from the tables of the sector (S = 0, Q = 0). For example, if we specify (i, j) to be (π0n,K0Λ),

the corresponding (i′, j′) is (π0Ξ0, K̄0Λ). The coefficients for (i′, j′) are obtained by Ad
i′j′ =√

3/8, Af
i′j′ = −3

√
3/8, Bd

i′j′ = 1/(8
√

3) and Bf
i′j′ = −√3/8.
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C.2. Relations among coefficients

S = 0 I = 1
2 I = 3

2
πN ηN KΛ KΣ πN KΣ

I = 1
2 πN 2 0 3

2
1
2

ηN 0 −3
2

3
2

KΛ 0 0
KΣ 2

I = 3
2 πN −1 −1

KΣ −1

Table C.3: Cij(S = 0) Isospin basis

I3 = −1/2 π0n π−p ηn K0Λ K0Σ0 K+Σ−

π0n 0 −√2 0
√

3
2 −1

2 − 1√
2

π−p 1 0 −
√

3
2 − 1√

2
0

ηn 0 −3
2

√
3

2 −
√

3
2

K0Λ 0 0 0
K0Σ0 0 −√2
K+Σ− 1

Table C.4: Cij(S = 0, Q = 0) Particle basis

I3 = 1/2 π0p π+n ηp K+Λ K+Σ0 K0Σ+

π0p 0
√

2 0 −
√

3
2 −1

2
1√
2

π+n 1 0 −
√

3
2

1√
2

0

ηp 0 −3
2 −

√
3

2 −
√

3
2

K+Λ 0 0 0
K+Σ0 0

√
2

K0Σ+ 1

Table C.5: Cij(S = 0, Q = 1) Particle basis
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C.2. Relations among coefficients

S = −1 I = 0 I = 1 I = 2
K̄N πΣ ηΛ KΞ K̄N πΣ πΛ ηΣ KΞ πΣ

I = 0 K̄N 3 −
√

3
2

3√
2

0

πΣ 4 0
√

3
2

ηΛ 0 − 3√
2

KΞ 3

I = 1 K̄N 1 −1 −
√

3
2 −

√
3
2 0

πΣ 2 0 0 1

πΛ 0 0 −
√

3
2

ηΣ 0 −
√

3
2

KΞ 1
I = 2 πΣ −2

Table C.6: Cij(S = −1) Isospin basis

I3 = 0 K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 2 1
√

3
2

1
2

3
2

√
3

2 0 1 0 0
K̄0n 2 −

√
3

2
1
2

3
2 −

√
3

2 1 0 0 0
π0Λ 0 0 0 0 0 0

√
3

2 −
√

3
2

π0Σ0 0 0 0 2 2 1
2

1
2

ηΛ 0 0 0 0 3
2

3
2

ηΣ0 0 0 0
√

3
2 −

√
3

2
π+Σ− 2 0 1 0
π−Σ+ 2 0 1
K+Ξ− 2 1
K0Ξ0 2

Table C.7: Cij(S = −1, Q = 0) Particle basis
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C.2. Relations among coefficients

Ad
ij Af

ij

I3 = −1/2 π0n π−p ηn K0Λ K0Σ0 K+Σ− π0n π−p ηn K0Λ K0Σ0 K+Σ−

π0n 1 0 − 1√
3

√
3

8
3
8

3
4
√

2
1 0 − 1√

3
3
√

3
8 −3

8 − 3
4
√

2

π−p 1
√

2
3 −

√
6

8
3

4
√

2
0 1

√
2
3 −3

√
6

8 − 3
4
√

2
0

ηn 1
3 − 1

24 − 1
8
√

3
1

4
√

6
1
3 −1

8
1

8
√

3
− 1

4
√

6

K0Λ 5
6 − 1

2
√

3
1√
6

0 0 0
K0Σ0 1

2 0 0 1√
2

K+Σ− 1
2 −1

2

Table C.8: Ad
ij and Af

ij(S = 0, Q = 0)

Bd
ij Bf

ij

I3 = −1/2 π0n π−p ηn K0Λ K0Σ0 K+Σ− π0n π−p ηn K0Λ K0Σ0 K+Σ−

π0n 0 0 0 1
8
√

3
1
8

1
4
√

2
0 0 0

√
3

8 −1
8 − 1

4
√

2

π−p 0 0 − 1
4
√

6
1

4
√

2
0 0 0 −

√
6

8 − 1
4
√

2
0

ηn 4
3

5
24

5
8
√

3
− 5

4
√

6
−4

3
5
8 − 5

8
√

3
5

4
√

6

K0Λ 5
6 − 1

2
√

3
1√
6

0 0 0
K0Σ0 1

2 0 0 1√
2

K+Σ− 1
2 −1

2

Table C.9: Bd
ij and Bf

ij(S = 0, Q = 0)

I3 = 0 K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 1 1
2 −

√
3

8
3
8 − 1

24
1

8
√

3
0 3

4 0 0

K̄0n 1
√

3
8

3
8 − 1

24 − 1
8
√

3
3
4 0 0 0

π0Λ 2
3 0 0 2

3 0 0 −
√

3
8

√
3

8
π0Σ0 2 2

3 0 0 0 3
8

3
8

ηΛ 2
9 0 2

3
2
3 − 1

24 − 1
24

ηΣ0 2
3 0 0 1

8
√

3
− 1

8
√

3

π+Σ− 2 0 3
4 0

π−Σ+ 2 0 3
4

K+Ξ− 1 1
2

K0Ξ0 1

Table C.10: Ad
ij(S = −1, Q = 0)
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C.2. Relations among coefficients

I3 = 0 K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 0 1
2 −3

√
3

8 −3
8 −1

8 − 1
8
√

3
0 −3

4 0 0

K̄0n 0 3
√

3
8 −3

8 −1
8

1
8
√

3
−3

4 0 0 0

π0Λ 0 0 0 0 0 0 3
√

3
8 −3

√
3

8
π0Σ0 0 0 0 0 0 3

8
3
8

ηΛ 0 0 0 0 1
8

1
8

ηΣ0 0 2√
3

− 2√
3

1
8
√

3
− 1

8
√

3

π+Σ− 0 0 3
4 0

π−Σ+ 0 0 3
4

K+Ξ− 0 −1
2

K0Ξ0 0

Table C.11: Af
ij(S = −1, Q = 0)

I3 = 0 K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 1 1
2 − 1

8
√

3
1
8

5
24 − 5

8
√

3
0 1

4 0 0
K̄0n 1 1

8
√

3
1
8

5
24

5
8
√

3
1
4 0 0 0

π0Λ 0 0 0 0 0 0 − 1
8
√

3
1

8
√

3

π0Σ0 0 0 0 0 0 1
8

1
8

ηΛ 16
9 0 0 0 5

24
5
24

ηΣ0 0 0 0 − 5
8
√

3
5

8
√

3

π+Σ− 0 0 1
4 0

π−Σ+ 0 0 1
4

K+Ξ− 1 1
2

K0Ξ0 1

Table C.12: Bd
ij(S = −1, Q = 0)

I3 = 0 K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 0 1
2 −

√
3

8 −1
8

5
8

5
8
√

3
0 −1

4 0 0

K̄0n 0
√

3
8 −1

8
5
8 − 5

8
√

3
−1

4 0 0 0

π0Λ 0 0 0 0 0 0
√

3
8 −

√
3

8
π0Σ0 0 0 0 0 0 1

8
1
8

ηΛ 0 0 0 0 −5
8 −5

8
ηΣ0 0 0 0 − 5

8
√

3
5

8
√

3

π+Σ− 0 0 1
4 0

π−Σ+ 0 0 1
4

K+Ξ− 0 −1
2

K0Ξ0 0

Table C.13: Bf
ij(S = −1, Q = 0)
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C.2. Relations among coefficients

Xij Yij

I3 = −1/2 π0n π−p ηn K0Λ K0Σ0 K+Σ− π0n π−p ηn K0Λ K0Σ0 K+Σ−

π0n 0 1√
2

0 0 0 1
2
√

2
0 1√

2
0 0 0 − 1

2
√

2

π−p −1 0 1
2
√

6
− 1

2
√

2
0 −1 0

√
6

4
1

2
√

2
0

ηn 0 0 0
√

6
4 0 0 0 −

√
6

4
K0Λ 0 0 − 1√

6
0 0 0

K0Σ0 0 0 0 − 1√
2

K+Σ− −1 1

Table C.14: Xij , Yij(S = 0, Q = 0)

Xij Yij

I3 = 1/2 π0p π+n ηp K+Λ K+Σ0 K0Σ+ π0p π+n ηp K+Λ K+Σ0 K0Σ+

π0p 0 1√
2

0 − 1
4
√

3
1
4 0 0 1√

2
0 −

√
3

4 −1
4 0

π+n 1 0 − 1√
6

− 1√
2

0 1 0 −
√

3
2

1√
2

0

ηp 0 −1
4

√
3

4 0 0 −3
4 −

√
3

4 0
K+Λ 1 − 1√

3
− 1√

6
0 0 0

K+Σ0 −1 0 0 1√
2

K0Σ+ 0 0

Table C.15: Xij , Yij(S = 0, Q = 1)
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C.2. Relations among coefficients

I3 = 0 K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p 0 −1
2 − 1

4
√

3
1
4 −1

4
3

4
√

3
0 1 0 0

K̄0n 0 0 0 0 0 −1
2 0 0 0

π0Λ 0 0 0 0 1√
3

1√
3

− 1
4
√

3
0

π0Σ0 0 0 0 0 0 1
4 0

ηΛ 0 0 0 0 −1
4 0

ηΣ0 0 0 0 3
4
√

3
0

π+Σ− 0 0 1 0
π−Σ+ 0 0 −1

2
K+Ξ− 0 −1

2
K0Ξ0 0

Table C.16: Xij(S = −1, Q = 0)

I3 = 0 K−p K̄0n π0Λ π0Σ0 ηΛ ηΣ0 π+Σ− π−Σ+ K+Ξ− K0Ξ0

K−p −2 −1
2 − 3

4
√

3
−1

4 −3
4 − 3

4
√

3
0 −1 0 0

K̄0n 0 0 0 0 0 1
2 0 0 0

π0Λ 0 0 0 0 0 0 3
4
√

3
0

π0Σ0 0 0 0 1 −1 1
4 0

ηΛ 0 0 0 0 3
4 0

ηΣ0 0 0 0 3
4
√

3
0

π+Σ− 2 0 1 0
π−Σ+ −2 0 −1

2
K+Ξ− 2 1

2
K0Ξ0 0

Table C.17: Yij(S = −1, Q = 0)
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