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Abstract

We study s wave meson-baryon scatterings using the chiral unitary model and investigate
properties of excited baryons which appear as resonances. In the chiral unitary model, we
sum up non-perturbatively the interactions of the chiral perturbation theory, which is one
of the effective theories of QCD respecting chiral symmetry, so that the model provides
a good description of hadron physics in low and intermediate energy region. Due to the
non-perturbative resummation, in s wave scatterings, 1/2~ baryon resonances are generated
dynamically, and they are regarded as quasibound states of the low lying mesons (7, K,7)
and baryons (N, A, X, E).

In this thesis, we first review the foundations of the model, chiral perturbation theory and
the method of unitarization. According to the previous works, the chiral unitary model has
two features. On one hand, the chiral unitary model needs several parameters whose origin
is not clear. On the other hand, with the use of proper parameters, the model is in excellent
agreement with experimental data. Therefore, we study theoretical aspects of the model and
apply it to the investigation of the resonance structure. We study flavor SU(3) breaking

effects and compute the magnetic moments of the baryon resonances.

In previous works of the chiral unitary model, the subtraction constants in loop integrals
largely depended on channels, where it was necessary to fit these constants to reproduce
the data. In order to extend this model to all channels with fewer parameters, we introduce
flavor SU(3) breaking interactions in the framework of chiral perturbation theory. It is found,
however, that the observed SU(3) breaking in meson-baryon scatterings cannot be explained
by the present SU(3) breaking interactions. The essential physics of the resonances seems to
lie in the subtraction constants.

As an application of the chiral unitary model, we calculate the magnetic moments of the
N (1535) resonance. So far, the magnetic moments of excited baryons have not been measured,
because they are unstable and decay quickly. However, with the recent developments of the
experimental technique, it is planned to extract the magnetic moments of N(1535) from
the reaction yp — ynp at LNS (Tohoku) and MAMI (Mainz). In the chiral unitary model,
we calculate the diagrams in which a photon couples to N(1535), and extract the magnetic
moments without using explicit resonance fields. The results are p,« ~ +1.1uy and i« ~
—0.25uy, where ppy is the nuclear magneton. Physical origin of these numbers is briefly

discussed.

iii



Contents

1 Introduction
1.1 Chiral unitary model . . . . . . . . ... oL
1.2 Flavor SU(3) breaking effects . . . . . . ... ... ... ... .. ...
1.3 Magnetic moments of the baryon resonances . . . . . . . ... ... ... ...

1.4 Organization of this thesis . . . . . . . ... .. ... .. 0.

2 Chiral perturbation theory
2.1 Chiral symmetry . . . . . . ..
2.1.1  Chiral symmetry of QCD Lagrangian . . . . .. ... ... ... ...
2.1.2  Spontaneous chiral symmetry breaking . . . . . .. .. ... ... ...
2.2 Effective field theory . . . . . . . .. oo
2.3 Nonlinear realization of chiral symmetry . . . . . . ... ... ... ... ..
2.3.1 Commutation relations of generators . . . . . . .. .. ... ......
2.3.2 Standard transformation . . . . . .. ..o L oL
2.4 Chiral perturbation theory of mesons . . . . . . .. ... ... ... ......
2.5 External fields and local chiral transformation . . . . . . . .. ... ... ...
2.6 Chiral perturbation theory of mesons and baryons . . . ... ... ... ...
2.6.1 Difficulties of treating baryons in chiral perturbation theory . . . . . .
2.6.2 Chiral counting rule for baryons . . . ... ... ... .. ... ... .
2.6.3 Chiral Lagrangian of mesons and baryons . . . .. .. ... ... ...

2.6.4 Heavy baryon chiral perturbation theory . . . . . . ... .. ... ...

3 Unitarization and the analytic structure of the T-matrix
3.1 Unitarity of S-matrix . . . . . . . .. L Lo
3.2 Singularities of the scattering amplitudes . . . . . .. .. .. ... ... ...
3.2.1 Branch point and branchcut . . . . . ... ... ... .........
3.2.2 Unitarity cut . . . .. .. Lo
3.2.3 Unphysical cut . . .. .. .. .. .

iv

T = Wy =

© 0o oo

10
11
11
13
16
19
21
22
23
24
25



Contents

3.2.4 Kinematical singularities . . . . . . . ... ... . L 0oL 31
3.3 N/D method for meson-baryon scatterings . . . . . .. ... ... ... .... 32
3.4 Scattering amplitudes in the complex plane . . . . . ... .. ... ...... 36
3.4.1 Loop function on the scattering line . . . ... ... ... ... .... 37
3.4.2 Loop function in the complex plane . . . .. ... .. ... ... ... 39
Chiral unitary model 44
4.1 Formulation . . . . . . . ... 44
4.2 Calculation with a common subtraction constant . . . . . .. ... ... ... 46
4.2.1 The S = —1 channel (KN scattering) . . . .. ............. 47
422 The S =0 channel (7N scattering) . . . . ... .. ... ... ..... 49
4.3 Resonance in the scattering amplitude . . . . . . . ... ... o000 51
Flavor SU(3) breaking effects in the chiral unitary model 55
5.1 Flavor SU(3) breaking terms in the chiral Lagrangian . . . . .. ... .. .. 55
5.2 Massrelations . . . . . ... 56
5.2.1 Mesons . . ... 56
5.2.2 Baryons . . . . .. 57
5.3 Flavor SU(3) breaking interactions . . . . . . . ... ... ... ... ... .. 58
53.1 The S=—1channel . .. ... ... ... ... ... ... ....... 59
53.2 The S=0channel . . . ... .. ... ... ... ... ... ... 61
Magnetic moments of the baryon resonances 63
6.1 Magnetic moments of the ground state baryons in ChPT . . . . . . . . .. .. 63
6.2 Formulation . . . . . . . ... 66
6.2.1 Photon coupling diagrams . . . . . . .. . ... ... oL, 66
6.2.2 Magnetic moments . . . . . ... Lo 69
6.3 The N(1535) resonance in the chiral unitary model . . . . . . . .. ... ... 70
6.4 Estimation of the magnetic moments . . . . . . .. .. ... ... ... .. 70
6.5 Effects of the XA transition . . . . .. .. ... ... ... ... . ...... 72
6.6 Results. . . . . . . . e 73
Summary 76
Kinematics and formulae 79
A1l Kinematics . . . . . . .. 79
A.2 Formulae of observables . . . . . . ... ... ... .. 80



Contents

B Classification of meson-baryon channels
B.1 Conservation of quantum numbers

B.2 Particle basis and isospin basis

C Coefficients of the interactions

C.1 Lagrangian and coefficients

C.2 Relations among coefficients

vi



List of Figures

1.1

1.2

1.3

2.1

2.2

3.1

3.2
3.3
3.4
3.5

3.6
3.7

Diagrammatic interpretation of dynamical generation of resonances. Solid,
dashed and double lines represent baryons mesons, and baryon resonance, re-
spectively. Summing the loops up to infinite order, we can generate a resonance
dynamically. . . . . . . . . L
Threshold energies of the meson-baryon scatterings in the S = —1 and S =0
channels. The dotted line in the middle represents the averaged energy of all
meson-baryon thresholds. . . . . .. .. .. . o oL oL

Feynman diagram from which we extract the magnetic moments of the reso-
nance. Solid, dashed, wavy and double lines represent baryons, mesons, photon
and baryon resonances, respectively. We consider the limit where the photon
has zero momentum. Note that this diagram contains not only the magnetic
moments but also electric parts. . . . . . .. . ... ... L.

A schematic diagram of coset decomposition of G. Here e is a unit element.
Since GG has an infinite number of elements, the ellipsis denotes an infinite
number of cosets, and the number of the representative n; is also infinite.

Schematic diagram of Eq. (2.3.12). A representative n transforms under go.

Diagrammatic interpretation of the optical theorem. Shaded bubbles denote
the T-matrix amplitude. The lines in channel k represent all possible interme-
diate states. . . . . . ..
Schwarz reflection principle and analytic continuation of the function f(x).
Unitarity and unphysical cuts of the T-matrix in the complex s plane.
Contour of the dispersion integral for D(s) in the complex s plane. . . . . . .
Contour of the dispersion integral for D(y/s) in the complex /s plane. The
radius of the enclosing circle is extended to infinity. . . . . . . . .. ... ...
Diagrammatic interpretation of Eq. (3.3.15). . . . . . . . ... ... ...

27

Riemann sheets and branches. The points 21 and zo = z1e“™ are mapped to

the different points w; = f(z1) and wy = f(2z2) . . . . . ... ... ... ..

vii

14
15



List of Figures

3.8

3.9

3.10

3.11
3.12

4.1

4.2

4.3

4.4

4.5

Real and imaginary parts of the loop function on the scattering line. Here we
plot the loop function of the # N channel. . . . .. ... ... ... ......
Real and imaginary parts of the G(z) function. Here we plot the loop function
of the mIN channel. White line in the figure denotes the values on the scattering
line (real axis). . . . . . . . .
Real and imaginary parts of the G(z) function. Here we plot the loop function
of the wIN channel. White line in the figure denotes the values on the scattering

line (real axis). . . . . . . ... ..
Diagrammatic expression of the definition of Gpope. . . . . . . . . . . ... L.

Real and imaginary parts of the Gpye(z) function. Here we plot the loop
function of the 7N channel. White line in the figure denotes the values on the

scattering line (real axis). . . . . . . . . . ...

Definition of the momentum variables. Dashed and solid lines represent mesons
and baryons, respectively. . . . . . ...

Total cross sections of K~ p scatterings (S = —1) as functions of Py, the
three-momentum of initial K~ in the laboratory frame. Dotted lines show the
results with the channel dependent a;, solid lines show the results with the
common a = —1.96, and dash-dotted lines show the results with the common
a = —2.6. Open circles with error bars are experimental data taken from
Refs. [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71]. . . . .. ... ...
Real and imaginary parts of the T-matrix amplitude of KN — KN with
I =0 (a,b) and mass distributions of the 73 channel with I = 0 (c). Dotted
lines show the results with the channel dependent a;, solid lines show the
results with the common a = —1.96, and dash-dotted lines show the results
with the common a = —2.6. Open circles and histogram are experimental data
taken from Ref. [72, 73]. . . . . . ...

Total cross sections of 7~ p scatterings (S = 0) as functions of Py, the three-
momentum of initial 7~ in the laboratory frame. Dotted lines show the results
with channel dependent a;, dash-dotted lines show the results with the common
a = —1.96, obtained in S = —1, and solid lines show the results with the
common a = 0.53. Open circles with error bars are experimental data taken
from Refs. [74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,

Real and imaginary parts of the S;; T-matrix amplitudes of 7N — 7N (I =
1/2). Dotted lines show the results with channel dependent a;, dash-dotted
lines show the results with the common ¢ = —1.96, same as the S = —1
channel. Solid lines show the results with the common a = 0.53. Open circles
with error bars are experimental data taken from Refs. [94]. . . . . . .. . ..

viii

49



List of Figures

4.6

4.7

5.1

5.2

5.3

5.4

6.1

6.2

Poles in the complex z plane. Here we plot the absolute value of the T-matrix
amplitudes of KN — KN with I =0. . . ... ... ... ... ........

Poles in the complex z plane. Here we plot the absolute value of the T-matrix
amplitude of TN — 7N with I =1/2. . . . ... . ... ... . .......

Total cross sections of K~ p scatterings (S = —1) as functions of P, the
three-momentum of initial K~ in the laboratory frame. Dotted lines show
the results with the common a = —1.96, dash-dotted lines show the results
including the SU(3) breaking with the common a = —1.59, and solid lines
show the results including the SU(3) breaking and the physical f with the
common a = —1.68. Open circles with error bars are experimental data taken
from Refs. [58, 59, 60, 61, 62, 63, 64, 65, 67, 68, 66, 69, 70, 71]. . . . . . ...
Real and imaginary parts of the T-matrix amplitude of KN — KN with
I =0 (a,b) and mass distributions of the 7% channel with I = 0 (c). Dotted
lines show the results with the common a = —1.96, dash-dotted lines show
the results including the SU(3) breaking with the common a = —1.59, and
solid lines show the results including the SU(3) breaking and the physical f
with the common a = —1.68. Open circles are experimental data taken from
Ref. [T2, 73], . . o

Total cross sections of 7~ p scatterings (S = 0) as functions of Py, the three-
momentum of initial 7~ in the laboratory frame. Dotted lines show the results
with the common a = 0.53, dash-dotted lines show the results including the
SU(3) breaking interaction with the common a = 1.33, and solid lines show
the results including the SU(3) breaking and the physical f with the common
a = 2.24. Open circles with error bars are experimental data taken from

Refs. [74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93]. 62

Real and imaginary parts of the S1; T-matrix amplitudes of 7N — 7w N. Dotted
lines show the results with the common a = 0.53, dash-dotted lines show the
results including the SU(3) breaking interaction with the common a = 1.33,
and solid lines show the results including the SU(3) breaking and the physical
f with the common a = 2.24. Open circles with error bars are experimental
data taken from Refs. [94]. . . . . . . .. .. L o L

Electromagnetic vertex for a fermion. Solid and wave lines represent fermions
and photon. . . . . . . .. e
Feynman diagrams of Tj;(y/s) and —it;;(v/s). In calculating —it;;(\/s), we
consider the diagrams which contribute to the magnetic moments, and extract
a factor in order to make the coupling of resonance to photon to be magnetic

moment in units of the nuclear magneton. . . . . . . ... ... ... .....

ix



List of Figures

6.3

6.4

6.5

6.6

Al

A2

Photon coupling diagram in —it;;(y/s). We consider that there are meson-
baryon loops on the left and right sides of these vertices. . . . . . .. ... ..
Diagrams of off-diagonal components in G including X°A transition. Upper

diagram corresponds to S = 0 channel and lower diagrams correspond to
S=—1channel. . . ... ...
Effects of X°A transition. we plot the N = —it;;(1/s) amplitudes of 7N —
aN(I =1/2)in S =0and KN — KN(I =0) in S = —1 with and without
the XOA transition. . . . . . . . .. ...
Magnetic moments on the real axis. We plot the T-matrix amplitudes N =
—it;;(v/s) and D = —%\/gtij(\/g), and the magnetic moments p = [N/D] and
@ = [N]/[D] in units of the nuclear magneton. . . . . . . . ... ... ... ..

Definition of the momentum variables. Dashed and solid lines represent mesons
and baryons, respectively. . . . .. ... L oL
Three momentum of the initial meson in the laboratory frame Pjg(+/s). Here
we show the KN and wN scatterings. . . . .. .. ... .. .. ........



List of Tables

4.1

4.2

4.3

4.4

5.1

6.1

6.2

6.3

6.4

Channel dependent subtraction constants a; used in Refs. [19, 20] with the
regularization scale p = 630 MeV. For the S = 0 channel, although the original
values of a; are shown with 4 = 1200 MeV, here we show the values of a;

corresponding to p = 630 MeV by using the relation a(y') = a(p) + 21In(y'/p).

Threshold branching ratios calculated with the channel dependent a;, the com-
mon a = —1.96 and the common a = —2.6. The experimental values are take
from Refs. [58,59]. . . . . . ..

Coupling strengths of the A(1405) and A(1670) resonances to meson-baryon
channels. All channels are in I = 0. Around the A(1405) resonance, there are
two poles z; and 2o (4.3.5). . . ...

Coupling strengths of the N(1535) resonance to meson-baryon channels. All
channelsare in I =1/2. . . . . . . ...

Threshold branching ratios calculated with common ¢ = —1.96, a = —1.59
with the SU(3) breaking interaction, and a = —1.68 with the SU(3) breaking
interaction using the physical meson decay constants. The experimental values
are take from Refs. [58, 59]. . . . . . . ... oo

The magnetic moments of the ground state baryons. The left column of gy
are extracted from the tree graph with the term (6.1.6), and the values in the
right column of ju, are obtained with the parameters in Eq. (6.1.8). fiexp are
experimental data taken from Ref. [99] . . . . . .. ... ... ..o
Coupling strengths of the N(1535) resonance to meson-baryon channels with
physical meson decay constants. All channels arein I =1/2. ... ... ...

Coupling strengths of the A(1405) and A(1670) resonances to meson-baryon
channels, with the parameter sets in Ref. [19, 28], where f = 1.123 x 93 MeV
isused. All channelsarein I =0.. . . .. ... ... ... ... ........
Magnetic moments on the real axis in units of the nuclear magneton. Re[N] gy
and Im[N] 2, represent the extreme value of real part and zero of imaginary
part, respectively. . . . . . .. L L.

xi

46

47

o4

54

60

65

70

72



6.5 The magnetic moments of the N(1535) resonance in units of the nuclear mag-

NEetON. . . . . . . e e e 75

B.1 Channels of meson-baryon scatterings in particle basis. In this work we calcu-
late the channelsin (S =-1,Q =0), (S=0,Q =0) and (S=0,Q=1).. .. 83

B.2 Channels of meson-baryon scatterings in isospin basis. The number in the

bracket denotes the total isospin I. . . . . . .. .. ... 0oL 85
C.l D 88
C.2 Quantum numbers of channels 7,7,7 and 7/ . . ... ... ... ... ... .. 89
C3 Cij(S=0)Isospin basis . . . . ... ... ... 90
C4 Cij(S=0,Q=0)Particlebasis . . . . ... ... .. .. ............ 90
Ch Cjj(S=0,Q=1) Particlebasis . . . .. ... .. ... ... ... ...... 90
C6 Cij(S=-1)Isospinbasis . . ... ... ... ... ... .. .......... 91
C7 Cij(S=-1,Q =0) Particle basis . . . .. ... .. .. ... ... ....... 91
C8 AL and AL(S=0,Q=0) . ... ... ... ... 92
CO9 BLand BL(S=0,Q=0) . ... ... ... ... .......... .. 92
CI0AL(S=—-1,Q=0) . . .. ... 92
CILAL(S=-1,Q=0). .. ... ... ... ... ... ....... 93
CI2BE(S==1,Q=0) . . . ... ... 93
CI3BL(S=-1,Q=0). . ... ... ... ... ... ............ 93
Cad X Yi(S=0,Q =0) o oo 94
CIb X Yii(S=0,Q =1) © oo ovee e 94
CA6 Xif(S=—1,Q=0) . ..o 95
CATY;(S==1,Q0=0) . . o oo 95

xii



Chapter 1

Introduction

Today we understand that the strong interaction is governed by quantum chromodynamics
(QCD), which is the color SU(3) gauge theory with quarks as fundamental fields and gluons as
gauge fields. Because QCD has non-Abelian symmetry, the gluons interact with themselves,
so that the running coupling constant of QCD behaves asymptotically free, according to
the renormalization group equations. Inversely, the coupling constant becomes large at low
energy region, where the perturbative calculation breaks down. In this non-perturbative
region, the fundamental degrees of freedom become mesons and baryons due to the color
confinement. We call these mesons and baryons together as hadrons, and the investigation of
the hadron dynamics at low energy region is of our interest. In order to study the behavior

of hadrons, we adopt effective field theories using the principle of symmetry.

Chiral symmetry of QCD plays an important role in low energy hadron physics [1]. Several
low energy theorems are derived from chiral symmetry and its spontaneous breaking. Origi-
nally, before the establishment of QCD, the notion of the chiral symmetry has been developed
in current algebra [2]. Being started with the Goldberger-Treiman relation [3], an idea of par-
tially conserved axial current (PCAC) were introduced. PCAC was later understood by the
spontaneous breaking of chiral symmetry, where pions appear as the Nambu-Goldstone (NG)
bosons of the broken generators. Consideration of the process with more than one pion, such
as mN scatterings, determines the commutation relations of the broken generators, so that
the broken symmetry group is specified as SU(2) x SU(2). One of the reasons that QCD is
accepted is that SU(2) x SU(2) can be interpreted as the results of small masses of u and d
quarks.

The chiral perturbation theory (ChPT) [4, 5, 6, 7, 8] is one of the low energy effective
theory of QCD respecting chiral symmetry, where mesons and baryons are the fundamental
degrees of freedom. It is based on the nonlinear realization of chiral symmetry, and the

spontaneous breakdown of the symmetry is assumed from the beginning. Advantages of this



1.1. Chiral unitary model
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Figure 1.1: Diagrammatic interpretation of dynamical generation of resonances. Solid, dashed
and double lines represent baryons mesons, and baryon resonance, respectively. Summing the
loops up to infinite order, we can generate a resonance dynamically.

theory are as follows. First, we can establish a power counting rule in terms of momenta
of the NG bosons. With this chiral counting rule, we can perform perturbative calculation,
which works well at low energy region. Second, the results of current algebra relations and
several mass formulae, such as Gell-Mann-Okubo mass relation, are easily derived from the
effective Lagrangian. Therefore, in order to study the low energy hadron dynamics, we adopt
the ChPT as the foundation.

1.1 Chiral unitary model

The study of meson-baryon scatterings in a unified way is important to understand hadron
dynamics at low and intermediate energy regions from the viewpoint of QCD. Especially the
properties of baryonic excited states observed in the meson-baryon scatterings as resonances
are investigated with great interest both theoretically and experimentally. So far, there are
several established approaches to describe the properties of the baryon resonances. A recent
development in this field has been made by the success of the chiral unitary model [9, 9, 11,
12, 13, 14], where 1/2~ baryon resonances are dynamically generated in s wave meson-baryon
scatterings (Fig. 1.1). In this formulation, we regard the resonances as quasibound states of
mesons and baryons, and one of the advantage of the chiral unitary model is the dynamical
generation, with which the information of the resonances such as masses, widths and the
couplings to meson-baryon channels is produced only from mesons and baryons. This point
differs from the explicit resonance approach [15, 16], where the resonance fields are introduced
in ChPT and the information of the resonances are inputted by hand. The meson-baryon
picture of resonances is also superior than the conventional quark model approach, where
the baryon resonances are described as three-quark states with an excitation of one of the
quarks [17, 18]. Experimentally, it is known that the excited baryons strongly couple to the
meson-baryon channels, which cannot be described by simple quark model. This important

feature implies the meson-baryon picture of resonances.

The chiral unitary model is based on the ChPT. Imposing the unitarity condition, the

ChPT can be extended to higher energy regions than in the original perturbative calculation.



1.2. Flavor SU(3) breaking effects

In this way, we can study properties of resonances generated by non-perturbative resum-
mations. In the implementation of the unitarity condition, regularization of loop integrals
brings parameters into this model, such as the three-momentum cut-off and the “subtraction

constants” in the dimensional regularization.

In Refs. [9, 13], the s wave scatterings of the meson and baryon systems with the strangeness
S = —1 were investigated by solving the Lippman-Schwinger equation in the coupled chan-
nels, where the A(1405) resonance was dynamically generated by the meson-baryon scatter-
ings. In the regularization procedure, parameters were introduced for the finite ranges in
the kernel potential [9], and for the three-momentum cut-off in the loop integral [13]. In
Refs. [19, 20, 21], they extended the chiral unitary approach to other strangeness channels
and obtained the baryonic resonances, A(1405), N(1535), A(1670),3(1620) and Z(1620), as
dynamically generated objects. They used the dimensional regularization scheme with chan-
nel dependent subtraction constants (a;). In particular, the subtraction constants in S = 0
depended significantly on channels, while as reported in Ref. [22], a common subtraction
constant was found in the S = —1 channel to reproduce the total cross sections of the K~ p

scattering as well as A(1405) properties.

Here, we would like to make two remarks on the chiral unitary model. On one hand, the
chiral unitary model needs channel dependent subtraction constants. However, their micro-
scopic origin is not clear. On the other hand, with the use of proper subtraction constants,
the chiral unitary model is very powerful to describe not only meson-baryon scatterings but
resonances. Based on these two remarks, we study the following two original works in this

thesis.

e Study of theoretical aspects : flavor SU(3) breaking effects

e Investigation of the resonance structure : magnetic moments of the baryon resonances

In sections 1.2 and 1.3, we present motivations and backgrounds of these studies in detail.

1.2 Flavor SU(3) breaking effects

In this work, we raise a question whether the channel dependence of the subtraction constants
could be dictated by the flavor SU(3) breaking effects of an underlying theory, or not. The
SU (3) breaking should have significant effects on observed quantities. This is expected from,
for instance, the large dependence of the threshold energies on the meson-baryon channels as
shown in Fig. 1.2. This is particularly the case for S = 0, where the lowest threshold energy

of the 7N channel deviates considerably from the mean value.

In order to study the above questions, we consider the following two cases;



1.3. Magnetic moments of the baryon resonances
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Figure 1.2: Threshold energies of the meson-baryon scatterings in the S = —1 and S = 0
channels. The dotted line in the middle represents the averaged energy of all meson-baryon
thresholds.

e We use a common subtraction constant for all scattering channels and see whether this

simplified calculation works or not (chapter 4).

e When this method does not work, we introduce the flavor SU(3) breaking effects in the

interaction kernel (chapter 5).

In this way, we expect that the free parameters in the previous works could be controlled
with suitable physics ground, which allows us to extend this model to other channels with
predictive power. In this work, we concentrate on the s wave scatterings, since the p wave

contribution to the total cross sections is shown to be small in the § = —1 channel in Ref. [23].

1.3 Magnetic moments of the baryon resonances

As an application of the chiral unitary model to investigation of the structure of resonances,
we calculate the magnetic moments of the N(1535) resonance. In general, it is not easy
to measure the magnetic moments of excited baryons experimentally, because they have
too short lifetimes for the spin precession measurements. However, with the recent devel-
opments of the experimental technique, several experiments are performed and planned.
Indeed, through the reaction 7p — y7*p, the measurements for the magnetic moments of
AT1(1232) have already been done in Refs. [24] and [25], although the result is not so precise,
Ua++ = 3.7 ~ T.5un, due to ambiguities of the reaction mechanism. In recent experiment [26]
the magnetic moments of A*(1232) are measured from yp — y7¥p, and further experiments
are planned at MAMI (Mainz). For N(1535), it is also planned to extract the magnetic
moments of the resonance from the reaction vp — ynp at LNS (Tohoku) and MAMI.

From theoretical point of view, calculation of the magnetic moments of N(1535) are done

in Ref. [27], where the constituent quark model is adopted. In the chiral unitary model, the
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Figure 1.3: Feynman diagram from which we extract the magnetic moments of the resonance.
Solid, dashed, wavy and double lines represent baryons, mesons, photon and baryon reso-
nances, respectively. We consider the limit where the photon has zero momentum. Note that
this diagram contains not only the magnetic moments but also electric parts.

magnetic moments of the A resonances are calculated in the S = —1 channel [28]. They com-
pute the diagrams in which a photon couples to resonance field (Fig. 1.3), and the magnetic
moments of the resonance are extracted. Here we follow the same procedure. The differences

from Ref. [28] are as follows.

e The N(1535) resonance is an isospin doublet, so that there are two components which

correspond to proton and neutron resonances.

e Because the N(1535) resonance carries isospin 1/2, the effect of the ground state X0A

transition becomes important, while this effect is almost negligible for the A resonances.

e We present a simple estimation of the magnetic moments based on meson-baryon picture

of resonances.

We study these points in detail, and compute the magnetic moments of N(1535) resonance in
the chiral unitary model. Compared with the results of the quark model [27] and the simple

estimation , we discuss the present results.

1.4 Organization of this thesis

Here we present the organization of this thesis. This thesis consists of two main parts, review
part (chapters 2 and 3) and research part (chapters 4, 5 and 6). In the review part, we show
the foundations of the model, chiral perturbation theory and the method of unitarization,
while original works and numerical results are presented in the research part.

In chapter 2, we present the formulation of the ChPT. We construct an effective La-
grangian, based on the spontaneous chiral symmetry breakdown. All the terms of chiral
Lagrangian, which will be used in later chapters are introduced. We then present the unita-
rization method in chapter 3. The analytic structure of the scattering amplitude are studied

and the unitarity condition of S-matrix is formulated in the N/D method. Performing ana-
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lytic continuation to the complex energy plane, we discuss the branches and Riemann sheets
of the scattering amplitudes.

In chapter 4, combining the interaction of the ChPT in chapter 2 and the unitarity condi-
tion in chapter 3, we formulate the chiral unitary model. The numerical calculation with a
common subtraction constant and comparison with the previous works are shown. We also
discuss how to extract the information of resonances from the scattering amplitude. In chap-
ter 5 we introduce the flavor SU(3) breaking terms of chiral Lagrangian. After deriving the
meson and baryon masses which satisfy the mass formulae, we formulate the chiral unitary
model with the SU(3) breaking effects. The contents of the chapters 4 and 5 are summarized
in Ref. [29]. Chapter 6 is devoted to the calculation of the magnetic moments of the N (1535)
resonance. We present an estimation of the magnetic moments, and the numerical results are
compared with the results obtained in Refs. [27] and [28].

In chapter 7 we discuss and summarize the results obtained in the chapters of research
part. The conclusion of this study and future plans are also presented. In Appendices, we

show various formulae in detail, which are useful in practical calculations.



Chapter 2

Chiral perturbation theory

In this chapter we construct the Lagrangian of the chiral perturbation theory (ChPT) for
meson and baryon systems. ChPT [4, 5, 6, 7] is a low energy effective field theory based on
the nonlinear realization of chiral symmetry of QCD. There are many excellent review papers
which deal with the ChPT [30, 31, 32, 33|, where various examples of applications of ChPT,
not only to the processes of the strong interactions but also to weak and electromagnetic
processes are presented. The main purpose of this chapter is to show the effective Lagrangian
that we will use in the calculations of the chiral unitary model in later chapters. Therefore, we
concentrate on the construction of the chiral Lagrangian and do not discuss the applications

in detail.

In the following, we first discuss the chiral symmetry of the QCD Lagrangian and its spon-
taneous breakdown. When a continuous symmetry is spontaneously broken, there appears
the Nambu-Goldstone (NG) bosons, whose number corresponds to the broken generators of
the symmetry. Then we present a guiding principle to construct effective Lagrangians. In
section 2.3, from general point of view, we show a method to construct nonlinear Lagrangians
for the system which has a global symmetry and its spontaneous breakdown. The standard
transformation low, which is unique up to the redefinition of the NG boson fields, are con-
structed explicitly. In section 2.4 we deal with the case of the flavor SU(3) QCD, where
SU(3)r, x SU(3)r breaks into SU(3)y. We construct an effective chiral Lagrangian for octet
mesons, which are the NG bosons of this case. Here we establish a counting rule, with which
we perform perturbative calculations. This is called chiral perturbation theory. We also
introduce the external fields into the effective Lagrangian, in the way consistent with the
underlying QCD. These external fields are used for later applications of the chiral unitary
model, namely, when introducing explicit SU(3) breaking effects and photon fields. Finally
we introduce the octet baryons into the chiral Lagrangian. Because of the large baryon

masses, we should reform the counting rule to include momenta of baryons.
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2.1 Chiral symmetry

In this section we review the chiral symmetry of N, flavor QCD and its spontaneous break-
down. Here we discuss the case of QCD with massless quarks, where the Lagrangian is
invariant under a global symmetry, which is called chiral symmetry. In real world, due to the
non-perturbative vacuum, chiral symmetry is spontaneously broken, which is accompanied
by the appearance of the NG bosons, such as pions. Furthermore, chiral symmetry holds only
approximately, because quarks have small but nonzero masses. Nevertheless, it is important
to discuss the low energy hadron physics respecting chiral symmetry, because the explicit
breaking effects are small, and we can neglect and treat them as perturbative collections.
Success of the low energy theorems and the current algebra also show the importance of the

chiral symmetry in low energy hadron physics [34].

2.1.1 Chiral symmetry of QCD Lagrangian
The Ny flavor QCD Lagrangian without quark masses is given by
1 L
Loop = =5 GG + §iv" Dyg, (2.1.1)
Gy = 0uAy — 0, A, +ig[Au, Ay), D=0, +igA,, A,=) T°A%
where ¢ is the quark field which is represented as a Ny component column vector, and
A, (a =1 ~ 8) the gluon fields, which are associated with the color SU(3) gauge symmetry

of QCD. In Eq. (2.1.1), T are the generators of the color SU(3) and g is the coupling constant
of QCD. We define the left-handed and right-handed quarks as

1
QL:PLq7 PL:§(1_75)7

: (2.1.2)
4r = Pra, Pr=5(1+7),
where the projection operators P, g have the properties
Pir=PLr, PLPR=0, Po+Pr=1. (2.1.3)
With ¢7, and ¢g, the Lagrangian (2.1.1) is written as
LOep = —%GWG“” + qriv" Duqr + Griv" Dyuqr (2.1.4)

In the Lagrangian (2.1.4), ¢q;, and gr do not interact with each other, which means that the
Lagrangian has a global symmetry U(Ny)r, x U(Ny)r. However, U(1)4 is broken by axial

anomaly at loop level, while U(1)y holds trivially as the quark number conservation. Except
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for these U (1) parts, we refer to the global SU(Ny)r, x SU(Ny)g as chiral symmetry of QCD.

Under chiral transformations, the quark fields transform as

qr — Lqp, L= et S SU(N )L
;0a 1a f (aZlNN%_1)7 (215)
qR—>RqR, RzezeRt ESU(Nf)R

where ¢ ;, are arbitrary real parameters and t* are the generators of SU(N¢). When we
consider the group G = SU(Ny)r, x SU(Ny)g, it is convenient to write an element of G in

two component form as
g=(RL),
gR:(Ra]-) ) gL:(laL)a

where we follow the notation in Ref. [1]. Note that R is an element of SU(Ny)g, while gg is

(2.1.6)

an element of SU(Ny), x SU(Nf)g. Then we define generators as
= (.0, 1= (0.6 (2.1.7)

where t* are the generators of SU(Ny). Then the commutation relations among t¢ and t%

are given by
(19, t0] = if g,
[th tR] = i/t | (2.1.8)
[th.thl =0,

where f9, are the structure constants of SU(Ny).

2.1.2 Spontaneous chiral symmetry breaking

In the previous subsection, the chiral symmetry is manifested among the field operators in
the Lagrangian (2.1.1). If an operator has a finite vacuum expectation value, which is not
invariant under chiral transformations, then the symmetry is spontaneously broken. If quark

condensate gq = Grqr, + Grqr has a finite vacuum expectation value v

(Olgrar + qrgrl0) = v , (2.1.9)
then under g = (R, L) € SU(3)r x SU(3)r, the expectation value transforms

(01qrar + qLarl0) % (0lgrRLar + qL L Rqr|0) | (2.1.10)

which is not invariant, because the parameters 9%7 r in L and R are arbitrary. In order
to consider the transformation which makes the expectation value invariant, we define the
generators 1§, and t9 as

th =t + 14 = (1)

(2.1.11)
14 =t% — 9 = (1%, —t%) .
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Then it turns out that the group SU(Ny)y, which is a subgroup of G generated by t{,,

SU(3)y 3 h =iy

— (eit‘)at“7 eiH{‘/t“)

preserves the symmetry, as we see

(0larar, + qLarl0) > (Olgre™ " ¥t g, + qre= 1"t ggl0) = v . (2.1.12)

In this way we see that the SU(N¢)r x SU(Ny)r symmetry is broken to the subgroup
SU(Ny)y. This is called spontaneous breaking of chiral symmetry, where the vacuum expec-
tation value breaks the symmetry of the Lagrangian. From Eq. (2.1.11), it is clear that the

commutation relations among t{, and t% are given by

(19 80] = it
(13, t%] = i f "t (2.1.13)
[t th] = i f 15 -

This relation is important for later sections.

When the symmetry is spontaneously broken, there is a theorem that the spectrum of
physical particles must contain one particle of zero mass and spin for each broken symme-
try [35]. These bosons are called the Nambu-Goldstone (NG) bosons. In the case of QCD
with two flavors (u and d), the NG bosons are three pions, while in the case of QCD with

three flavors (u, d and s), pions, kaons and eta are regarded as the NG bosons.

2.2 Effective field theory

An effective field theory well describes the low energy dynamics, using a phenomenological
Lagrangian determined by symmetry restrictions. The asymptotic fields in the effective
Lagrangian can be different from those of the fundamental theory, when we integrate out the
original degrees of freedom using the path integral formulation. The effects from the original
fields in the underlying theory are assumed to be included in the low energy constants of
the effective Lagrangian. In order to construct the effective Lagrangian, there is a guiding
principle [4, 36, 30];

For a given set of asymptotic states, perturbation theory with the most general
Lagrangian containing all terms allowed by the assumed symmetries will yield the
most general S-matrix elements consistent with analyticity, perturbative unitarity,

cluster decomposition and the assumed symmetries.

In order to construct the chiral Lagrangian, we adopt this principle in the following.

10
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2.3 Nonlinear realization of chiral symmetry

In this section, from general point of view, we construct an effective Lagrangian in terms of the
nonlinearly transforming NG bosons using the principle of symmetry. It is called nonlinear
realization of symmetry [2, 37, 38]. We consider a general system, where a global symmetry G
is broken spontaneously into a subgroup H C G. It is important that spontaneous symmetry
breaking of the system is already assumed from the beginning. We also assume that G and

H are compact, connected and semi-simple Lie groups.

Since we express a symmetry of certain system by a Lie group, in order to specify a rep-
resentation, we should define representation matrices for group elements D(g) and elements
of the representation space v, which are transformed by D(g). The meaning of the word
“linear” or “nonlinear” is related to the transformation low of the representation . When a
field v transforms

Ya Yy =D D(glasthy . (2.3.1)
b

a component of 1)/ is written by linear combination of the components of the original 1.
Hence, this is a linear representation of G. The QCD Lagrangian (2.1.1) is one of the
examples, where the quark fields linearly transform under SU(Ny) x SU(Ny).

Historically, the nonlinear representation (of chiral symmetry) is derived from the linear
representation through the nonlinear transformation. However, in order to construct the
nonlinear Lagrangians it is not necessary to start with linear Lagrangian, such as the linear
sigma model [2]. In the following, we discuss the nonlinear representations without using
linear representations, parametrizing the transformation low (2.3.1) using the NG boson

fields, which make it nonlinear.

2.3.1 Commutation relations of generators

First we briefly summarize several words of the group theory. Let us consider a Lie group G.
In some neighborhood of the identity, any element of GG is generated by a set of generators,
which satisfy commutation relations characterized by the structure constants of the group.
The space which spanned by the generators is called the Lie algebra. We can choose any set
of generators, as long as they span the Lie algebra. Once we specify the Lie group, associated
Lie algebra is determined uniquely. On the other hand, the Lie algebra only determines the
structure of the group in some neighborhood of the identity, and the global structure of the
group can not be determined by the Lie algebra. For instance, although O(N) and SO(N)
have the same generators, their global structures are different each other. In the following,

we denote the Lie group and its Lie algebra by G and G, respectively.

11
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Now we consider the symmetry G, which spontaneously breaks into the subgroup H. We
separate the generators of the group G into ‘unbroken generators’ S* € H and ‘broken

generators’ X € G — H;
(TG} ={S*cH,X €G- H},

where A=1--- ,dimG,a=1,--- ,dimH and a = dimH +1, - -- ,dimG. From the definition,
H is a group, so that H form closed algebra.
Orthonormality of generators are given by
be(TPTV) = %52’]’ , (2.3.2)
where 7% € G. In order to calculate trace, we may specify a representation of the group G
in matrix form. However, Eq. (2.3.2) is satisfied for any representations, once we specify the
basis of the Lie algebra. In abstract way, Eq. (2.3.2) means that Cartan metric g%/ should
be §% /2. The Cartan metric only depends on the structure constant of the Lie algebra, and
therefore, Eq. (2.3.2) does not depend on representations. From Eq. (2.3.2), normalizations
of S* and X% are

1 1
agfy — —saBb ayby _ ~sab
tr($°5%) = 56°%, tr(X"X") = 30", (233)
tr(S9XY) =0 .

Next we consider commutation relations of S and X. By definition, the subgroup H should
be closed in their operations. This means that commutators of generators should be expressed

by themselves.
(5%, 8% =if*8 57, (2.3.4)
where fAZ, are structure constants of G. From (2.3.4) and (2.3.3), we can derive
tr(SY[S”, X9]) =tr(S*SP X — §*X*5P)
—tr(S*SP X — §8 5 X9)
—=tr([S%, P X9)
=if* tr(S7X?)
=0.
Since [S¢, X %] is orthogonal to S, it is included in G — H.

H,G—H] CG—H (2.3.5)

Note that this result comes from only the orthonormal condition (2.3.3) and we did not use

any other assumptions here.

12
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In general, commutators among X are written as a linear combinations of S¢ and X [2];
(X XY =if* 87 +if* Xe. (2.3.6)
However, if the algebra is invariant under ‘Parity’ 7 for generators, which is defined by,

TY)=4+Y YeH
7:G—G
T(Y)=-Y YeG—-H

I

then commutators among X can be written as linear combinations of S¢,
G—-—H,G—H CH. (2.3.7)

In the case of chiral symmetry of N; flavor QCD, where G = SU(Ny)r, x SU(Ny)gr, H =
SU(N¢)v, ta~ X and ty ~ S, Eq. (2.3.7) is valid as shown in Eq. (2.1.13).

Hence the commutation relations among the generators are given as
[H,H] C H ,
H.G-HCG-H, (2.3.8)
G-H,G-H|CH.

It is worth noting that elements of GG, which are generated by ‘the broken generators’, do not

form a group because the generators are not closed when taking commutators.

2.3.2 Standard transformation

Here we consider to construct a nonlinear representation ), which becomes linear when

restricted to a given subgroup H. The representation 1 transforms under ¢ € G and h € H,
REN D(g)Y, D(g) : nonlinear (2.3.9)
w2 D(h)y, D(h) : linear ' a

In order to make such a representation, we parametrize the coset space using the NG boson

fields ¢, which also transforms nonlinearly under G. We will obtain a set of transformation

g / —
¢ = ¢'(9, )

where ¢/(g, ¢) is a nonlinear function of ¢, so the transformation low of ¢ is nonlinear. Explicit
transformation low of ¢ will be given later. In Eq. (2.3.10), although transformed ¢ is written
as a linear combination of original 1, their coefficients include ¢, so that the transformation

low becomes nonlinear. We refer to Eq. (2.3.10) as the standard transformation [37, 38]. It is

13
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Figure 2.1: A schematic diagram of coset decomposition of G. Here e is a unit element. Since
G has an infinite number of elements, the ellipsis denotes an infinite number of cosets, and
the number of the representative n; is also infinite.

shown that all the representations which satisfy the condition (2.3.9) can be made to have the
standard form (2.3.10) with suitable redefinition of the NG boson fields, for SU(2) x.SU(2) [39]
and for general case [37]. Physically, this means that the redefinition of the NG boson fields
does not change the on-shell S-matrix. It is called representation independence, first shown
in Ref. [40].

Now we formulate the standard transformation (2.3.10) explicitly. We consider the left
coset of the group G. Using the subgroup H, we can decompose the elements of G into left
cosets gH. A coset is obtained by multiplying an element of G to all the elements of H from
left. Then we pick a representative element n; from each coset gH. Using n;, any element
of G is written as g = n;h with h € H. This decomposition is schematically interpreted as
in Fig. 2.1. Regarding each coset H,n1H,noH, - - as an element, we define the coset space

G/H A)_If the subgroup H is an invariant subgroup of G, namely,
gHg '=H for Vge@, (2.3.11)

then G/H form a group. In the present case, from Eq. (2.3.5) we see that generators in H
do not commute with those in G — H, which means the H is not an invariant subalgebra,

subsequently, H is not an invariant subgroup. Therefore, G/H does not form a group.

Next we consider the transformation of a representative n under gy € G. When we act an

element gg for n, the image of n belongs to a coset n’H, such that (Fig. 2.2)

gon =n/(n,go)h(n, go) - (2.3.12)

In the present case H is generated by the generators S and G/H by the broken generators

A)The coset is a set of elements of the group, so that “an elements of the coset space” is also a set of elements
of the group. The representative is an element of the group.

14
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G

Figure 2.2: Schematic diagram of Eq. (2.3.12). A representative n transforms under gg.

X

n=e%Y, - X=) ¢.X,. (2.3.13)

a
h=e"S u-S= usS, . (2.3.14)
(0%

with real parameters ¢ and u. Now we identify the NG boson fields with the variables ¢,.
Then ¢ becomes a representation of G, so that it transforms under gy. Eq. (2.3.12) requires

Goei X = 1%/ (6.90) X i (9.90)S (2.3.15)

and we have a transformation low

6 ¢/ (6,90) , (2.3.16)

which satisfy Eq. (2.3.15), and is a nonlinear transformation of ¢. Simultaneously, we define

the transformation low of ¢ as

" <G D(e™ (9:90)5)y,
= D(h(¢,90))¢ (2.3.17)

which is also a nonlinear transformation due to the nonlinearity of the ¢ field. Eqgs. (2.3.16)
and (2.3.17) give the standard form of the nonlinear representation. Both of the transforma-
tions depend on the NG boson field ¢, through Eq. (2.3.15).

When we consider the transformation low under hg € H, hgn is written as

hon = 'Sl X (2.3.18)
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Using the formula of Baker-Campbell-Hausdorff

1 1
e e { X 4V 4 JIOV]+ GOX Y]+ XD+ ]
and Eq. (2.3.8), we obtain
hon = e Sl X = i/ Xiws — (it Xp (2.3.19)

Note that in general ¢’ is different from ¢. On the other hand, from Eq. (2.3.18) we have
hon = hoe**hy'hg . (2.3.20)
Comparing Egs. (2.3.19) with (2.3.20), we obtain
o X hoew'Xhal
hoe'? X = e Xpy | (2.3.21)

which is the transformation low of ¢ under hg, and is a special case of Eq. (2.3.15). We see that
h(n,go) = et (9:90) in Eq. (2.3.15) does not depend on ¢ here, therefore, the transformation

low of ¢ is linear. The transformation low for ¢ becomes
H
¢ = D(ho) , (2.3.22)

where hg does not depend on ¢. Since the nonlinearity of the transformation (2.3.17) comes

from the dependence of ¢, Eq. (2.3.22) gives a linear transformation.

2.4 Chiral perturbation theory of mesons

In this section we consider the QCD Lagrangian (2.1.1) with three flavors, where chiral
symmetry and its spontaneous breaking is denoted as SU(3)r x SU(3)r — SU(3)y. We
construct an effective Lagrangian of ChPT for pseudo scalar mesons of SU(3) octet, using
the standard transformation low for the NG bosons (2.3.15). In this case, the generators S

and X are

S~tf = (%1%, X ~t% = (%1%, a=1~38. (2.4.1)
Under go = (Ro, Lo) € G = SU(3)1, x SU(3)R, the transformation law of ¢ (2.3.15) is
(Ro, Lo)(exp{id-t}, exp{—ig-t}) = (expli' 1}, exp{—id/-t}) (exp{in' -t} explin'1}) . (2.4.2)
From each component, we obtain

Roexp{i¢ -t} = exp{i¢’ - t} exp{iv’ -t}

. (2.4.3)
Loexp{—i¢ -t} = exp{—i¢’ -t} exp{iu’ -t}

16
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We take conjugation of the lower equation,
Ryexp{i¢ -t} =exp {iqﬁ' . t} exp {iu' . t}
exp {i¢ -t} Ll =exp {—z’u’ . t} exp {id)’ : t} ‘

Multiplying both side of these equations each other, we obtain the transformation law of ¢

(2.4.4)

as
Roexp {2i¢ -t} L} = exp {2i¢ - 1} . (2.4.5)

The NG bosons which appear due to the spontaneously symmetry breaking are pseudo scalar

octet mesons. We assign these mesons for the field ¢ as

1 04 1 + +
° e ARG 1 7(T) 1 Ko
— a - - —_—
qﬁ-tw(I):ZE(b = s ﬁ”,j\/é” K2 . (2.4.6)
a=1 Kﬁ K —%T]

With proper normalization, we define the chiral fields U(®) and £(®) as

U(®) = exp {qu’ } L E(®) = exp { g f} U@) = (@), (2.47)

where f is a quantity of mass dimension, and will be identified with the meson decay con-

stant. From Egs. (2.4.4) and (2.4.5), U and ¢ satisfy the following transformation laws under
SU3)1 x SU3)r;

UBRULY, U'B LUR', (2.4.8)
¢ % h(®,90)1EL = RIEN(D, g0) (2.4.9)

where h(®, go) € H is defined as
h(®, go) = exp {iv/ (D, go) - t} (2.4.10)

The SU(3) matrix h(®, go) gives a nonlinear transformation under G because of the depen-

dence of ® field, which transforms nonlinearly.

In order to construct an effective Lagrangian, we organize the most general Lagrangian
with U(®) fields, following the principle in section 2.2. First we define a chiral counting rule,
which enables us to perform perturbative calculation in clear way. Since we consider the octet
mesons as the NG bosons, their masses are zero. This means that if the spatial momentum
of a meson p is small, we can also regard the four-momentum p, = (|p|, p) as small. This is
also valid when we introduce small explicit breakings of chiral symmetry, where mesons do

have masses, so that the four momentum of a meson is expressed as

pu = (vVm? + |p[?, p). (2.4.11)

17
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As long as the mass m is small, p, is also regarded as small. This point will be important
when we introduce baryons into ChPT.

In this way the Lagrangian is expanded in powers of momenta, or derivatives of meson
fields. At low energy region, where the momentum of each particle is small, lower order
terms should be dominant and we can neglect higher order terms. Chiral Lagrangian should
be invariant under chiral transformation (2.4.8), Lorentz transformation, charge conjugation,
parity and time reversal. Due to the Lorentz invariance, the Lagrangian contains even number

of derivatives
Lea(U) = L3(U) (24.12)
n

where 2n denotes the number of derivatives. Defining U as a quantity of order O(1), a term
with n derivative is counted as O(p™). In Eq. (2.4.12), the terms with n = 0 provide unity,
because of the unitarity of the field U. Therefore the lowest order Lagrangian consists of two
derivatives of U field and is uniquely given as

2
£y = fZTr(c‘)MUT(?“U) , (2.4.13)

which is of order O(p?). Another candidate
£ = om(UaUtuaruty (2.4.14)

seems to be allowed, however, it can be rewritten in the same form as Eq. (2.4.13) with
C = —f?/4, using the property of trace and the following formula (2.4.15). Since the chiral
field U is a unitary matrix, UTU = 1. Taking derivative of both side,

9, (UTU) =0
Ut U+UN-9,U=0
oUT-U=-U"-09,U. (2.4.15)

This formula is important to construct the chiral Lagrangian.
It is easy to show that Lagrangian (2.4.13) is invariant under SU(3)r x SU(3)r
f? o f? RO (RUL
ZTr(GMU 0'U) — —Tr(0,(LU'R")0"(RUL"))
= - Tr(L(8,U") - RTR(6"U) L")

= ZTr(auUTa“U).
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We see that the trace in Lagrangian (2.4.13) is essential to be invariant under SU(3)r x
SU(3)r. The factor f2/4 in Eq. (2.4.13) is fixed to provide the properly normalized kinetic

term for the NG bosons
0, 1_Zﬁq>+... oM 1+Z\/§(I)+...
/ f
f2

2 . _ 2
—"4 Tr(0,UT0U) _L4 Tr
2 .
=7 T [ 720,20°0 + -

= TH (0,80 ) + -

where the last line contains terms of even number of meson fields and derivatives. They
represent multimeson interactions with one coupling constant f. In the next order O(p*),

the most general Lagrangian contains three terms [5, 6, 7]

2
LY =Ly | Te(0,UT0*U) | + LaTr(0,UT0,U) T (0" U0 U)
+ Ly Te(9,UT0"Ud, U0 U)

(2.4.16)

where Ly, Ly and L3 are the low energy constants. Here we use Eq. (2.4.15) in order to omit
the terms which can be rewritten in the same form. The higher order Lagrangians are also

constructed in the same way.

2.5 External fields and local chiral transformation

In chapters 5 and 6, we introduce explicitly SU(3) breaking effects and couplings to the
photon field. Therefore we need to contain these effects in the Lagrangian. In order to
introduce them in the framework of ChPT, we extend the QCD Lagrangian (2.1.1) with the

inclusion of the external fields. The Lagrangian with external fields is given as
L3 = LOcp + T (v + 7 ap)q — @(s — ivsp)g, (2.5.1)

where the external fields v,,a,,s and p are vector current, axial vector current, scalar and

pseudo scalar field, respectively. For convenience, we define [/, and 7, as
ly=vy—au, Tu=v,+ay. (2.5.2)

Suppose that under SU(3)r, x SU(3)r the external fields [,,,7,, s and p obey the transforma-

tion law as
s+ip — R(x)(s + ’L'p)L(:L')T,
i — L)l L(x)! +iL(2)9, L)', (25:3)
T — R(az)ruR(x)T + iR(u’U)auR(x)T-
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2.5. External fields and local chiral transformation

Now the Lagrangian (2.5.1) is invariant under SU(3)r x SU(3)r. Note that this transfor-
mation is local because it contains a derivative. We then incorporate the external fields and
their transformation law with the effective chiral Lagrangian (2.4.12). As a consequence of
local transformation, derivative of the field U(®) should be replaced by covariant derivative.

The covariant derivatives are given by [5, 6, 7]
DU = 8,U —ir,U +iUl,, D,U" =9,U" +iU'r, —il,U". (2.5.4)
It is straightforward to check the transformation low of D,U;
DU = 8,U —ir,U +iUl, —8,(RUL") — i(Rr,R' +iR3,R")(RUL")
+4i(RULY (LI, L' +iLd, L")
=(0,R) -UL' + RO, UL + RU (9, L")
—iRr, UL" + R(~R'9,R)UL' +iRUI,L' — RU(9,L")
=RO,UL' — iRr UL +iRUI,L!
=R(D,U)L".
For convenience, we define x and field strength tensors as
X =2By(s +ip) , (2.5.5)
FIY = oMY — oIt — (I 1"],  FR¥ =0k — 0"k —i[rt, r"] (2.5.6)
with a constant By. Their transformation lows are
x — RxL" , (2.5.7)
FI" — LF"LY, Fi — RFR'RY. (2.5.8)

Up to order O(p?), the most general Lagrangian consistent with Lorentz invariance and local

chiral symmetry (2.5.3) is given as
2
LM fZTr(D#UTD“U + U+ 1T (2.5.9)

In the next order O(p?), there appear seven terms in addition to three terms in the La-

grangian (2.4.16), with changing derivatives into covariant derivative;
2
M =1, [Tr(DHUTD“U)} + LyTr(D,U'D,U)Te(D*UT DY U)
+ LyTe(D,U'D*UD,UTD"U) + LyTe(D, UTD*U)Te(UTx 4 X'U)
2
+ LyTy [(DHUTD“U)(UTX + XTU)} + L [Tr(UTX n XTU)} (2.5.10)
2
¥ L [Tr(UT Y+ XTU)] + LsTe( U U + Ut UTY)

—iLyTr(FE' D, UD, U + F} D, U D,U) + LigTe(U'FR'U Fp) -
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2.6. Chiral perturbation theory of mesons and baryons

In this way, O(p*) Lagrangian contains ten low energy constants L; ~ Lig.

In deriving the above Lagrangians, we use the counting rule for the external fields;

U&:0(01), aup,vu(ly,ry):Op), s,p(x): O(pZ) . (2.5.11)

Actually up to this level, there is no reason to include the terms containing x at the same
order as two meson derivatives. For the moment, we just remark that y is counted of order
O(p?), or, in other words, chiral expansion is a double expansion in the momentum and in Y,
with a fixed ratio x/p?. The reason for this is due to the assignment of quark mass matrix
s ~m and the Gell-Mann-Oakes-Renner(GMOR) relation [41].

Using these external fields, we can introduce SU(3) breaking effects and photon couplings.
For example, in order to include the quark mass term, we choose
e

s=m, m= mq , (2.5.12)
mg

or, to consider the couplings to photons, we choose

2
vy =eQA,, Q= % -1 , (2.5.13)
-1

where A, is the photon field and e is the unit electric charge. It is worth noting that
once special directions in flavor space are selected in this way, chiral symmetry is explicitly
broken. Indeed, the expression (2.5.12) and (2.5.13) do not satisfy the transformation law
(2.5.3). However, the advantage of this method is that we break the chiral symmetry in
exactly the same way as the QCD Lagrangian (2.5.1) does.

2.6 Chiral perturbation theory of mesons and baryons

In this section, we introduce SU(3) octet baryon fields in the chiral Lagrangian [42]. For the
chiral Lagrangian obtained in previous sections, we can introduce any kinds of fields using

the transformation low (2.3.17). To do this, we need following procedures.

e We specify the representation of the additional field and make a transformation low (2.3.17).

e We construct the most general Lagrangian with respect to the symmetry constraints,
using the NG boson fields and the additional field.

In this way we can construct chiral Lagrangian not only with baryon octet fields but also, for

example, with vector meson fields or baryon decouplet fields.
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2.6. Chiral perturbation theory of mesons and baryons

As an example, in the SU(2) ChPT, we introduce the SU(2) baryon field, namely nucleon
field. Since the nucleon is classified as a doublet of SU(2) symmetry, we assign a fundamental
representation of SU(2) for the nucleon field N;

NE(Z), N = Nty = (p,7) , (2.6.1)

and they transform as
NSEN, NS N, (2.6.2)

where h = h(¢,g0) € SU(2)y. In the case of SU(3), we introduce the octet baryon field,

therefore we assign an adjoint representation of SU(3) for baryon field B;

5520+ A =t p

8 V2 G
- _ - _1y0, 1 n_ 0
B=) \B"= ) X+ 5A  n |, B=BhW.
a=1 = =0 —ZA
NG

Because B and B are adjoint representations, they transform under SU(3);, x SU(3)g as

B & nBhat,
. ) (2.6.3)
B = (hBh)1A? = hBhAT |

where h = h(®, go) € SU(3)y defined in (2.4.10).

2.6.1 Difficulties of treating baryons in chiral perturbation theory

When we introduce the baryon fields into ChPT, a problem concerning the chiral counting
appears. As a consequence of the transformation law (2.6.3), a chiral invariant mass term
MoTr(BB) can exist

MyTr(BB) —MyTr(hBh'hBhT)
=MyTr(BB) .

The presence of the mass term in baryon sector can be understood by the spontaneous
breaking of chiral symmetry, but this is an important difference from the meson case. In the
meson sector, we define chiral counting rule using the fact that the meson mass is zero or very
small. However, we see that in the baryon sector a large mass can exist. This means that m
in the expression (2.4.11) might be large, so that the energy of baryon py = \/’I’W is
not small when |p| is small. We cannot treat the four-momentum of the baryons as a small

quantity any more.

This fact also causes the complicated counting for loops. In the meson sector, contri-

butions from n-loop diagrams are suppressed of order (p?)”, so that there is a one-to-one
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2.6. Chiral perturbation theory of mesons and baryons

correspondence between the loop and small momentum expansions of Lagrangian. However,
in the baryon sector, the baryon propagator gives a contribution of the baryon mass instead
of typical low momenta, since the baryon mass is not small.

Actually there is a method which allows us to perform power counting in a consistent
way [42]. In that case the counting rule becomes more complicated and many terms appear
even in the next-to-leading order. Another way to avoid this difficulty is to adopt the heavy
baryon chiral perturbation theory (HBchPT), where we take the limit p/My < 1. With this
approximation, the number of terms are suppressed and counting rule becomes much simpler.

We will discuss briefly this formulation later.

2.6.2 Chiral counting rule for baryons

Here we discuss the counting rule for baryons. First we write down the quantities, with which
the chiral Lagrangian is constructed. Then we assign power counting of order O(p™) for these
quantities.

In order to construct a meson-baryon couplings, it is convenient to introduce the quantities,

which transforms
O — hOhT , (2.6.4)

because of the transformation low of B and B (2.6.3). First we only use the meson fields
to construct O, which has physical meanings. Such quantities are the vector current V), and

axial vector current A, defined by
_ Lt t
Vi == 5(610,6 + £0,6T) |
; (2.6.5)
Ap == 5 (10,6 — £0,€T) .

Next we introduce the external fields. Using x defined in Eq. (2.5.5), we construct scalar (o)

and pseudo scalar (p) quantities

o=&xTe+exet,

(2.6.6)
p=exte—eixel
With the currents [, and 7, in Eq. (2.5.2) we extend Eq. (2.6.5) as
? 1
Vi == 5 (60,6 + 60,87 + S (€T + €l
; : (2.6.7)
Ap = = (61048 = €0,€7) + (€T — g -
Using the field strength tensors (2.5.6), we define
FR = ¢TFRVE | FI¥ = ¢Fivel (2.6.8)
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2.6. Chiral perturbation theory of mesons and baryons

From the transformation lows (2.4.9), (2.5.7) and (2.5.8), it is straightforward to show that
Vi, Ay, 0, p, Fi¥ and FI" satisfy the transformation (2.6.4).
According to the detailed discussion of chiral power counting for the baryons in Ref. [42],

the quantities we defined above are counted as

0,p:0p%), AuVu:OWm), FRF 00, (2.6.9)
and baryon fields are

B,B:0(1), [D,,B]:0(1), "D, B]—MyB:O(p). (2.6.10)

With the rules (2.6.9) and (2.6.10), we construct the effective Lagrangian with mesons and

baryons.

2.6.3 Chiral Lagrangian of mesons and baryons

In baryon case, an effective Lagrangian can contain the terms of order odd number of mo-

mentum,

Leg(B, @)=Y L}P(B,D). (2.6.11)

Considering the Lorentz structure of the currents, the most general Lagrangian with baryons

in the lowest order of the chiral expansion is given by

LMB Tr(B(iZD — My)B — D(BryP~5{A,, BY) — F(By"y5[A,., B])) , (2.6.12)
D,B = 8,B +i[V,, B] , (2.6.13)

where D and F' are coupling constants and My denotes a common mass of the octet baryons.

Here we follow the notation in Ref. [43].

In next-to-leading order O(p?), we have twenty one terms in the most general effective
Lagrangian [42]. Among them, here we show the terms that we will use in later chapters, the

SU(3) breaking terms, which are given by
LYP = byTr(BB)Tx(0) + bi Tr(B{o, B}) + boTr(Blo, B]) , (2.6.14)

and photon coupling terms

cMP = b1 (Bot{F},, BY) + b Tx(Bo™[F}L,, B) | (2.6.15)
where
Y = F"+ FR” UW:%[’Y“N"] : (2.6.16)
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2.6. Chiral perturbation theory of mesons and baryons

2.6.4 Heavy baryon chiral perturbation theory

The heavy baryon ChPT [44, 45] has been developed by introducing the techniques of heavy
quark effective theory [46, 47]. We consider heavy static baryons whose velocities are almost

unchanged during interactions with mesons. The momentum of a baryon p* is written as
pt = Mpv" + k", (2.6.17)

where Mp is the mass of the baryon, k* is off-shell part of momentum and v* is the four-
velocity of the baryon, which satisfies v, v* = 1. Because we consider the heavy baryon, Mpg
is large and k* is small. We then define the velocity dependent fields [48]
144

5
in Lorentz covariant way. In the baryon rest frame, the operator P projects a relativistic

B,(z) = eMBuus" prp(z), Pt = (2.6.18)

baryon to the non-relativistic one of the Dirac spinor. The advantage of the use of this field
is that this field B, obeys a massless Dirac equation;
i)B, =i <eiMBW“1—2”éB(x)>
:% [i’y,,@”eiMBv“WB(aU) + i’y,,@”'y,\vAeiMB”“WB(x)}
:% [i’yyiMBv”eiMB”“qu(x) + ieMBont’y OV B(x)

+iv, v iMpu” eMBvn B(z) + i'yy'yxv/\eiMB”“Wﬁl’B(x)}
=L [ MM B(a) 4+ M i ()
— MM Ba) + PB(a) e
=L [ M0 () 4+ M5 A B(a)
~ Mpeo B(z) + MpB(a)fe " |
0 (2.6.19)

which means that we can avoid the appearance of the baryon mass term in the Lagrangian.

Using the B, field, we can construct the lowest order Lagrangian which corresponds to £ +
LSy

Ly :Tr(B_U(iv“Du)Bv — D(B,SH{&u, Bu}) — F(B,SHE,, BU]))

o o i B , (2.6.20)
— Tr(by Byo By + ba By Byo) — byTr(0) Tr (B, By)
where spin operators S are defined as
v-8, =0, SﬁBU:—§BU ,
. 4 (2.6.21)
{80,80} = S —g*) . [, 8] =ie*va(S) -
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Chapter 3

Unitarization and the analytic
structure of the T-matrix

In this chapter we study the N/D unitarization method [49] and the analytic structure of
the T-matrix. There are several methods which recover the unitarity of the S-matrix, such
as solving the Bethe-Salpeter Equation (BSE) [13], Inverse Amplitude Method (IAM) [50],
N/D method [22] and so on. In this work, we adopt the N/D method, since this method
provides a general form of the T-matrix, using the dispersion relation and the analyticity of
the inverse of the T-matrix. Recently the N/D method has been applied to coupled channel
meson-baryon scatterings [22, 51]. It was found that the final form of the T-matrix derived
from the N/D method is essentially equivalent to the result of Ref. [13], which is derived from
the BSE with an approximation. One of the advantages of this method is that we obtain the
T-matrix in an analytic form, so that we can perform analytic continuation to the complex
energy plane.

In sections 3.1 and 3.2, from general point of view, we derive the optical theorem from
the unitarity of the S-matrix, and discuss the analytic structure of the scattering amplitude,
where unitarity cut comes from the optical theorem and unphysical cut comes from the optical
theorem for crossing diagrams. We also show that the kinematical singularities appear in the
case of meson-baryon scatterings with non-relativistic reduction. We then concentrate on the
case of the meson-baryon scatterings, and obtain the general form of the T-matrix through
the N/D method, neglecting the contribution from the unphysical cut. In section 3.4, we
discuss the T-matrix amplitude in the complex plane, performing the analytic continuation
of the variable y/s. Due to the discontinuities of unitarity cut, the complex variable z has two
Riemann sheets and the T-matrix amplitude has two branches. In order to search poles, we
choose the most relevant branches for scattering line, calculating the loop integral numerically

and comparing branches with the value on the scattering line.
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3.1. Unitarity of S-matrix

3.1 Unitarity of S-matrix

Here we derive the optical theorem from the unitarity condition of the S-matrix for coupled
channel scatterings. In order to conserve probability, scattering S-matrix should be a unitary

matrix satisfying
STS=1. (3.1.1)
We define the T-matrix as S = 1 — ¢T’, then the unitarity condition requires that

(1—4iT)f(1—iT) =1
14+i(TT—T)+T'T =1
—i(T"—=T) =TT . (3.1.2)

In order to compute the matrix element of Eq. (3.1.2), we multiply final and initial states
(f], %), and insert a sum of complete sets for intermediate states which is labeled by k. Since
we consider the coupled channel problems, we denote several channels by the labels f,7 and
k. Then Eq. (3.1.2) becomes

—i[(f|TT i) — (F1T13)] (H/d q"; 2E1 ><f|TT|k><k|T|¢>, (3.1.3)

where ¢,, and E,, are the momentum and energy of the particle n;, in the intermediate state

k. We take product over the label ni up to the number of particles in the state k, and we
take summation for all possible intermediate states k. We introduce the invariant T-matrix
amplitude T;(2m)*6W (32, Pny — > n, Pn;) = (f|T|i) and obtain

dBq,, 1 "
i - 110 =3 (11 [ g ) Tt (S Ton )
g ng

= Zkakaki ; (3.1.4)
k

where p; is the momentum of the particle 7 in the initial state and we have dropped an overall
delta function for momentum conservation of initial and final states. In Eq. (3.1.4), we define

the phase space integral pp for an intermediate state k as

pk—/dﬂk— (H/d e 2; ) (27)45 ™) (me Zm) . (3.1.5)

27



3.2. Singularities of the scattering amplitudes

—92Im |i i :Zpk i k| |k i
k

Figure 3.1: Diagrammatic interpretation of the optical theorem. Shaded bubbles denote the
T-matrix amplitude. The lines in channel k represent all possible intermediate states.

In the case of i = f, where the final state is the same as the initial state, we obtain the optical

theorem
iTi — T3 = pe T T (3.1.6)

k
—2Im[Ti] =Y pelTeil” | (3.1.7)
k

The expression (3.1.7) is interpreted diagrammatically as shown in Fig. 3.1. For later conve-
nience, we consider that the T-matrix amplitude is the function of s, the square of the total
energy in the center of mass frame, and we define the square of the energy of the threshold
of the intermediate state i as (sy);. The phase space p; takes non-zero value only above
the threshold s > (s1);, so that the diagonal elements of the T-matrix amplitude T}; have
an imaginary part only above the threshold s > (s;);. This result directly comes from the

unitarity of S-matrix, namely the conservation of the probability.

3.2 Singularities of the scattering amplitudes

In this section, we discuss the singularities of the scattering amplitudes in the complex energy
plane. In general, there are two kinds of cuts in the scattering amplitudes; the unitarity cut,
which is required by unitarity condition, and the unphysical left hand cut, which comes from
the unitarity condition for the crossing diagrams. In addition, there appear the kinematical
singularities when we apply the nonrelativistic reduction for the amplitude of meson-baryon
scatterings. In the following, we first discuss general properties of analytic function when the

branch cut appears, then consider the singularities of the scattering amplitudes one by one.

3.2.1 Branch point and branch cut

We first consider the branch cut of a general function f(z). In this subsection, we denote the
complex variable by z and real variable by x. Let us consider a function f(z) defined on the

real axis and

{f(;v)ER for = <uay

fz)eC for mp<z (3.2.1)
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3.2. Singularities of the scattering amplitudes

— S AAAAAA
f(x) Ol t Re|z]

Figure 3.2: Schwarz reflection principle and analytic continuation of the function f(z).

We show that the analytic continuation of f(x) in the whole z plane has a branch point at .

If there is no singularity in the complex plane, we can use the Schwarz reflection principle [52];

If a function f(z) is 1) analytic over some region including the real axis

and 2) real when z is real, then

[f(2)]" = f(z) . (3.2.2)

In the present case, we can apply this theorem for the whole complex plane except for the
real axis of © > xp, because f(x) is not real there (Fig. 3.2). When = < x;, in the vicinity of

the real axis, with a small real number ¢, we have
flx —ie) = [f(z +ie)]" . (3.2.3)
In the limit € — 0, f(z + i€) — f(z) € R, such that
flz—i0) = [f(a + i0)]"
= f(x +i0) for z<uzy. (3.2.4)

We see that the upper half plane and lower half plane are continuously connected. However,
when z, < z, Eq. (3.2.3) means that in the limit ¢ — 0, f(z + i) — f(x) € C, such that

f(z —i0) = [f(z +i0)]"
= f(z +1i0) — 2idIm[f(z +i0)] for xp <. (3.2.5)

Eq. (3.2.5) indicates the existence of the branch point at z; and the discontinuity on the real

Disc[f(z)] = f(z +1i0) — f(z —i0) = 2ilm[f(x)] for zp <z . (3.2.6)
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3.2. Singularities of the scattering amplitudes
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Figure 3.3: Unitarity and unphysical cuts of the T-matrix in the complex s plane.

Usually we choose a branch cut from z; to 400, however, in principle the direction of branch
cut is arbitrary, once the position of the branch point is fixed. The direction is determined

by our definition of the region of the argument of the first Riemann sheet.

3.2.2 Unitarity cut

From Eq. (3.1.7), we see that Tj; is

{Tn‘(S) €ER for s<(s4) (3.2.7)

Ti(s) e C for (sy)i<s

As we have shown in the previous subsection, this implies the existence of a cut which runs
from (s4); to 400 (Fig. 3.3). Since this cut is caused by the unitarity condition, we call it
the unitarity cut, or the right hand cut. In later calculations of the chiral unitary model, we

take this cut into account in order to incorporate the unitarity condition with ChPT.

3.2.3 Unphysical cut

Next we consider the unphysical cut, which comes form the crossing diagrams. For the sake
of simplicity, we discuss the single channel scattering of two particles with the same mass m.
In this case the threshold s, is 4m?, so that we have unitarity cut from 4m? to +o0o. The
cut comes from the existence of an imaginary part of the T-matrix in the region where the

s-channel process becomes on the mass shell
5> 4m? . (3.2.8)

Similarly, the T-matrix amplitude also has imaginary part in the region where the u- and

t-channel processes become on the mass shell

t>4m? . u>4m? . (3.2.9)
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3.2. Singularities of the scattering amplitudes

In the center of mass frame, the Mandelstam variables s, ¢t and u are given by [53]
s = 4(k* + m?)
t = —2k*(1 — cosf) , (3.2.10)
u = —2k?(1 + cos )

where 6 is the scattering angle and k is the three momentum in the center of mass frame;

Vs — 4dm?

k| = 3.2.11
K= (3:2.11)
The conditions (3.2.9) require that
(2m2 - g) (1< cosf) > 4m?
s 4m?
om?— 2>
m 2 > 1+ cosb
s 4m?
S Y ) W4
2 = 14 cosf m
8m?
T 4 am?
§< 1+ cos6 tam,
where —1 < cosf < 1. So we find
(32.9)=s5<0, (3.2.12)

We have shown that the conditions (3.2.9) requires the existence of the cut on s < 0. When
the mass of the two particles are different, the unphysical cut runs from s_ = (m — M)? to

—o0 [54] as shown in Fig. 3.3.

3.2.4 Kinematical singularities

Here we discuss the kinematical singularities [51], which appear in the meson-baryon scat-
terings with non-relativistic reduction. The unitarity and unphysical cuts appear for general
T-matrix amplitude of scatterings, while this kinematical singularities appear only for the
present case. When we take a relativistic approach for the meson-baryon scattering, the

scattering amplitudes are generally written as
1
Trel(s,t) =u |A(s,t) + §(q1 + @)y, B(s,t)| u, (3.2.13)

where ¢; and ¢o are momenta of the incoming and outgoing mesons, respectively. The invari-
ant amplitudes A(s,t) and B(s,t) are functions of s and ¢, so that there is no kinematical

singularity. However, when we apply the nonrelativistic reduction for Eq. (3.2.13), in the
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3.3. N/D method for meson-baryon scatterings

center of mass frame, the T-matrix amplitude is written as [55]

E+M
2M

Tnr(Vs,t) = <

o(5.0) = 5oy |(AM(E+ M) = )4+ {(Va + A0 +dlal)

+4Mw(E + M)}B| |

)Mﬁﬁ+w%mmeNWH, (3.2.14)

MVA0) = G (V5 + MB - 4]

where M and FE are the mass and energy of baryon, and w = /s — E is the energy of meson.
Here we use common masses for all baryons and mesons. We see that Ty g is now a function
of t and /s, not s.

Since a point on the s plane corresponds to two points in the /s plane, the unitarity cut
on the s plane appears as two cuts in the /s plane, (—oo, —,/s7) and (/s1,00) (Fig. 3.5).

We discuss the effects of these singularities later.

3.3 N/D method for meson-baryon scatterings

In the previous section, we have discussed the general structure of the scattering amplitude
and found that there are two kinds of cuts in the T-matrix. Now we concentrate on the
coupled channel meson-baryon scatterings, and derive a general form of the T-matrix using
the N/D method [49]. Let us assume that the intermediate states of the meson-baryon
scatterings are composed of one octet meson and one octet baryon. We do not consider
multi-mesons and excited baryons, such as 77N and wA. In this case, the phase space p; in
Eq. (3.1.7) is written as

pi(V's) = Qﬁiji\(ff)

where g;(1/s) is the three-momentum of the intermediate meson, which is defined by

for /sy <+/s, (3.3.1)

V(s = (M; —m;i)?) (s — (M; + m;)?)
NE '

In the N/D method, we divide the T-matrix into numerator (N) and denominator (D) as

Gi(V's) =

(3.3.2)

T(s) = ]1\)[8 .

(3.3.3)

The point of the N/D method is that we assign the effect of unitarity cut in the denominator,
and the unphysical cut in the numerator. The reason for this is that the inverse of the T-

matrix also has a branch cut due to the unitarity condition, as we see by multiplying (7*)~!
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3.3. N/D method for meson-baryon scatterings

[m[s] & I-,_

Figure 3.4: Contour of the dispersion integral for D(s) in the complex s plane.

from left and (7")~! from right for Eq. (3.1.6),
(T Ta(T) ™ = (T D) = Y el T) ™ T T (1)
k
(TG =T ' 1= prdin
2Im([(T);;'] = pf : (3.3.4)

Following Ref. [22], we neglect the contribution of the unphysical cut, which means that we
take only the s-channel diagrams into account and crossing diagrams are neglected. Using
the contour of the integral shown in Fig. 3.4, we apply the dispersion relation to D(s) with

a constant subtraction

Nij(s) = bij

Dyj(s) = T (5) = 6 (ds(s0) + "5 /OO ds'—— i) )+ T . (335)
™ Jisi)s (s" —s)(s" — s0) J

where (s4); is the value of s at the threshold of the channel i, and sg is the subtraction point.

The parameter a;(sg) is a subtraction constant and is a free parameter within the N/D

method. The matrix 7;;(s) indicates the contribution from CDD poles [56] and couplings

among the channels, which cannot be determined by the unitarity condition only. Later we

will determine this 7;;(s) by the chiral perturbation theory.

Note that D(s) is a function of s because so far we have been considering it on the complex s
plane. As we have seen in subsection 3.2.4, however there appear kinematical singularities, the
two cuts in the complex /s plane, which give different dispersion integrals from Eq. (3.3.5).
In Fig. 3.5, we show the contour of the integral in the /s plane. However, it is shown that

we can absorb the effects from the kinematical singularities into the same dispersion integrals
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3.3. N/D method for meson-baryon scatterings

In[y/s)4

Figure 3.5: Contour of the dispersion integral for D(,/s) in the complex /s plane. The radius
of the enclosing circle is extended to infinity.

in the complex s plane [51]. The contribution from the cut (,/5,00) is
VBR[0T fa
S VARV VYRR (3:3.6)
and the contribution from the cut (—oo, —/5y) is
VEom [TV T ()
L A
Vs vE [V T (=)
e A Sl e v vy
ST VETYY Y- R i GV M (3.3.7)
m (V5,)i (V5 + V5) (V5 +V/50)

From the function (3.3.1), we see that

T (-v5) = It (v5) = -2 (339

Summing Egs. (3.3.6) and (3.3.7) up, and using Eq. (3.3.8), we obtain total dispersion integral

as

\/g—\/% oe d S, ' S/ [ 1 B 1
2 s I T — ) AR + e
VISV T e | 2 V)
27 (V5,)i (s" — s)(s" — so0)
_s—s80 [ o i Pi(\/gl)
"o /wm s sy

28—80/“’ 4o PiVS)
(

o2 1) (s' —s)(s' —s0)
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3.3. N/D method for meson-baryon scatterings

Then we can use the same dispersion integral by only changing the variables of T-matrix and
CDD poles from s to /s, and obtain

Tzzl(\/g) 5, (flz‘(so) L 580 /(OO Js’ pi(s’) ) +7;J_1(\/§) 7 (3.3.9)

2 Jispy, (8 —38)(s' = s0)

This is a general form of the T-matrix in the coupled channel scatterings which satisfies the

unitarity condition.

Let us define the G function by

Gi(v/5) = —ai(s0) — =0 /(OO e el (3:3.10)

s (8= 8)(s" = s0)
which takes the same form as, up to a constant, the ordinary meson-baryon loop function:

dq 2M; 1
(2m) (P — q)? — M? +ieq? — m? +ie

QW@:i/ (3.3.11)

This integral should be regularized by an appropriate regularization scheme. In the dimen-

sional regularization, the integral is calculated as

2M; M? m?2—M2+s.  m?
- . 1 1 l—zl 1
(47)? {al(u) i w? + 2s . M?

i \% [m(s — (M2 —m2) +2/5q) +In(s + (M? —m?) +2v/53)  (3.3.12)

—In(—s + (M? —m?) + 2/5G;) — In(—s — (M? —m?) + 2\/5@;)} },

Gi(Vs) =

where p is a regularization scale and a; are the subtraction constants. In the tree level ap-
proximation, only the 7;; term survives in Eq. (3.3.9), which is identified with the interactions

V obtained by ChPT at the tree level. Therefore, the resulting T-matrix is written as

T!'=-G+ (V) (3.3.13)
T=[1-VGa'v. (3.3.14)

Since we know the analytic forms of V' and G, we can write the T-matrix in analytic way
through Eq. (3.3.14). This is one of the advantages of this method, with which we can perform
the analytic continuation of the /s to the whole complex plane. Eq. (3.3.14) is rewritten as

T=V+VGT. (3.3.15)

This is the algebraic equation for the T-matrix, which corresponds to the integral BSE. The
diagrammatic interpretation of Eq. (3.3.15) is shown in Fig. 3.6.
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3.4. Scattering amplitudes in the complex plane

Figure 3.6: Diagrammatic interpretation of Eq. (3.3.15).

3.4 Scattering amplitudes in the complex plane

In this section, we discuss the analytic structure of the T-matrix and the loop function, which
are functions of \/s. When a resonance is well pronounced in the scatterings, the T-matrix
amplitude can be approximated by a sum of the Breit-Wigner and background terms around

the resonance region [19];

T 9i9; + TBG

~ 3.4.1
Vs— Mp+ilg/2 " "9 (34.1)

where Mp and I'r are the mass and decay width of the resonance, and g; and g; are the
coupling strength of the resonance R to the channel ¢ and j, respectively. The background
TgG is assumed to be a slowly varying function. This implies the existence of the pole of the
T-matrix amplitude at zg = Mg — il'r/2 in complex z plane. However, causality requires
the absence of poles in the physical (first Riemann) sheet [57]. Therefore, we search the
unphysical sheets for poles. The multivalued nature of T-matrix comes from the unitarity

cut of the T-matrix.

In the following, we deal with the case of single channel and drop the index i, for the
sake of simplicity. First we see that the formal solution of the T-matrix (3.3.14) satisfies the
unitarity condition (3.3.4), considering the loop function (3.3.12) on the real axis. Next we
perform the analytic continuation to the complex /s plane, and observe that the analytic
structure of T-1(,/s) is same as the loop function G(y/s). Using the discontinuity of G(+/s),

we define the Riemann sheets where we search for poles.

Before going into technical details, we briefly note about the words “Riemann sheets” and
“pbranches”. Let us consider a multi-valued function w = f(z). In order to avoid multi-
valueness, we put a branch cut on the z plane. Then we connect usual z plane, which is
defined in the region 0 < 6 < 2w, to another “Riemann sheet”, which is defined in the
region 27 < 0 < 4mw. Although we usually do not distinguish the difference between z; and

2™ on the second Riemann

29 = z1€2™ the points z; on the first Riemann sheet and zp = ze
sheet are mapped to the different points w; = f(21) and we = f(22 = 21€*™), respectively.
We call these w; and ws planes as “branches”. We show this schematically in Fig. 3.7. In this
way we extend z plane into several Riemann sheets, and the function w = f(z) is uniquely

defined on each Riemann sheet.
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3.4. Scattering amplitudes in the complex plane

wy = f(z = ze*™)
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Figure 3.7: Riemann sheets and branches. The points z; and 2z = 216%™

different points w; = f(z1) and wy = f(22)

¢ are mapped to the

3.4.1 Loop function on the scattering line

Here we consider the loop function (3.3.12) on the real axis. Since G(y/s) is a multivalued
function even on the real axis due to the logarithmic and square root functions, we define
the value with respect to the first Riemann sheet, namely we restrict the arguments of the
variable 0 < 6§ < 2m. We referred to this values as “on the scattering line”, which is used
in the practical calculation of the scattering problem. For convenience, we rewrite the loop

function as

2M M2 m2-M?24+s. m2
G(Vs) = 1672 {a(u) +In F + T 9s In e
1/2
/\2T [IH(S - (MQ _ m2) + )\1/2) + 111(5 + (MQ _ m2) + )\1/2) (342)

Cln(—s 4+ (M2 —m?) + AY2) ZIn(—s — (M2 — m?) + AI/Q)] }
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3.4. Scattering amplitudes in the complex plane

with the Kallen function
A2(s, M? m?) = /52 + M* + m* — 2sM? — 2sm? — 2m2M?
= /(s — (M —m)?)(s — (M +m)?) =257 .

In Eq. (3.4.2), the terms in the first line are always real for real values of \/s. The imaginary

(3.4.3)

part of the loop function is produced from the terms
AL/2

S5 [In(4) +In(B) —n(C) —In(D)] ,

where we define

A=s— (M>—m?) + A2,
B=s+ (M?—m?)+ /2
C=—s+(M>—m?) + /%,
D= —s5— (M?>—m?) + A2,

Below the threshold, A2 is pure imaginary, so that A ~ D are complex numbers. In
this case, we define log(z) on the first Riemann sheet, namely, we restrict the argument of z
within 0 < 6§ < 27. Then we see that [In(A)+In(B)—In(C) —In(D)] becomes pure imaginary.
But A\'/2 is also pure imaginary, and hence, we obtain the real G(,/s) below the threshold.

Above the threshold, A/? is real, so that A ~ D are real numbers. The real logarithmic
function is defined in the region 0 < z < oo. In order to avoid this multivalued nature,
we then consider whether A ~ D are positive or negative. If z is real negative number, we
rewrite log(x) as log(—x) + im, because —1 = €™ and we restrict the argument of z within
0 <6 < 2m. When /s > /51, we see that

A>0, B>0,
C<0, D<O0,
Then we define Eq. (3.4.2) as

for s> /sy . (3.4.4)

M M?* m?—M?+s m?
GW3) =g {aln) +In o + = ——In 5.45)
1/2 o
+ )\2— [In(A) +In(B) — In(—C) — In(—D) — 27Ti]} , for /s> /s:,
s

without multivalued nature. In the expression (3.4.5), A2 and all logarithmic function are

real, so we extract the imaginary part of the G function as

1/2(g M2 m2
m{G(v3)] = — e A

1 (2M|q] p(V/3)
:_2.<4ﬂ\/§>:_ vl (3.4.6)
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Figure 3.8: Real and imaginary parts of the loop function on the scattering line. Here we
plot the loop function of the 7N channel.

for /s > \/sy. Thi