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Abstract

We study the coupling of the Λ(1520) ≡ Λ∗ resonance to the K̄∗ vector meson
and nucleon. This coupling is not directly measured from the resonance decay,
but is expected to be important in hyperon production reactions. We compute the
coupling in two different schemes, one in the chiral unitary model where the Λ∗ is
dominated by the quasibound state of mesons and baryons, and the other in the
quark model where the resonance is a p-wave excitation in the three valence quarks.
It is found that there is a significant difference between the Λ∗K̄∗N couplings in the
two models. In the chiral unitary model |gΛ∗K̄∗N | ∼ 1.5, while in the quark model
|gΛ∗K̄∗N | ∼ 10. The difference of the results stems from the different structure of
the Λ∗ in both models, and hence, an experimental determination of this coupling
would shed light on the nature of the resonance.

1 Introduction

Recent activities in hadron physics have been stimulated by the discussions on exotic
states. The existence of the exotic pentaquark Θ+ [1] is not yet confirmed, but much
of the works are related to explain its expectedly unusual properties. Exotic states, by
definition, contain more than three quarks in the case of baryons, and more than one
quark-antiquark pair in the case of mesons. In both cases, the exotic states may have
components of two or more color singlet states. If the color-singlet correlations such as
[q̄q]singlet and [qqq]singlet are strong, the states may be regarded as composite states of two
or more hadrons. However, if the color-nonsinglet correlations such as diquark correlations
are strong, the components of color singlet states are only a small part of the exotic states.

Such color-singlet or color-nonsinglet correlations may be tested not only in the man-
ifestly exotic states but also in ordinary hadrons. The role of diquark correlations in
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hadrons has been discussed [2]. Contrary, the importance of color-singlet correlations
may be tested by the mesonic cloud around baryons. The strong correlation between
mesons and baryons, as implied by chiral perturbation theory, has been shown to gener-
ate baryon resonances especially in s-wave scattering channels: For instance, the Λ(1405)
resonance which can be generated in s-wave K̄N scattering [3, 4].

Recently, another Λ resonance, the Λ(1520) ≡ Λ∗ of JP = 3/2−, has been investigated
in several contexts. In Refs. [5, 6], the resonance was described as a quasibound state of
πΣ(1385) and KΞ(1530) in s wave. In these studies, the identification of some baryon
resonances with s-wave quasibound state of an octet meson and a decuplet baryon has
been extensively studied. This approach is further extended in particular to the Λ∗, by
including the d-wave channels of mesons and ground state baryons [7, 8], leading to a
successful description of existing data.

The Λ∗K̄∗N coupling is worth being studied. In the experimental data [9] and its
analysis for Λ∗ photoproduction [10], the important role of K̄∗ vector meson was sug-
gested, while a similar behavior was recently explained by means of the photo-K∗ contact
term [11].

Here we investigate exclusively the K̄∗ coupling to the Λ∗, where the Λ∗ is formed
dominantly by the s-wave πΣ(1385) quasibound state, which is supplemented by the
KΞ(1530) state and the d-wave K̄N and πΣ states. The result is compared with that of
the conventional quark model, where the Λ∗ is described as a p-wave excitation of one of
the three valence quarks. This comparison should be useful in testing the very different
nature of the two descriptions. For more detail of the computation, see Ref. [12].

2 Formulation

We consider an effective interaction Lagrangian [11] given by

LΛ∗K̄∗N =
gΛ∗K̄∗N

MK∗
Λ̄∗

µγν(∂
µK∗ν − ∂νK∗µ)N + h.c. , (1)

where MK∗ is the mass of the vector K∗ meson, h.c. denotes the hermitian conjugate, and
gΛ∗K̄∗N is the coupling constant. Because JP (Λ∗) = 3/2−, the coupling has two indepen-
dent components. In terms of multipoles, they are E1 and M2. Here, we investigate the
s-wave coupling which is the E1 amplitude in the chiral unitary model. We expect that
the s-wave coupling dominates in the small three-momentum |k| region, where k is the
relative momentum of the (virtual) K̄∗ and N . Assuming the interaction region of about
1 fm, the d-wave and hence the M2 component will become important for |k| > 400 MeV.

Applying the nonrelativistic reduction to Eq. (1), and picking up the s-wave compo-
nent, we obtain the transition amplitude of K̄∗N → Λ∗ as

−itΛ∗K̄∗N = gΛ∗K̄∗NS† · ε. (2)

Here ε is the polarization vector of the K̄∗ and S is the spin transition operator.
In the chiral unitary model, the Λ∗ is generated dynamically in the scattering of the

πΣ∗ and KΞ∗ channels in s wave and the K̄N and πΣ channels in d wave [7, 8]. In
order to estimate the coupling of the Λ∗ resonance to the K̄∗N channel, we follow the
microscopic mechanism as illustrated in the left panel of Fig. 1. In this case, the K̄∗N
couples to the dynamically generated Λ∗, represented by the amplitude T in the figure,
decaying into the πΣ∗ channel. Notice that the KΞ∗ channel does not appear in the first
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Fig. 1: Left: Diagrams for the microscopic mechanism of K̄∗N → Λ∗ → πΣ∗ calculated
in the chiral unitary model. Right: Diagram for the resonance dominance model of
K̄∗N → Λ∗ → πΣ∗.

intermediate loop, since there is no direct coupling from K̄∗N to KΞ∗. Schematically, the
process K̄∗N → Λ∗ → πΣ(1385) can be expressed as

−itChU =
∑

l

(−iTπΣ∗l)iGl(−itlK̄∗N),

where TπΣ∗l is l → πΣ∗ amplitude obtained by the chiral unitary model [7, 8], Gl is the
loop function of the intermediate state l, and −itlK̄∗N is the amplitude of K̄∗N → l.

Since we consider the s-wave coupling, the amplitude −itlK̄∗N should be written as
−itlK̄∗N = glK̄∗NS† · ε. Denoting the total energy as

√
s, we consider the energy region

close to the Λ∗ pole
√

s ∼ MΛ∗ . In this region, the chiral unitary amplitude Tij can be
approximated by the Breit-Wigner propagator Tij ∼ gΛ∗igΛ∗j/(

√
s − MΛ∗) with coupling

constants gΛ∗i, where i stands for the channels coupling to Λ∗. Then we have

−itChU ∼ −igΛ∗πΣ∗
i√

s − MΛ∗

∑
l

gΛ∗l Gl glK̄∗NS† · ε. (3)

On the other hand, with the s-wave coupling Eq. (2), the resonance model for the ampli-
tude K̄∗N → Λ∗ → πΣ(1385) can be written as shown in the right panel of Fig. 1,

−itres = −igΛ∗πΣ∗
i√

s − MΛ∗
gΛ∗K̄∗NS† · ε,

where gΛ∗K̄∗N is the Λ∗K̄∗N coupling constant that we are interested in. Hence comparing
this amplitude with Eq. (3), we extract the Λ∗K̄∗N coupling as

gΛ∗K̄∗N =
∑

l

gΛ∗l Gl glK̄∗N . (4)



In the previous study [8], the coupling constants gΛ∗l have been determined as gΛ∗πΣ∗ =
0.91, gΛ∗πΣ = −0.45, and gΛ∗K̄N = −0.54, which well reproduce the partial decay widths.
The contributions from (a)-(d) are given by [12]

−it(a) − it(b) =(−iTπΣ∗πΣ∗)i

(
GπΣ∗ +

2

3
G̃πΣ∗K

)
gπΣ∗K̄∗NS† · ε .

−it(c) =(−iTπΣ∗πΣ)iG̃πΣKgπΣK̄∗NS† · ε,
−it(d) =(−iTπΣ∗K̄N)iG̃K̄Nπ gK̄NK̄∗NS† · ε,

where GπΣ∗ and G̃πΣ∗K are the loop functions

GπΣ∗(
√

s) =i

∫
d4q

(2π)4

1

q2 − m2
π + iε

1√
s − q0 − EΣ∗ + iε

,

G̃πΣ∗K(
√

s, k) =i

∫
d4q

(2π)4

q2

(q − k)2 − m2
K + iε

1

q2 − m2
π + iε

1√
s − q0 − EΣ∗ + iε

.

G̃K̄Nπ(
√

s, k) =i

∫
d4q

(2π)4

q2

(q − k)2 − m2
π + iε

q2

q2
on

1

q2 − m2
K + iε

MN

EN

1√
s − q0 − EN + iε

,

with EΣ∗(q) =
√

M2
Σ∗ + q2 and the coupling constants are given by

gπΣ∗K̄∗N =
1

2
g
g∗

A

2f
. gK̄NK̄∗N =

√
3g

D + F

2f
, gπΣK̄∗N =

√
2g

D − F

2f
,

We thus obtain the coupling of the Λ(1520) with K̄∗N as

gΛ∗K̄∗N(
√

s, k) =gΛ∗πΣ∗

[
GπΣ∗(

√
s) +

2

3
G̃πΣ∗K(

√
s, k)

]
gπΣ∗K̄∗N + gΛ∗πΣ G̃πΣK(

√
s, k) gπΣK̄∗N

+ gΛ∗K̄N G̃K̄Nπ(
√

s, k) gK̄NK̄∗N . (5)

3 Numerical results

Before calculating Eq. (5), let us consider the momentum variables. Since Eq. (3) is valid
close to the pole of the resonance, we choose

√
s = 1520 MeV. For this

√
s, Λ∗ cannot

decay into K̄∗(892) and N(940). Here we assume that the K̄∗ is off the mass shell with
the nucleon being on-shell. Then the energy of the K̄∗ can be given by

k0 =
√

s − EN(k) =
√

s −
√

M2
N + k2,

where we are in the center of mass frame. In order to study the finite momentum effect
and stability of the result, we vary the momentum |k| from zero to 400 MeV, and plot the
real and imaginary parts as well as the absolute value of the Λ∗K̄∗N coupling constant
in the left panel of Fig. 2. We observe that the result is stable against the momentum
|k| up to ∼ 200 MeV, where the s-wave coupling is expected to be dominant. Numerical
values are

gΛ∗K̄∗N ∼ 1.53 + 0.41i, |gΛ∗K̄∗N | ∼ 1.58.
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Fig. 2: Left: Numerical results for the Λ∗K̄∗N coupling constant as a function of K∗

momentum |k| in the chiral unitary model. Thick solid line, thin solid line, and dashed
line represent absolute value, real part, and imaginary part of the coupling constant,
respectively. Right: Result in the quark model, for different mixing angles θ.

The complex phase is the relative one to gΛ∗K̄N = −0.45.
In the quark model, Λ(1520) resonance is a p-wave state of 70-dimensional representa-

tion of SU(6) [13]. In the spin-flavor group, it is a superposition of 21, 28, and 48. In the
standard quark model, Λ∗ is dominated by the flavor singlet 21 with some mixture of 28;
the spin quartet 48 has only a small fraction. Such a wave function has been tested for
the decay of Λ∗ → K̄N, πΣ, and has been proven to work reasonably well [13, 14]. The
Λ∗K̄∗N coupling constant is then related to the E1 multipole amplitude by an overall
constant gΛ∗K̄N = 3√

6
E1. In the calculation, we consider a mixing of 21 and 28 states for

Λ(1520) as |Λ(1520)〉 = cos θ|21〉 + sin θ|28〉. In the Isgur-Karl model, the mixing angle
was obtained θ ∼ 0.4 [13]. The result is shown in the right panel of Fig. 2. The quark
model value, in contrast with that of the chiral unitary approach, is of order gΛ∗K̄∗N ∼ 10.
In particular, the value increases slightly as the mixing angle increases, which is a con-
sequence of the interference between the two flavor states. The difference between the
values of the chiral unitary model and the quark model is large, and it would be interest-
ing to test the coupling by experiments. In reality, the physical resonance state may be
a mixture of the two extreme schemes of the chiral unitary and the quark models. The
coupling gΛ∗K̄∗N could be used to investigate such a hybrid nature of the resonance.

4 Summary

We have studied the Λ(1520)K̄∗N coupling constant. The motivations are twofold: One
is to offer a model estimation for the unknown coupling constant which is expected to be
important in hyperon production reactions, and the other one is to test different types of
models for baryon resonances. In the chiral unitary model the resonances are described
as a meson baryon quasibound state which may indicate the importance of hadron-like
correlations in hadron structure. The resulting coupling constant gΛ∗K̄∗N is expressed as
a sum over contributions from various channels necessary for the formation of Λ∗. The
actual number of the coupling gΛ∗K̄∗N turned out to be of order 1-2, which is significantly
smaller than the quark model value of order 10.

The difference in the results in two models should be a consequence of the difference
of the model setup in various aspects. First, the quark model describes the Λ∗ as a three-
quark system, while it is five-quark description in the chiral unitary model. Second, in the



chiral unitary model, the Λ∗ is mainly a member of flavor 8, while in the quark model it is
presumably dominated by the flavor singlet 1. Third, the wave function of the Λ∗ would
be dominated by the s-wave component of πΣ(1385), while it is a p-wave excitation in the
quark model. Such differences in the internal structure should be reflected in the Λ∗K̄∗N
coupling. If the actual Λ(1520) has a mixed structure of the hadronic quasibound state
and the three-quark state, the relevant coupling constant will be an intermediate value.

Since we have no experimental information of the coupling it would be very interesting
to have the experimental value. Information from experiments as well as theoretical
comparison would provide further understanding of the resonance structure.
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