Production of doubly charmed tetraquarks with exotic color configurations in electron-positron collisions

Tetsuo Hyodo *Tokyo Institute of Technology* **with Y.R. Liu, M. Oka, K. Sudoh, S. Yasui**

Tetraquark T_{cc}

Properties of T_{cc}

- quantum numbers (doubly charmed): $C = \pm 2$, $I(J^P) = O(1^+)$
- genuine four quark state: T_{cc} ~ ccūd (ccūd)
- color magnetic interaction: $H_{\rm int} \propto rac{1}{m_i m_j} ec{\lambda}_i \cdot ec{\lambda}_j ec{\sigma}_i \cdot ec{\sigma}_j$

--> attraction in ūd (good diquark)

S. Zouzou, B. Silvestre-Brac, C. Gignoux, J.M. Richard, Z. Phys. C30, 457, (1986) H.J. Lipkin, Phys. Lett. B172, 242 (1986), ...

- stable against strong decay if $M(T_{cc}) < M(D)+M(D^*)$

Color 6 is only possible in multiquark states. **Exotic!**

Diquark configuration and tetraquark T_{cc}

Mixing of different color configurations

Lowest energy states: $T_{cc}[3, 3S_1]$ and $T_{cc}[6, 1S_0]$

color spin

- **Both have** $I(J^{P}) = O(1^{+})$ --> mixing ?
 - cc spin flip amplitude ~ 1/mc suppressed

- mixing probability ~ 1/mc²

Dynamical four-quark calculation: B ~ 76 MeV below DD*

- J. Vijande, A. Valcarce, Phys. Rev. C80, 035204 (2009)
- Fraction: 3 (0.881) v.s. 6 (0.119)

 $T_{cc}[\overline{3}, {}^{3}S_{1}]$ and $T_{cc}[6, {}^{1}S_{0}]$ are (almost) separately realized.

Theoretical framework: NRQCD

Producion in experiments?

- e+e- collisions (Belle)
- --> double-charm production ($J/\psi + \eta_c$, ...) is observed.

K. Abe, et al, Belle Collaboration, Phys. Rev. Lett. 89, 142001 (2002)

NR(non-relativistic)QCD ~ EFT + factorization

G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D51, 1125 (1995) A. Petrelli, *et al*, Nucl. Phys. B514, 245 (1998)

- EFT in powers of heavy quark velocity v=p/mc
- Coefficients (c.f. LEC) : perturbative QCD α_s
- Matrix element of NRQCD operator : nonperturbative

$\sigma \sim \sum_{k} f_{k}(\alpha_{s}) \left| \langle H | \mathcal{O}_{k}(v) | 0 \rangle \right|^{2}$ hard soft

- applied to double-charm productions

E. Braaten, J. Lee, Phys. Rev. D67, 054007 (2003). K.Y. Liu, Z.G. He, K.T. Chao, Phys. Lett. B557, 45 (2003), ...

Production in e⁺e⁻ **collisions**

T_{cc} production in e⁺e⁻ collisions

Case for inclusive production of T_{cc}

$$d\sigma_{\alpha}(e^{+}e^{-} \to T_{cc}[\alpha] + X) = \sum_{k} \frac{d\hat{\sigma}(e^{+}e^{-} \to [cc]_{\alpha}^{k} + \bar{c} + \bar{c})}{|\langle T_{cc} + X|[cc]_{\alpha}^{k}|0\rangle|^{2}}$$

Hard part: leading order in α_s by pQCD calculation cc with color-spin projection

Soft part: leading order in \vee --> a number.

$$\left| \langle \mathbf{T}_{cc} + X | [cc]_{\alpha}^{k} | 0 \rangle \right|^{2} \Big|_{k=\mathrm{LO}} = \begin{cases} h_{3} & \text{for } \alpha = [\mathbf{\bar{3}}, {}^{3}\mathrm{S}_{1}] \\ h_{6} & \text{for } \alpha = [\mathbf{6}, {}^{1}\mathrm{S}_{0}] \end{cases}$$

--> cancel when normalized by the total cross section $\mathrm{d}\sigma/\sigma$

Production in e⁺e⁻ **collisions**

Differential cross sections

Normalized differential cross section

Different color configuration --> different momentum distribution

Exotic color 6 **configuration can be separated.**

Total cross sections

For absolute value, we need nonperturbative matrix element.

Charmonium case: $c\bar{c}$ wavefunction at origin

G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D51, 1125 (1995) A. Petrelli, *et al*, Nucl. Phys. B514, 245 (1998)

$$\left|\langle J/\psi|\bar{c}c|0\rangle\right|^2 \sim \frac{1}{4\pi}|R_{\bar{c}c}(x=0)|^2$$

Constituent quark model for $R_{cc}(0)$ of T_{cc}

$$\sigma = \begin{cases} 13.8 \text{ fb} & [\mathbf{\bar{3}}, {}^{3}S_{1}] \\ 4.1 \text{ fb} & [\mathbf{6}, {}^{1}S_{0}] \end{cases}$$

Caution!

- Leading order both in v and α_{s}
- Light quark dynamics (fragmentation) is not considered. --> production of T_{cc} = production of Ξ_{cc} ??

Summary

Summary

We study the color structures of T_{cc} and its production in e^+e^- collisions.

Tetraquark T_{cc}(ccūd) with I(JP)=0(1+) may be stable against strong decay.

T_{cc} with color 6 (exotic) cc pair can be separately realized from color 3.

Momentum distribution in e⁺e⁻ collisions: experimental method to clarify the color structures.

T. Hyodo, Y.R. Liu, M. Oka, K. Sudoh, S. Yasui, Phys. Lett. B 721, 56 (2013) + in preparation.