

Tetsuo Hyodo^a, Akinobu Doté^b, and Makoto Oka^a

Tokyo Institute of Technology^a KEK^b

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Why DN and DNN?

 \overline{K} nuclei <-- Λ^* : a $\overline{K}N$ bound state in the $\pi\Sigma$ continuum

D nuclei? <-- Λ_c^* : a DN bound state in the $\pi \Sigma_c$ continuum

Comparison with $\overline{K}N$ system in I=0 channel

- narrow negative parity Λ_c^* , analogous to $\Lambda(1405)$?

DNN quasi-bound state

Variational calculation: results

Results of the DNN system (I=1/2)

- Bound state in J=0 channel. J=1 is unbound w.r.t. $\Lambda_c^* N$.
- Mesonic decay width is small (~ 20-40 MeV).
- DN (I=0) correlation is similar to Λ_c^* in vacuum.

M. Bayar, C.W. Xiao, T. Hyodo, A. Doté, M. Oka, E. Oset, Phys. Rev. C 86, 044004 (2012)

Contents

Extensions

I=3/2 sector of DNN state

I=1 component of the DN interaction
Information of Σ_c*

Bottom sector

- Λ_b^* is recently observed by LHCb
- BN bound picture?

I=3/2 sector of DNN system

DN isospin components in DNN

DNN system with total isospin I=1/2

- J=0, I_{NN}=1 --> DN(I=0):DN(I=1) = 3:1 c.f. K⁻pp
- J=1, I_{NN}=0 --> DN(I=0):DN(I=1) = 1:3 c.f. K⁻d

J=0 is bound, because Λ_c^* is in DN(I=0) channel.

DN(I=1) is also attractive. Heavy mass of D --> possible bound state (Σ_c*?) with isospin symmetric cutoff.

DNN system with total isospin I=3/2

- J=0, I_{NN}=1 --> purely DN(I=1)
- Lowest threshold is Σ_c^*N (c.f. for Λ_c^*N in I=1/2)

I=3/2 sector of DNN system

Result of DNN (I=3/2)

Spectrum of the DNN system

- Bound state in I=3/2
- Mesonic decay width to $\pi \Lambda_c N$, $\pi \Sigma_c N$ is large (~ 100 MeV).
- Maximal charge: D+pp, D⁰nn --> advantageous in detection
- Closely related to the position of Σ_c^* .

Bottom sector

Bottom sector

LHCb recently found two excited Λ_b^* in $\Lambda_b \pi \pi$ spectrum

R. Aaij et al., Phys. Rev. Lett. 109, 172003 (2012)

Bottom sector Simple potentials for KN, DN, BN **Can we regard** Λ_{b}^{*} **as a** \overline{BN} **bound state?** ΒN DN KN MeV Λ*(1405) MeV **310 MeV** ~15-30 200 πΣ Λ_c*(2595) πΣ_c $\pi \Sigma_{b}$ **Gaussian potential** Λ_b*(5912) $v(r) = v^0 \exp\{-(r/0.4 \text{ fm})^2\}$ $v_{\bar{K}N}^0 = -1227 - 201i \text{ MeV}$ $v_{DN}^0 = -1335 - 31i \text{ MeV}$ $v_{\bar{R}N}^0 = -1363 \text{ MeV}$ $\mu = 325 \text{ MeV}$ $\mu = 625 \text{ MeV}$ $\mu = 797 \text{ MeV}$

Almost same potential strengths?

We study DN interaction and DNN system

Regarding $\Lambda_c^*(2595)$ as "DN quasi-bound state", bound state of DNN is found.

M. Bayar et al., Phys. Rev. C 86, 044004 (2012)

DNN (I=3/2) may also be bound. It is related to the Σ_c^* resonance.

Newly found $\Lambda_b^*(5912)$ can be regarded as a BN bound state with almost same potential strength with KN and DN.