区内相互作用とA(1405)

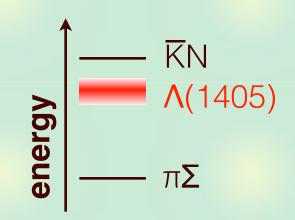
Tetsuo Hyodo,

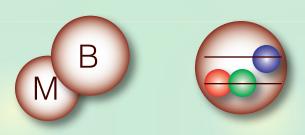
Tokyo Institute of Technology

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

K meson and KN interaction

Two aspects of $K(\overline{K})$ meson


- NG boson of chiral SU(3)_R ⊗ SU(3)_L --> SU(3)_V
- massive by strange quark: mk ~ 496 MeV
 - --> spontaneous/explicit symmetry breaking


KN interaction ...

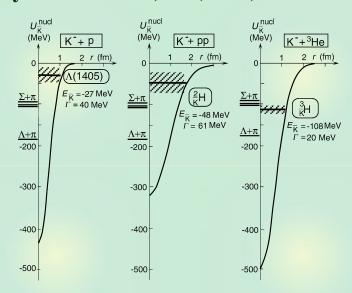
- is coupled with $\pi\Sigma$ channel
- has a resonance below threshold
 - $--> \Lambda(1405)$

meson-baryon v.s. qqq state, ...

- is fundamental building block for $\overline{\mathsf{K}}$ -nuclei, $\overline{\mathsf{K}}$ in medium, ...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

K nuclei v.s. normal nuclei


KN interaction

- strong attraction
- no repulsive core?

	I=0	l=1
NN	deuteron (2 MeV)	attractive
ΚN	∧(1405) (15-30 MeV)	attractive

--> (quasi-)bound K in nuclei

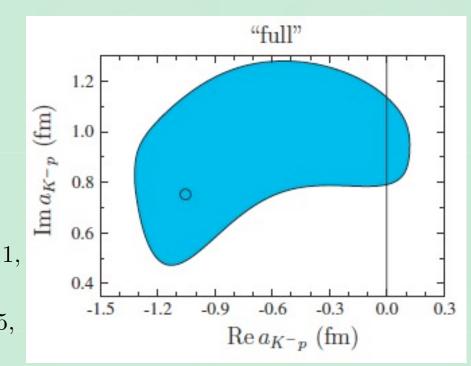
- Y. Nogami, Phys. Lett. 7, 288, (1963)
- T. Yamazaki, Y. Akaishi, Phys. Lett. B535, 70 (2002)

--> we need a realistic $\overline{K}N$ interaction!

Constraints for KN interaction

K-p total cross sections to K-p, \overline{K}^0 n, $\pi^+\Sigma^-$, $\pi^-\Sigma^+$, $\pi^0\Sigma^0$, $\pi^0\Lambda$.

- old experiments, large error bars, some contradictions
- wide energy range above the threshold


Threshold branching ratios

- very accurate
- only at $W = m_{K-} + M_p$

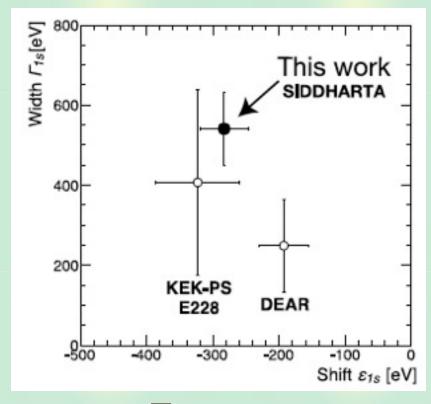
$$\gamma = \frac{\Gamma(K^{-}p \to \pi^{+}\Sigma^{-})}{\Gamma(K^{-}p \to \pi^{-}\Sigma^{+})} = 2.36 \pm 0.04,$$

$$R_{c} = \frac{\Gamma(K^{-}p \to \text{charged})}{\Gamma(K^{-}p \to \text{all})} = 0.664 \pm 0.011,$$

$$R_n = \frac{\Gamma(K^-p \to \pi^0 \Lambda)}{\Gamma(K^-p \to \text{neutral})} = 0.189 \pm 0.015,$$

Determination of the scattering length by these constraints

B. Borasoy, U.G. Meissner, R. Nissler, Phys. Rev. C 74, 055201 (2006)


--> large uncertainty!

SIDDHARTA measurement

Measurements of the kaonic hydrogen

- shift and width of atomic state <--> K-p scattering length
- SIDDHARTA experiment

M. Bazzi, et al., Phys. Lett. B704, 113 (2011)

--> New constraint on the $\overline{K}N$ interaction

Contents

Introduction

 $\stackrel{\checkmark}{=}$ 1. Λ(1405) in \overline{K} N- $\pi\Sigma$ scattering

 \supseteq 2. Realistic \overline{K} N- π Σ interaction with SIDDHARTA

3. Applications to few-nucleon systems

4. KN sigma term

Summary

1. $\Lambda(1405)$ in $\overline{K}N-\pi\Sigma$ scattering

Chiral unitary approach

Description of S = -1, $\overline{K}N$ s-wave scattering: $\Lambda(1405)$ in I = 0

- Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

- Amplitude <-- unitarity in coupled channels

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

$$T = \frac{1}{1 - VG}V$$

$$= \frac{1}{1 - VG} + \frac{1}{1 - VG}$$

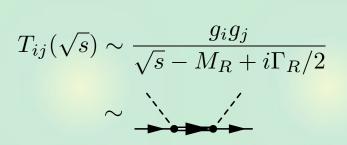
(c.f. Chiral EFT for nuclear force)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),

E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),

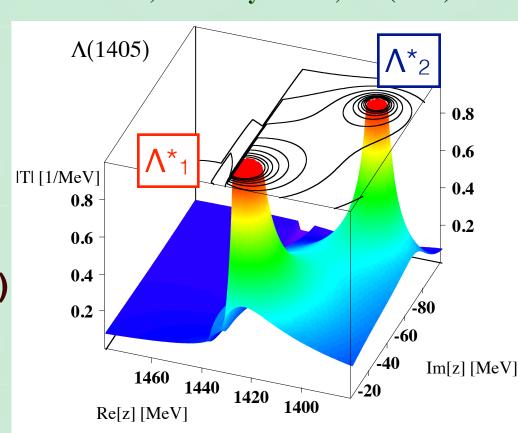
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),

M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others


It works successfully in various hadron scatterings.

1. $\Lambda(1405)$ in $\overline{K}N-\pi\Sigma$ scattering

Pole structure in the complex energy plane


Resonance state ~ pole of the scattering amplitude

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A723, 205 (2003)

Two poles for one resonance (bump structure)

--> Superposition of two states ?

T. Hyodo, D. Jido, PPNP 67, 55 (2012)

Coupling properties:

 $\Lambda^*_1 \sim \overline{K}N$ channel, $\Lambda^*_2 \sim \pi \Sigma$ channel

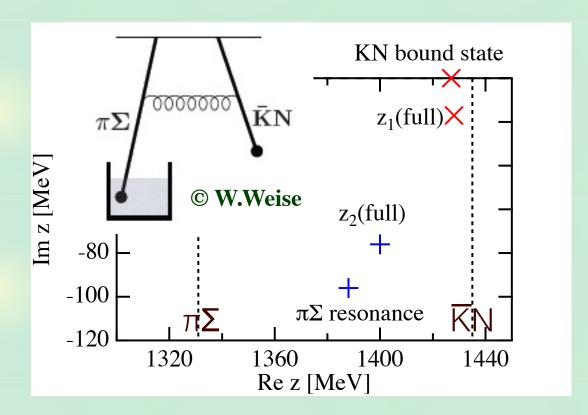
1. $\Lambda(1405)$ in $\overline{K}N-\pi\Sigma$ scattering

Origin of the two-pole structure

Leading order chiral interaction for $\overline{K}N$ - $\pi\Sigma$ **channel**

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

$$V_{ij} = -C_{ij} \frac{\omega_i + \omega_j}{4f^2}$$

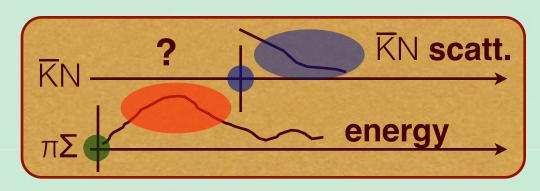

$$\overline{K} N \quad \pi \Sigma$$

$$C_{ij} = \begin{pmatrix} 3 & -\sqrt{\frac{3}{2}} \\ -\sqrt{\frac{3}{2}} & 4 \end{pmatrix}$$

at threshold

$$\omega_i \sim m_i, \quad 3.3 m_\pi \sim m_K$$

$$\Rightarrow V_{\bar{K}N} \sim 2.5 V_{\pi\Sigma}$$


Very strong attraction in $\overline{K}N$ (higher energy) --> bound state Strong attraction in $\pi\Sigma$ (lower energy) --> resonance

Model dependence? Effects from higher order terms?

Experimental constraints for S=-1 MB scattering

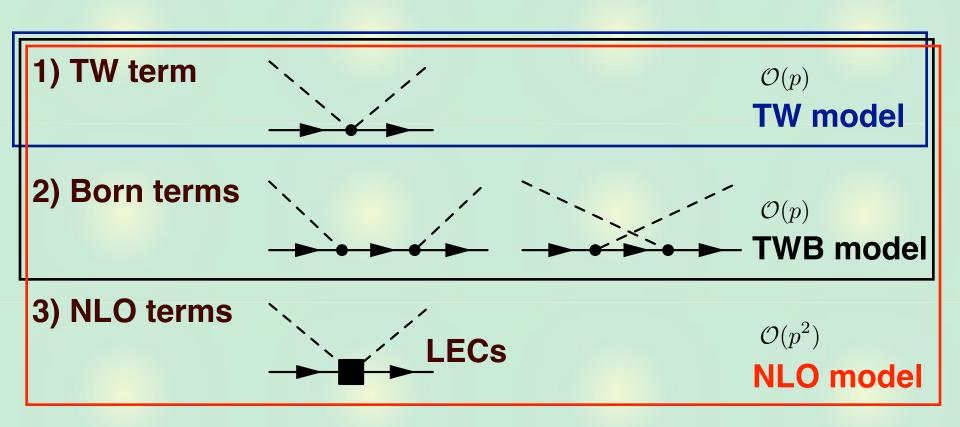
K-p total cross sections

KN threshold branching ratios, K-p scattering length

πΣ mass spectra

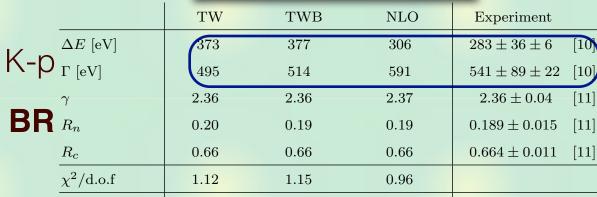
- New data is now available (LEPS, HADES, CLAS, ...)
- No model-independent way to relate two-body amplitude.
- Consistency of the result should be checked.

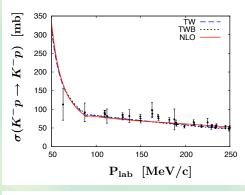
πΣ scattering length (no data at present)

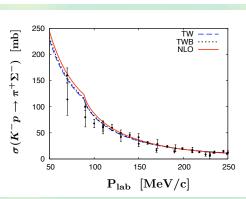

<u>Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, PTP 125, 1205 (2011);</u> <u>T. Hyodo, M. Oka, Phys. Rev. C 83, 055202 (2011)</u>

Construction of the realistic amplitude

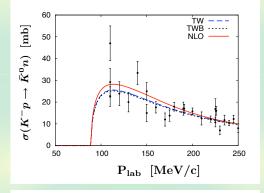
Systematic χ^2 fitting with SIDDHARTA data

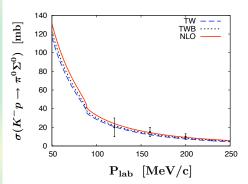

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012);

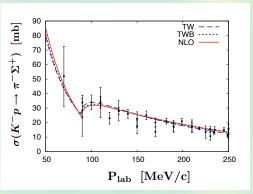

- Interaction kernel: NLO ChPT

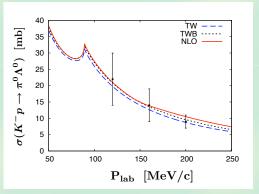


Parameters: 6 cutoffs (+ 7 low energy constants in NLO)

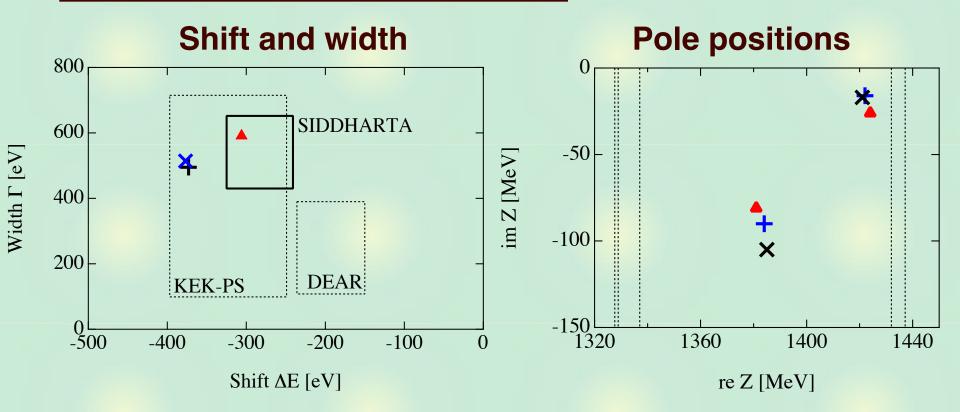

Best-fit results







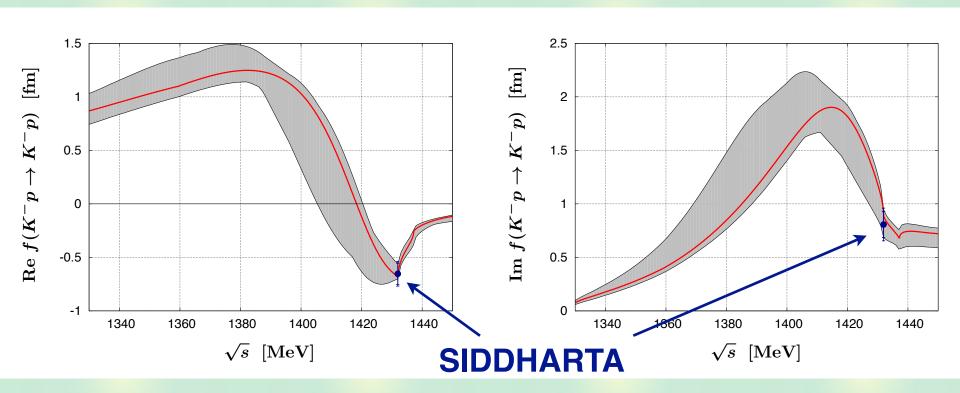
cross sections



Good χ 2: SIDDHARTA is consistent with cross sections

Shift, width, and pole positions

	TW	TWB	NLO
χ² /d.o.f.	1.12	1.15	0.957

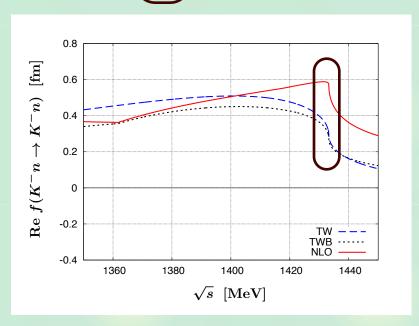


TW and TWB are reasonable, while best-fit requires NLO. Pole positions are now converging.

Subthreshold extrapolation

Behavior of K-p amplitude below threshold

- Properties (structure) of $\Lambda(1405)$
- K bound state in nucleus (KN interaction)


Ambiguity is significantly reduced.

Remaining ambiguity

For \overline{K} -nucleon interaction, we need both K-p and K-n.

$$a(K^-p) = \frac{1}{2}a(I=0) + \frac{1}{2}a(I=1) + \dots, \quad a(K^-n) = a(I=1) + \dots$$

$$a(K^-n) = 0.29 + i0.76 \text{ fm (TW)},$$

 $a(K^-n) = 0.27 + i0.74 \text{ fm (TWB)},$
 $a(K^-n) = 0.57 + i0.73 \text{ fm (NLO)}.$

Some deviation: constraint on K-n? (<-- kaonic deuterium?)

3. Applications to few-nucleon systems

J=0 KNN system

Theoretical calculations of KNN system (~ K-pp)

	SGM07	IS07	YA07	DHW09	IKS10*	BGL12
Method	Fadd.	Fadd.	Var.	Var.	Fadd.	Var.
KN int.	E-indep	E-indep	E-indep	E-dep	E-dep	E-dep
B _{KNN} [MeV]	55-70	60-95	48	17-23	9-16	15.7
Γ _{πΥΝ} [MeV]	90-110	45-80	61	40-70	34-46	41.2

N.V. Shevchenko, A. Gal, J. Mares, Phys. Rev. Lett. 98, 082301 (2007),

Y. Ikeda, T. Sato, Phys. Rev. C76, 035203 (2007),

T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007),

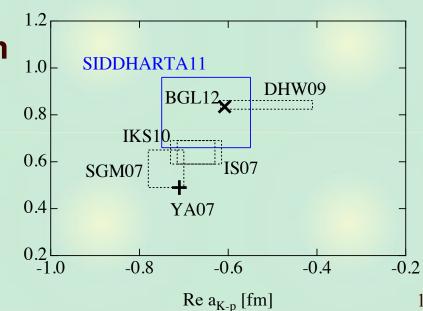
A. Dote, T. Hyodo, W. Weise, Phys. Rev. C79, 014003 (2009),

Y. Ikeda, Kamano, T. Sato, Prog. Thoer. Phys. 124, 533 (2010),

* there is another pole at B = 67-89 MeV with large width.

N. Barnea, A. Gal, E.Z. Liverts, Phys. Lett. B712 (2012)

KNN system forms a quasi-bound state with large width.


3. Applications to few-nucleon systems

Comparison of K-p scattering length

Theoretical calculations of $\overline{K}NN$ system (~ K-pp)

	SGM07	IS07	YA07	DHW09	IKS10	BGL12
Method	Fadd.	Fadd.	Var.	Var.	Fadd.	Var.
KN int.	E-indep	E-indep	E-indep	E-dep	E-dep	E-dep
B _{KNN} [MeV]	55-70	60-95	48	17-23	9-16	15.7
Γ _{πΥΝ} [MeV]	90-110	45-80	61	40-70	34-46	41.2

- New constraint on KNN system
- SIDDHARTA11 is obtained by the improved DT formula
- Models: isospin symmetric. Breaking is important at th.

3. Applications to few-nucleon systems

-
$$I_{NN}=0$$
 --> $\overline{K}N(I=0):\overline{K}N(I=1)$ = 1:3

Small |=0 component : less attractive

	UHO11	Oset et al. (12)	BGL12
Model	∧*N potential	FCA	Three-body variational
B _{KNN} [MeV]	> M ∧*N	9	> M ∧*N
Γ _{πΥΝ} [MeV]	-	30	-

T. Uchino, T. Hyodo, M. Oka, Nucl. Phys. A868-869, 53 (2011)

E. Oset, et al., Nucl. Phys. A881, 127 (2012)

N. Barnea, A. Gal, E.Z. Liverts, Phys. Lett. B712 (2012)

Weakly bound state may appear (above Λ^*N)

--> Closely related with K-d scattering length?

Estimation of the K-d scattering length

K-d scattering length with EFT (fixed center approximation)

U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

$$A_{Kd} = \left(1 + \frac{m_K}{M_d}\right)^{-1} \int_0^\infty dr (u^2(r) + w^2(r)) \hat{a}_{kd}(r)$$

$$\hat{a}_{kd}(r) = \frac{\tilde{a}_p + \tilde{a}_n + (2\tilde{a}_p\tilde{a}_n - b_x^2)/\tilde{r} - 2b_x^2\tilde{a}_n/\tilde{r}^2}{1 - \tilde{a}_n\tilde{a}_n/\tilde{r}^2 + b_x^2\tilde{a}_n/\tilde{r}^3} + \delta\hat{a}_{kd}$$
lengths

NLO model + |=1 prediction + deuteron w.f.

- s-wave only

$$A_{Kd} = -1.48 \pm 0.19 + i(1.35 \pm 0.24) \text{ fm}$$

- realistic wave function (CD-Bonn)

$$A_{Kd} = -1.54 + i1.64 \text{ fm}$$

- three-body calculation...

Y. Ikeda, T. Hyodo, W. Weise, work in progress

σ term and QCD

Definition of the nucleon of term:

See T.P. Cheng and L.F. Li, Gauge theory of elementary particle physics, 5.4, 5.5

$$\sigma \sim \lim_{\text{soft}} \text{F.T.} \langle N | [A_0, \partial^{\mu} A_{\mu}] | N \rangle$$

- commutator of axial current and its divergence.
- zero, if no explicit breaking.

Relation to QCD

$$\sigma \sim \text{F.T.} \langle N | [A_0, [\mathcal{H}_{QCD}, A_0]] | N \rangle \sim \langle N | [Q_5, [Q_5, m_q \bar{q}q]] | N \rangle \sim m_q \langle N | \bar{q}q | N \rangle$$

- quark content of hadron
- Q=0 of the scalar form factor

Lattice QCD data + Feynman-Hellmann theorem

P.E. Shanahan, A.W. Thomas, R.D. Young, arXiv:1205.5365 [nucl-th]

$$\sigma_{\pi N} = \bar{m} \langle N | \bar{u}u + \bar{d}d | N \rangle = \bar{m} \frac{\partial M_N}{\partial \bar{m}} = 45 \pm 6 \text{ MeV}$$
$$\sigma_s = m_s \langle N | \bar{s}s | N \rangle = m_s \frac{\partial M_N}{\partial m_s} = 21 \pm 6 \text{ MeV}$$

σ term and πN scattering

Relation to πN **scattering amplitude**

- Nucleon matrix element : chiral Ward identity

$$\partial^{\mu}\partial^{\nu}T(A_{\mu}A_{\nu}) = T(\partial^{\mu}A_{\mu}\partial^{\nu}A_{\nu}) + \delta(x_0 - y_0)[A_0, \partial^{\nu}A_{\nu}] - \partial^{\mu}(\delta(x_0 - y_0)[A_{\mu}, A_0])$$

- PCAC, [A,A]=V, forward scattering, soft limit ($q^2 --> 0$)

$$ig_A^2 \nu = -if_\pi^2 T_{\pi N}(\nu) - i\sigma + i\nu \qquad \nu = \frac{p \cdot q}{M} = E_\pi^{\text{lab}} \qquad \pi(q)$$

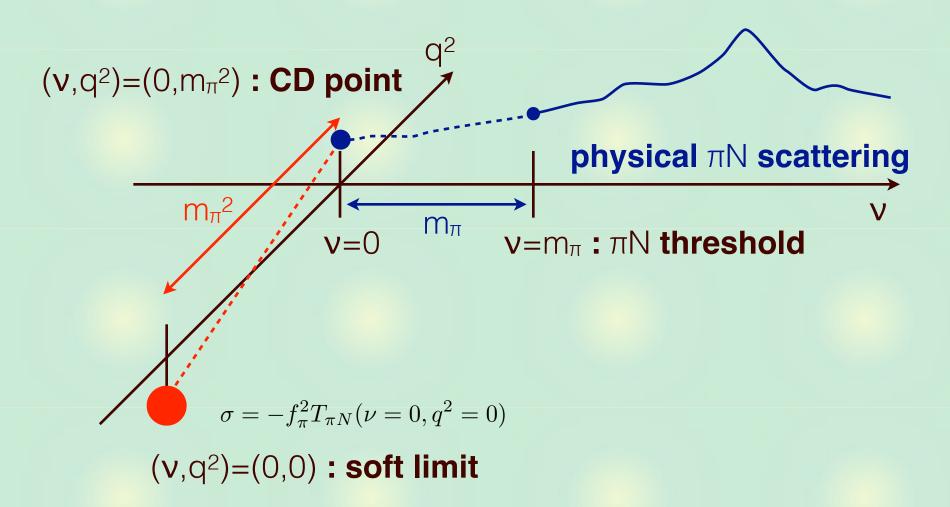
$$\pi^{\mathrm{lab}}$$
 $\pi(q)$ $\pi(q)$

Born terms of term WT term

Amplitude at v=0: σ term

$$\sigma = -f_{\pi}^2 T_{\pi N}(\nu = 0, q^2 = 0)$$

Adler consistency condition


$$\sigma = -f_{\pi}^{2} T_{\pi N}(\nu = 0, q^{2} = 0) = f_{\pi}^{2} T_{\pi N}(\nu = 0, q^{2} = m_{\pi}^{2}) + \mathcal{O}(m_{\pi}^{4})$$

- amplitude at Cheng-Dashen point ($E_{\pi} --> 0$ with on-shell)

4. KN sigma term

σ term and πN scattering

Schematic illustration of the extrapolation

Long way to the amplitude at soft limit $\sim m_{\pi}$

4. KN sigma term


σ term and $\overline{K}N(KN)$ scattering

KN scattering case:

$$T_{\bar{K}N} = T^{\mathrm{IS}} + T^{\mathrm{IV}} \vec{\tau}_{\bar{K}} \cdot \vec{\tau}_{N}, \quad T^{\mathrm{IS}} = \frac{1}{2} (T^{K^{-}p} + T^{K^{-}n}), \quad T^{\mathrm{IV}} = \frac{1}{2} (-T^{K^{-}p} + T^{K^{-}n})$$

$$\sigma^{\mathrm{IS}} = \frac{\bar{m} + m_{s}}{4} \langle N | \bar{u}u + \bar{d}d + 2\bar{s}s | N \rangle, \quad \sigma^{\mathrm{IV}} = \frac{\bar{m} + m_{s}}{4} \langle N | \underline{\bar{u}u - \bar{d}d} | N \rangle$$
isospin breaking

- m_{π} --> m_{K} : much longer extrapolation
- $\pi\Sigma$ and $\pi\Lambda$ channels below $\overline{K}N$
- existence of $\Lambda(1405)$

low energy KN scattering (no resonance, no threshold,...)?

Summary

Summary 1

We study the $\overline{K}N-\pi\Sigma$ interaction based on chiral coupled-channel approach.

Λ(1405) is interpreted as a quasi-bound $\overline{K}N$ state in the resonating $\pi\Sigma$ continuum.

Accurate K-hydrogen data help us to construct realistic $\overline{K}N-\pi\Sigma$ interaction. **Ambiguity** in subthreshold extrapolation is significantly reduced.

Summary 2

We study the $\overline{K}N-\pi\Sigma$ interaction based on chiral coupled-channel approach.

New $\overline{K}N$ interaction will reduce uncertainties of \overline{K} few-nucleon systems.

Determination of KN sigma term from KN scattering is difficult. Crossed channel (KN sector) may help the extrapolation.