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Why DN and DNN?

DN

πΣc
~2

10
 M

eV

(conventional view : Λc* ~ 3-quark state
 200 MeV binding : too large?)

Comparison with K̅N system in I=0 channel

K̅N

πΣ~1
00

 M
eV Λ*(1405)

~1
5-

30
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eV

Λc*(2595)

~ 
20

0 
M

eV

K̅ nuclei <-- Λ*: a K̅N bound state in the πΣ continuum

Introduction

- narrow negative parity Λc*, analogous to Λ(1405)?

D nuclei? <-- Λc*: a DN bound state in the πΣc continuum
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DN bound state picture ?
Can Λc* (with large binding) be a DN quasi-bound state?

DN interaction and Λc(2595)

- D (1867 MeV) is heavier than K̅ (496 MeV).
  Kinetic energy is suppressed. 
  If the DN interaction were the same with K̅N, 
  system would develop a deeper quasi-bound state.

VD

VK
=

mD

mK
⇠ 3.8

- Vector meson exchange picture leads to a stronger DN 
  interaction than K̅N (at threshold)

(next slide)

DN system can generate a strongly bound state: Λc*.
BDN > BK̄N = 15-30 MeV
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Vector meson exchange for DN
DN (K̅N) interaction in vector meson exchange (low energy)

k

q q0

Interaction in DN-πΣc system (J/Ψ exchange ignored)
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- strong DN interaction --> large binding energy

V � gū�µu � 1
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� g(q + q�)�
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f2
(at threshold)

- suppressed off-diagonal coupling --> narrow width of Λc*

�c � m2
K�

m2
D�

� 1

4

! � 1

2f2
(q0 + q00)

- k << mv + KSRF relation

- at threshold
q q0

(Weinberg-Tomozawa)

DN interaction and Λc(2595)
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DN scattering amplitude
Coupled-channel DN (πΣc, ηΛc, KΞc, KΞc’, DsΛ, η’Λc) scattering
see T. Mizutani, A. Ramos, Phys. Rev. C74, 065201 (2006)
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Sec. V. The discussion for the obtained results are given
in Sec. VI. The conclusions of this study are drawn in
the last section.

II. DN SCATTERING AND INTERACTION

We consider the two-body DN scattering based on the
model in Ref. [39]. This is a coupled-channel approach to
the s-wave meson-baryon scattering in the vector-meson
exchange picture. The negative parity Λc(2595) reso-
nance is dynamically generated as a quasi-bound state of
the DN system in the I = 0 channel, just like the Λ(1405)
resonance in the strangeness sector [19–25]. In Sec. II A,
we derive the DN two-body scattering amplitude which
will be used in the FCA calculation. An effective single-
channel potential is constructed so as to reproduce the
equivalent scattering amplitude in section II B. This will
be the basic input in the variational calculation. We work
in the isospin symmetric limit, which is sufficient for the
required precision of the present study.

A. Coupled-channel model for the DN scattering

We consider seven (eight) coupled channels in the
isospin I = 0 (I = 1) sector, DN , πΣc, ηΛc, KΞc, KΞ′

c,
DsΛ, and η′Λc (DN , πΛc, πΣc, ηΣc, KΞc, KΞ′

c, DsΣ,
and η′Σc). In Ref. [39], the coupled-channel interaction
is given by the Weinberg-Tomozawa term

v(I)
ij (W ) = −

κC(I)
ij

4f2
(2W −Mi−Mj)

√

Mi + Ei

2Mi

√

Mj + Ej

2Mj
,

where W is the total energy, f is the meson decay con-
stant, Mi and Ei are the mass and energy of the baryon in

channel i, respectively, and C(I)
ij is the group theoretical

coupling strength for isospin I. The reduction factor κ is
introduced to take into account the mass difference of the
exchanged meson, which we set κ = 1 (κ = κc = 1/4) for
the uds (charm) flavor exchange process [39]. The scat-
tering amplitude tij is obtained from the matrix equation

t(I) = ((v(I))−1 − g(I))−1, (1)

where the diagonal loop function is given in dimensional
regularization as

g(I)
i (W ; ai(µ))

=
1

(4π)2

{

ai(µ) + ln
M2

i

µ2
+

m2
i − M2

i + W 2

2W 2
ln

m2
i

M2
i

+
q̄i

W
[ln(W 2 − (M2

i − m2
i ) + 2W q̄i)

+ ln(W 2 + (M2
i − m2

i ) + 2W q̄i)

− ln(−W 2 + (M2
i − m2

i ) + 2W q̄i)

− ln(−W 2 − (M2
i − m2

i ) + 2W q̄i)]
}

,
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FIG. 1. (Color online) S-wave DN scattering amplitude in
the coupled-channel model (1) (Left: I = 0 channel, Right:
I = 1 channel). Vertical dotted lines represent the threshold
energies of πΣc and DN channels.

where q̄i is the magnitude of the three-momentum in the
center-of-mass frame. We choose the subtraction con-
stants at µ = 1 GeV as

aDN = − 2.056, ai = −2.06 (i "= DN), (2)

for both the I = 0 and I = 1 states, so that the Λc(2595)
resonance is dynamically generated at the observed en-
ergy. By choosing the isospin symmetric subtraction con-
stants (2), a resonance state is also generated in I = 1
at ∼ 2760 MeV. The diagonal components of the s-wave
scattering amplitudes in the DN channel, which are com-
plex above the πYc (Yc = Λc, Σc) threshold, are shown
in Fig. 1. The resonant nature of the amplitudes can be
seen in both channels.

It is worth comparing the I = 0 DN -πΣc system with
the corresponding K̄N -πΣ system. Both the systems
have a quasi-bound state. Neglecting the small effect
of the normalization factor, we can write the coupling
strength for the DN case as

vij ∼





3
√

3
2 κc

√

3
2 κc 4





2W − Mi − Mj

4f2
,

where the channels are assigned as DN (i = 1) and πΣc

(i = 2). This is the same form with the K̄N -πΣ case,
except for the factor κc = 1/4 in the off-diagonal chan-
nel. The diagonal interaction is proportional to the me-
son energy W − Mi, which is reduced to the meson mass
at threshold. Thus, there are three differences from the
strangeness sector: 1) heavy mass of D meson, which
enhances the strength of the DN interaction by the en-
ergy factor W − Mi; 2) large reduced mass of the sys-
tem, which suppresses the kinetic energy in the charm
sector; 3) weak transition coupling DN → πΣc, which
suppresses the decay of the quasi-bound state into the
πΣc state. These facts explain the reason why the DN
quasi-bound state is generated with larger binding energy
and narrower width than those of the K̄N quasi-bound
state. In addition, 1) and 2) also enhance the attractive
interaction in the I = 1 channel. As a consequence, we
obtain a resonance state also in I = 1 at ∼ 2760 MeV,

Λc*(2595)

Subtraction constants (cutoff parameters) are chosen to 
reproduce Λc* in I=0. Apply the same constants to I=1.

?

A resonance at ~ 2760 MeV is generated in I=1 channel.
  c.f. PDG 1*: Λc(2765) or Σc(2765) ??

DN interaction and Λc(2595)
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DN local potential
Equivalent single-channel local potential
T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008)

vDN (r; W ) =
MN

2�3/2a3
s�̃(W )

[ve�(W ) + �v(W )] exp[�(r/as)
2]

3

as far as choosing the isospin symmetric subtraction con-
stants (2).

B. Effective single-channel DN potential

Now we construct an effective single-channel potential,
which will be used in the variational calculation of the
DNN system. We utilize the method in Ref. [45], first
constructing a single-channel framework which is equiva-
lent to Eq. (1) and then translating the result into a local
and energy-dependent potential in coordinate space.

The effective interaction veff is constructed to repro-
duce the original amplitude t11, given by the DN single-
channel scattering equation (we suppress the isospin in-
dex in this section)

t11 =[(veff)−1 − g1]−1. (3)

It is shown that the veff is given by the sum of the bare
interaction in channel 1 (v11) and the term with coupled-
channel effects as [45]

veff =v11 +
N
∑

m=2

v1mgmvm1 +
N
∑

m,l=2

v1mgmt(N−1)
ml glvl1,

(4)

where t(N−1)
ml = [(v(N−1))]−1 − g(N−1)]−1 is the (N −

1) × (N − 1) matrix of the coupled-channel amplitude
without the DN channel. In this way, Eq. (3) gives the
equivalent amplitude with the 11 component in Eq. (1).
veff is complex above the πYc threshold, because of the
imaginary part of the loop function of the πYc channel in
Eq. (4).

We then translate veff into the local potential in co-
ordinate space. Adopting a single gaussian form for the
spatial distribution, the two-body potential can be writ-
ten as

vDN (r; W ) =
MN

2π3/2a3
sω̃(W )

× [veff(W ) + ∆v(W )] exp[−(r/as)2],
(5)

where as = 0.4 fm is the range parameter of the po-
tential and ω̃(W ) is the reduced energy of the DN sys-
tem. The energy-dependent correction term ∆v(W ) is
introduced to compensate the deviation from the lo-
cal potential approximation. This complex and energy-
dependent potential reproduces the scattering amplitude
t11 when the Schrödinger equation with this potential
is self-consistently solved. The strength of the potential
vDN (r; W ) at r = 0 is shown in Fig. 2. One finds that the
real part (imaginary part) is larger (smaller) than that
of the K̄N potential [45], which demonstrate the differ-
ences of the interaction kernel discussed in the previous
section.
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FIG. 2. (Color online) Strength of the effective potential
vDN (r, W ) at r = 0 by Eq. (5) (Left: I = 0 channel, Right:
I = 1 channel). The range parameter is chosen to be as = 0.4
fm. Vertical dotted lines represent the threshold energies of
πΣc and DN channels.

III. THE FIXED CENTER APPROXIMATION
FOR THE DNN SYSTEM

The fixed center approximation (FCA) to the Faddeev
equations has been used with success in several problems.
It is advantageous that the two-body absorption process
of the three-body system can be calculated as discussed
in Sec. III B. One assumes that a pair of particles remains
relatively unaffected by the interaction of the third par-
ticle with this pair. This usually happens when the third
particle is lighter than the constituents of the pair, and
also if the cluster is tightly bound. The method has been
used with success in the study of K− scattering with
the deuteron in Refs. [46–49] (see a review in Ref. [50]
for comparison with full Faddeev calculations). More re-
cently it has been applied to systems of two mesons and
a baryon in Ref. [51], where the NK̄K system is investi-
gated. The results obtained are in good agreement with
more accurate results obtained with variational calcula-
tions in Ref. [52], or the Faddeev equations in coupled
channels [53, 54]. The puzzle of the ∆5/2+ (2000) is also
addressed with this technique, assuming this resonance to
be mostly built up from πρ∆ in Ref. [55]. Closer dynami-
cally to the problem under consideration is the work [56],
where the NDK, K̄DN and NDD̄ systems are studied
with this method.

In the present case, where we want to study the
DNN system, we have also the precedent of the work of
Refs. [34, 36], where the K̄NN system was studied within
this approximation and found to provide results in qual-
itative agreement with those of the variational calcula-
tions [29, 30]. The condition that the interacting particle
(D meson) is lighter than those of the two-body cluster
(nucleon) is not fulfilled in this case. This certainly in-
troduces larger uncertainties than in other cases studied
but we still expect that one can get good results at a
qualitative level. Actually, the real difficulty of the FCA
occurs when one applies it to studying possible resonant
three body systems above the threshold of the three par-
ticles [57]. In the present case, we look for deeply bound
states of the DNN system and we are safer. However, in

- This potential reproduces the DN amplitude in CC model.

TETSUO HYODO AND WOLFRAM WEISE PHYSICAL REVIEW C 77, 035204 (2008)
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FIG. 10. (Color online) Scattering

amplitudes FK̄N from the local potential
U (r, E) (thick lines) and from the ampli-
tude T eff in the original chiral coupled-
channel approach (thin lines) obtained
by using the HNJH model for the I =
0 channel (left) and the I = 1 channel
(right). Real parts are shown as solid lines
and imaginary parts as dashed lines.

s-wave scattering amplitude is

FK̄N = 1
k(cot δ0 − i)

,

where the phase shift δ0 is determined by the asymptotic wave
function,

u(r)
r

→ A0[cos δ0j0(kr) − sin δ0n0(kr)] for r → ∞,

with spherical Bessel and Neumann functions j0 and n0.
The wave number k =

√
2µE becomes imaginary below

threshold, E < 0.
Given V eff(

√
s) as input, the range parameter b is then

fixed by requiring that the real part of the K̄N amplitude
develops its zero at

√
s % 1420 MeV to satisfy the condition

for the quasibound K̄N state at this point. For the HNJH
model, this condition determines b = 0.47 fm. Note that this
scale is somewhat smaller than the typical range associated
with vector meson exchange, the picture that one has in mind
as underlying the vector current interaction generating the
Weinberg-Tomozawa term.

With b = 0.47 fm fixed, the I = 0 and I = 1 amplitudes
generated by the equivalent local pseudopotential U (r, E)
reproduce the full K̄N coupled-channel amplitudes perfectly
well in the threshold and subthreshold region above

√
s %

1420 MeV. However, at energies below the quasibound state,
the local ansatz [Eq. (11)] does not extrapolate correctly
into the far-subthreshold region. One has to keep in mind
that the complex, off-shell effective K̄N interaction is in
general nonlocal and energy dependent to start with. Its
detailed behavior over a broader energy range cannot be
approximated by a simple local potential without paying the
price of extra energy dependence. This is demonstrated in
Fig. 10. In the subthreshold region below

√
s < 1400 MeV,

the amplitudes calculated with the local potential overesti-
mate the ones resulting from the coupled-channel approach
significantly, in both I = 0 and I = 1 channels. One observes
that subthreshold extrapolations using a naive local potential
tend to give much stronger K̄N attraction than what chiral
coupled-channel dynamics actually predicts. Corrections to
the energy dependence of the local potential need to be applied
to repair this deficiency.

C. Improved local potentials and uncertainty analysis

The necessary corrections just mentioned can easily be
implemented by introducing a third-order polynomial in

√
s,

U (r = 0, E) = K0 + K1
√

s + K2(
√

s)2 + K3(
√

s)3,

1300 !
√

s ! 1450 MeV,
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FIG. 11. (Color online) Upper
panels: Strength of the fitted potential
at r = 0 (thick lines) and the strength
without correction [Eq. (11); dotted
lines] with the HNJH model. Lower
panels: Scattering amplitude f from
the local potential (thick lines) and the
amplitude Teff. in the original chiral
unitary approach (thin lines) with the
HNJH model. The real parts are shown
by the solid lines, and the imaginary parts
are depicted by the dotted lines. Left:
I = 0 channel. Right: I = 1 channel.

035204-10

c.f. K̅N case

- Larger (smaller) real (imaginary) part than K̅N

- reproduces the coupled channel amplitude

DN interaction and Λc(2595)
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Strategy for DNN bound state

Coupled-channel model
DN amplitude, Λc(2595)

DNN quasi-bound state

DN single-
channel potential

- Two-body absorption
- Imaginary part of the
  amplitude is treated.

- Structure from 
  wave function 
- NN dynamics is  
  dynamically solved.

Coupled-channel (πYcN) effect is partly included.

Three-body variational 
calculation

real part Fixed-center 
approximation to  
Faddeev equation

Assume NN 
distribution
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Variational calculation: results
Results of the DNN system
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FIG. 12. Modulus squared of the three-body scattering am-
plitude for I = 1/2 and J = 1 (with δG̃) with reduced NN
radius.

D absorption is included where the widths are similar.
Next we include the δg̃ to account for absorption and

plot |T |2 for the DNN system in Figs. 11 and 12 for
J = 0 (INN = 1) and J = 1 (INN = 0). The difference
of the peak position by the absorption effect is only a
few MeV (2-4 MeV) which is certainly within our uncer-
tainties. The novelty, which is welcome, is that |T |2 has
become now wider and acquires a width of about 20-25
MeV. We are now in a position to compare the strength
of these two amplitudes and we see that in the case of
J = 0 the strength of |T |2 at the peak is about a fac-
tor 15 larger than that for J = 1. This means that the
state that we find at J = 1 should be more difficult to
see, or alternatively we should see the small strength as
an indication that this state is more uncertain in our ap-
proximation, as should be the smaller shoulder that one
can see at higher energies for J = 1 in Fig. 12.

B. Quasi-bound states in the variational approach

Now we investigate the same system in the variational
approach. We first adopt HN1R potential for the nuclear
force. As a result of the variational calculation, we have
found that the total spin J = 1 system (INN = 0) is
unbound with respect to the Λ∗

cN threshold. A bound
state of spin J = 0 system (INN = 1) is found at

B ∼ 225 MeV,

measured from the DNN threshold (∼ 3745 MeV). This
corresponds to the total energy of the three-body system
as

MB ∼ 3520 MeV.

We also examine the Minnesota force and Av18 potential.
The results are summarized in Table I, together with the
contributions from the individual terms in Eq. (18).

TABLE I. Results of the energy compositions in the varia-
tional calculation for the ground state of the DNN system
with total isospin I = 1/2 (range parameter as = 0.4 fm).
Terms “bound” and “unbound” are defined with respect to
the Λ∗

cN threshold. All the numbers are given in MeV.

HN1R Minnesota Av18

J = 1 J = 0 J = 0 J = 0

unbound bound bound bound

B 208 225 251 209

MB 3537 3520 3494 3536

ΓπYcN - 26 38 22

Ekin 338 352 438 335

V (NN) 0 −2 19 −5

V (DN) −546 −575 −708 −540

Tnuc 113 126 162 117

ENN 113 124 181 113

P (Odd) 75.0 % 14.4 % 7.4 % 18.9 %

As seen in the Table I, the DNN system in the J = 0
channel is bound below the Λ∗

cN threshold (B ∼ 209
MeV) for all the NN potentials employed.1 A large ki-
netic energy of the deeply bound system is overcome by
the strong attraction of the DN potential, while the NN
potential adds a small correction. Comparing the results
with three different nuclear forces, we find that the bind-
ing energy is smaller when the NN potential has a harder
repulsive core (see Appendix A).

In the J = 1 channel, the ground state energy is ob-
tained slightly above the Λ∗

cN threshold. The fact that
the J = 1 channel is unbound is confirmed by changing
the parameter µ in the trial wave function, which controls
the size of the total system [30]. By increasing the sys-
tem size, the total energy gradually approaches the Λ∗

cN
threshold. This indicates that the lowest-energy state is
indeed a two-body scattering state of the Λ∗

cN channel.
A large fraction of the odd component in this channel
(∼ 75 %) is realized to enhance the INN = 1 compo-
nent which has larger fraction of the IDN = 0 than the
INN = 0 component. In fact, pure | (DN)I=0N 〉 state
can be decomposed into INN = 0 and INN = 1 compo-
nents with the ratio 1:3. Since the INN = 1 state is the
odd state in J = 1 (SNN = 1) channel, the 75 % fraction
of the odd component indicates that the DN pair forms
the Λ∗

c . We also examine the J = 1 channel with the
Minnesota force. Although the repulsive core is soft in
this case, no bound Λ∗

cN is found.
Using the imaginary part of the DN potential, we eval-

uate the mesonic decay width of the quasi-bound state in

1 Av18 case is almost at the Λ∗

c N threshold, but we confirm that
the wave function is localized as we will see in Sec. V C.

DNN

[DN]N
[DNN] 1-

43
 M

eV20
9-

25
1 

M
eV

- J=0 bound, J=1 unbound w.r.t. [DN]N
- mesonic decay width is small
- softer the core, larger the binding

DNN quasi-bound state



Variational calculation: DN correlation
Isospin decomposition of DN two-body correlation
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FIG. 14. (Color online) Top: Normalized DN two-body corre-
lation density ρDN(r) with isospin decomposition. The I = 0
DN bound state (Λ∗

c) correlation density is also shown for
comparison. Bottom: the same plot of the densities multi-
plied by r2.

conclude that these uncertainties are much smaller than
the dependence on the choice of the NN potential. The
variation of the values in Tables I and II can be regarded
as the theoretical uncertainties in the present calculation.

VI. DISCUSSION

A. Comparison of two approaches

We have presented the results of two approaches, the
Faddeev FCA calculation and the variational calculation.
In the total spin J = 0 channel, both approaches find
a quasi-bound state around 3500 MeV which is below
the Λ∗

cN threshold. The assumed NN distribution in
the FCA turns out to be similar with that found in the
variational calculation by minimizing the total energy. It
is therefore reasonable to conclude that these approaches
find the same quasi-bound state.

The spin J = 1 channel, on the other hand, has dif-
ferences in the two approaches. The lowest-energy state
obtained in the variational calculation is a Λ∗

cN scat-
tering state, while a narrow peak is found in the FCA
amplitude below the Λ∗

cN threshold, although the sig-
nal strength is not so significant as the J = 0 case. A
major reason of this discrepancy may be traced back to

the DN interaction in the isospin I = 1 channel. In the
original coupled-channel amplitude, there is an I = 1
quasi-bound state, which induces the bound state in the
FCA. As discussed in Sec. II B, however, the energy de-
pendence of the DN potential in the variational approach
is fixed at the energy of the Λ∗

c in the I = 0 channel. This
reduces the strength of the I = 1 amplitude, and the two-
body quasi-bound state is not generated in the effective
potential. Since the total spin J = 1 channel has larger
fraction of the I = 1 DN amplitude, this difference is
enhanced and results in different three-body results.

In fact, we may artificially adjust the condition (19) to
generate a quasi-bound state in the I = 1 channel in the
variational approach. By setting the strength of the DN
interaction at W ∼ 2766 MeV in the I = 1 channel, a
quasi-bound state is generated in the I = 1 DN channel.
In this case, the energy dependence of the DN interac-
tion is fixed at each isospin channel, and the strength of
the DN attraction is increased in the I = 1 channel. By
performing the three-body calculation, we find that the
binding energy in the J = 0 quasi-bound state are in-
creased by 10-50 MeV, depending on the NN interaction
employed. This is because of the increase of the attrac-
tion, and the binding energy appears to be closer to the
FCA result. In the J = 1 sector, only the Minnesota
potential supports a bound state with B = 214 MeV,
while no state is found below the Λ∗

cN threshold with
the other two NN interactions. Given the uncertainty in
the choice of the NN interaction, the present result does
not strongly support the existence of the quasi-bound
state in the J = 1 sector. In order to pin down the
J = 1 quasi-bound state, it is necessary to accumulate
the experimental information of the DN I = 1 scattering
amplitude, or the information on the negative parity Σ∗

c
resonance.

In addition, we should also remember that the two ap-
proaches employ different approximations. In the FCA,
the dynamics of the nucleons is not solved explicitly,
while the imaginary part of the DN potential is not taken
into account in the variational approach. In both cases,
explicit πYcN dynamics is approximated at different lev-
els (see the discussion in Ref. [36]), whereas its impor-
tance has been pointed out in the strangeness sector [31].
These effects can also be responsible for the difference of
the results in the two approaches.

B. Comparison with K̄NN results

It is instructive to compare the DNN quasi-bound
state with the corresponding K̄NN state in Ref. [30]. In
both cases, we obtain a quasi-bound state, but the DNN
system has a larger binding energy and a narrower width.
This is in parallel with the properties of the DN and K̄N
two-body quasi-bound states, and they are closely related
through the DN and K̄N interactions.

As discussed in Sec. II A, the D meson can be more
strongly bound in a nucleus than K̄ meson by two rea-

DN (I=0) correlation is similar to Λc*

N N

D r

�DN (r) = ��|
�

i=1,2

�3(|rD � ri| � r)|��

DNN quasi-bound state
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FCA calculation
Fixed-center approximation to Faddeev equation

4

I I�

TII� = 

I� I�

TI�I�

tI

+ 

tI
Pex

G

FIG. 3. Diagrammatic illustration of the three-body equa-
tion (6).

order to be more certain about the results, we have also
performed calculations using a variational method. The
differences found in the two approaches can give us an
idea of the uncertainties, and the features shared by the
two approaches can be considered more reliable.

A. The formalism for the FCA in the DNN system

In the FCA to the Faddeev equations for the DNN
three body system, one takes the NN as a cluster and
D scatters from that cluster. We consider the DNN
system with total isospin Itot = 1/2 and with the total
spin-parity JP = 0− and JP = 1−. In this approach, all
the two-body pairs are in s wave.

First we make the evaluation for the case of JP = 0−,
which corresponds to the spin (isospin) of the NN pair
as SNN = 0 (INN = 1). To have total isospin Itot = 1/2,
the dominant component of the DN system is I = 0,
where the Λ(2595) resonance appears.

The T matrix for the three-body DNN scattering is
labeled by the DN isospins in the entrance channel I
and the exit channel I ′, TI,I′ . We denote the two-body
(s-wave) DN scattering amplitudes by t(0) for I = 0 and
t(1) for I = 1. Then the T matrix satisfies

TI,I′ = t(I)δI,I′ + t(I)GI,I′′G0TI′′,I′Pex, (6)

which is diagrammatically represented in Fig. 3. In
Eq. (6), G0 is the meson exchange propagator [34, 58]

G0 =

∫

d3q

(2π)3
FNN (q)

1

q02 − #q 2 − m2
D + iε

, (7)

where FNN (q) is the form factor, representing momen-
tum distribution of the NN system. Pex is the isospin
exchange factor, which depends on the total isospin of the
nucleon, INN , in the final state, Pex = (−1)INN +1 = 1
for J = 0, and = −1 for J = 1.

Here we concentrate on the isospin factors in the DNN
scattering amplitudes. We define the isospin doublets,
N = (p, n), D = (D+, −D0) and consider the DNN
states with the total isospin Itot = 1/2. There are two
independent states with the total spin J = 0 and J = 1,
which can be decomposed into the DN isospin eigen-
states, as

|D(N1N2)INN =1〉J=0 =

√
3

2
|(DN1)0N2〉 +

1

2
|(DN1)1N2〉,

|D(N1N2)INN =0〉J=1 = −1

2
|(DN1)0N2〉 +

√
3

2
|(DN1)1N2〉.

The D exchange matrix is given in terms of the isospin
recombination factors.

|(DN1)0N2〉 =
1

2
|(DN2)0N1〉 +

√
3

2
|(DN2)1N1〉,

|(DN1)1N2〉 =

√
3

2
|(DN2)0N1〉 − 1

2
|(DN2)1N1〉.

Thus the transition matrix G is given by

G =







1

2

√
3

2√
3

2
−1

2






.

The three-body amplitude TI,I′ is obtained by solving
Eq. (6):

T =

[

1 − 1

2
(t(0) − t(1))G0Pex − t(0)t(1)G2

0

]−1

×
(

t(0) + 1
2 t(1)G0t(0)Pex

√
3

2 t(0)t(1)G0Pex√
3

2 t(0)t(1)G0Pex t(1) − 1
2 t(0)G0t(1)Pex

)

.

In calculating the T matrix for the scatterings in the J =
0 and J = 1 channels, we take the linear combinations,
with a factor 2 for the choice of the first nucleon, as

T (J = 0) = 2
(√

3
2

1
2

)

(

T00 T01

T10 T11

)(
√

3
2
1
2

)

,

T (J = 1) = 2
(

− 1
2

√
3

2

)

(

T00 T01

T10 T11

)(

− 1
2√
3

2

)

.

Substituting the T matrix and replacing Pex by +1 for
J = 0, INN = 1 scattering and −1 for J = 1, INN = 0,
we obtain

T (J = 0) =

(

3

2
t(0) +

1

2
t(1) + 2t(0)t(1)G0

)

×
[

1 − 1

2
(t(0) − t(1))G0 − t(0)t(1)G2

0

]−1

,

(8)

T (J = 1) =

(

1

2
t(0) +

3

2
t(1) + 2t(0)t(1)G0

)

×
[

1 +
1

2
(t(0) − t(1))G0 − t(0)t(1)G2

0

]−1

.

(9)

These results coincide with those derived in the charge
basis [35, 36] (see Appendix B).

We can see that Eq. (7) contains the folding of the D
intermediate propagator with the form factor of the NN
system. The variable q0 in Eq. (7) is the energy carried
by the D, which is given by

q0 =
s + m2

D − (2MN )2

2
√

s
,

with
√

s for the rest energy of the DNN system. Eq.
(7) requires the NN form factor. For INN = 0 one could

N
N

D

- Complex DN amplitude
- all two-body pairs are in s-wave
- NN distribution is assumed 
   (checked with the variational calculation result)

DNN quasi-bound state
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FCA calculation: two-body absorption
Two-body absorption --> imaginary part of DN amplitude

5

take the deuteron form factor, but the attraction of the D
on the nucleons will make the NN system more compact,
like in the case of the K̄NN system. Yet, there are limits
on how much one can contract this system because of
the strong NN repulsion at short distances. In order to
estimate the NN size one can rely upon the results of
Ref. [30] in the study of the K̄NN system, where the
NN repulsion at short distance was explicitly taken into
account. In practical terms we use the same expression
for the form factor as for the deuteron [59]

F (q) =

∫ ∞

0
d3p

11
∑

j=1

Cj

!p2 + m2
j

11
∑

i=1

Ci

(!p − !q)2 + m2
i

, (10)

but with the parameters mi rescaled such as to give an
average separation of the nucleons of RNN " 2 fm [30].
They are shown in Fig. 4. The validity of this NN form
factor will be examined by the result of the variational
calculation, where the average distance of the NN pair
in the DNN system will be optimized in the three-body
dynamics.

We need the argument s1 of the DN amplitude,
t(

√
s1). To evaluate it we adopt a common procedure of

dividing the binding energy into the three particles pro-
portionally to their masses. The energy of the nucleon
and the D meson are given by

EN = MN

√
s

2MN + mD
, ED = mD

√
s

2MN + mD
,

so the total energy of the two-body system can be calcu-
lated as

s1 = (pD + pN1
)2 = s

( MN + mD

2MN + mD

)2
− !p 2

N2
. (11)

The approximate value of !p2
N2

can be obtained by assum-
ing

!p 2
N2

2MN
" BN2

; BN2
= MN − MN

√
s

2MN + mD
, (12)

which provides a rough estimate for bound systems with
the strong interaction.

B. Evaluation of the D(NN) Absorption

As we shall see in Sec. V, we obtain a DNN bound
system with a very small width. This is related to the
small width of the Λc(2598) state which is generated in
DN interaction in I = 0. Yet, this calculation only takes
into account the decay channel DN → πΣc for which
there is little phase space and DN → πΛc channel which
comes from the subdominant DN I = 1 component in
the DNN system. Now we allow the D to be absorbed by
two nucleons, in analogy to the K̄NN → ΛN considered
in Refs. [11, 44]. Here the channel will be DNN → NΛc

whose absorption process is shown diagrammatically in

0 500 1000 1500 2000
q [MeV]

0

0.2

0.4

0.6

0.8

F(
q)

F(q)
F(q)reduced

FIG. 4. Form factor of the deuteron, and the one correspond-
ing to an NN system with a reduced radius from Ref. [30].

N

N Λc(2286)

N

x

y
D

D

NΛc

x

y

D

D

N N

+

FIG. 5. Diagrammatic representation of the D(NN) absorp-
tion.

Fig. 5 (other mechanisms and decay channels will be dis-
cussed in the end of this section). We calculate only the
first diagram in Fig. 5. The second one gives an identical
contribution and they sum incoherently: there is no in-
terference since the NΛc and ΛcN are orthogonal states.
Hence, the total width will be twice the one obtained
from just one diagram.

The S-matrix for the diagram is given by

S =

∫

d4x

∫

d4y(−i)tDN→DN

× 1√
2ωD

ϕD(!x)e−iωDx0

eiE′

N1
x0

e−iEN1
x0

ϕ∗
N ′

1
(!x)ϕN1

(!x)

×
∫

d4q

(2π)4
e−iq(y−x) i

q2 − m2
D + iε

×Vy!σ!q eiEΛc
y0

e−iEN2
y0

ϕ∗
Λc

(!y)ϕN2
(!y),

where Vy is the Yukawa vertex. We take the same cou-
pling as K−p → Λ since in the D and Λc the c quark plays
the role of the s quark in the K̄ and Λ. In Ref. [60], the
Vy is given as

Vy = − 1√
3

3F + D

2f
,

6

with D = 0.795, F = 0.465 [61]. We perform the x0, y0

integrations, and make a change of the spatial variables
as

!x = !R − !r

2
, !y = !R +

!r

2
.

Then we can write

ϕN1
(!x)ϕN2

(!y) =
1√
V

ei !P . !Rϕ(!r),

where ϕ(!r) is the wave function of the NN system. N ′
1

and Λc will be outgoing plane waves. Let us also assume
that the D is a plane wave with a certain momentum.
The final formula that we shall use is independent of this
momentum, as we shall see. Thus,

ϕD(!x) =
1√
V

ei!pD .!x,

and then, using these new functions, the S-matrix is writ-
ten as follows

S =
1

V 2

∫

d3q

(2π)3

1√
2ωD

tDN→DN
1

q2 − m2
D + iε

×Vy!σ!q ϕ̃(!q − !pΛc
+

!P

2
)(2π)4δ4(pi − pf ) (13)

≡ −iT
1√
2ωD

1

V 2
(2π)4δ4(pi − pf ),

where ϕ̃(!q) is the Fourier transform of the wave function
ϕ(!r) normalized to 1, and pi and pf are the initial and
final momentum, respectively. The NN wave function in
momentum space is defined as

ϕ̃(!q) =

∫

d3qei !q !xϕ(!x),

and has a maximum value for !q = 0. If we take the NN
system at rest, !P = 0, the wave function ϕ̃(!q) in Eq. (13)
will peak at !q − !pΛc

= 0. This allows us to approximate
the D propagator in Eq. (13) as

1

q2 − m2
D

→ 1

(q0)2 − !p 2
Λc

− m2
D

, (14)

where q0 = EΛc
− EN2

and pΛc
≈

λ1/2(M2
NND, M2

N , M2
Λc

)/2MNND. We do not need
to specify the tDN→DN amplitude since it will be
accounted for at the end of the formalism.

Defining of !q −!pΛc
≡ !q ′, the square of the total matrix

element is obtained as follow:

|T |2 = V 2
y !p 2

Λc

(

1

(q0)2 − p2
Λc

− m2
D

)2

×
∣

∣

∣

∣

1

2π2

∫

q′2dq′ϕ̃(!q ′)tDN,DN (
√

s′)

∣

∣

∣

∣

2

, (15)

D

NN

NN
D

(a)

D

D D

D

NhN Λc
D

D

D

(b) (c)

N

N

N

FIG. 6. D(NN) absorption.

With this T matrix we evaluate the cross section for the
process of Fig. 5 (left) and we obtain

σabs =
1

2π

MNNMΛc
MN

M2
NND

pΛc

pD
|T |2.

It is interesting to relate this cross section to the imagi-
nary part of the forward D(NN) → D(NN) amplitude
from the diagram of Fig. 6 using the optical theorem.
We find

Im TD(NN) = −pD
√

s

MNN
σabs = − 1

2π

MΛc
MN

MNND
pΛc

|T |2.

The next step is to convert the absorption diagram
of the Fig. 6 (a) into a “many body” diagram of Fig.
6 (b) where the nucleon where the D is absorbed, the
only occupied state of the “many body” system, is con-
verted into a hole state in the many body terminology
[62]. Once this is done one observes that if we remove
the amplitude tDN in the expression of T , the expression
that we obtain for Im TD(NN) corresponds to the evalua-
tion of the imaginary part of the two-body loop function
g of a nucleon and a D meson [Fig. 6 (c)] but with a D
selfenergy insertion accounting for the (ΛcNh) excitation
of the D meson. We call this δg̃. The Feynman rules to
evaluate Im δg̃ and Im TD(NN) are identical, except that
tDN,DN is removed in the evaluation of Im δg̃. Hence we
obtain

iIm δg̃ = −i
1

2π

MΛc
MN

MNND
pΛc

|T̃ |2.

with |T̃ |2 is given by Eq. (15) removing tDN,DN . This
simplifies the expression since

1

2π2

∫

q′2dq′ϕ̃(!q ′) = lim
r→0

∫

d3q′

(2π)3
ei!q ′!rϕ̃(!q ′) (16)

=ϕ(r = 0).

Thus |T̃ |2 is given by

|T̃ |2 = V 2
y !p 2

Λc

1

[(q0)2 − p2
Λc

− m2
D]2

|ϕ(0)|2.

Finally !p 2
Λc

accompanying V 2
y in the former expression

requires a small correction. The factor comes from the

7
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FIG. 7. The meson-baryon loop function gDN in the DN
channel (solid line) and with the effect of the two-body ab-
sorption iIm δg̃ added (dashed line).

non relativistic !σ!q form of the DNΛc vertex. If we take
instead the relativistic Yukawa vertex of the type γµγ5,
then we find the easy prescription to account for the rel-
ativistic correction,

V 2
y !p 2

Λc
→ V 2

y
1

4m2
Λc

(MN + MΛc
)2!p 2

Λc
.

The next step is to reevaluate the tDN,DN amplitude
used as input in the fixed center formulas. As we men-
tioned, they were obtained using the method of Ref. [39]
with several coupled channels and the formula (1). We
redo the evaluation by replacing the loop function in the
DN channel as

gDN → gDN + i Im δg̃ (17)

to take into account the D absorption by two nucleons or,
analogously, the ΛcNh excitation of the D meson. When
doing this, the DN amplitude becomes complex below
the DN threshold and the narrow Λc(2598) resonance
acquires now a moderate width due to the D absorption
with a second nucleon. The second process of Fig. 5
(right) is accounted for when we consider the three-body
amplitude T in the FCA formula with the first D scat-
tering with the second nucleon.

For the estimation of the width we take the wave func-
tion

ϕ̃(r) =ae−αr, a =
1

2

(

α3

2π

)
1
2

,

ϕ̃(q) =
4πaα

(1
4 α2 − q2)2 + q2α2

,

with α # 1.7fm−1, which corresponds to an NN object
of relative distance 2 fm.

Let us numerically investigate the effect of the absorp-
tion using the model described in Sec. II A. In Fig. 7,
we show the meson-baryon loop function gDN in the DN

2200 2300 2400 2500 2600 2700 2800 2900 3000
s1

1/2[MeV]

0

5

10

15

20

25

30

| t
 |

tDN
tDN(with δ g)

FIG. 8. Modulus of the two-body amplitude DN → DN
(solid line) and with the effect of the two-body absorption
iIm δg̃ added (dashed line).

channel together with the two-body absorption contribu-
tion to the imaginary part, iIm δg̃. We can see that the
imaginary part of the total g function is no longer zero
below the DN threshold due to D absorption. In Fig. 8,
we show the modulus of the two-body amplitude |t| for
the DN channel for I = 0 using gDN and gDN + iIm δg̃
of Eq. (17). As we can see, the inclusion of the absorp-
tion mechanism induces an increase in the width of the
peak of Λc(2595) in |t| which will have repercussion in
the width of the DNN system.

For a narrow resonance, we can approximate the am-
plitude around the resonance energy by a Breit-Wigner
form

t(
√

s1) # g2

√
s1 − MR + i Γ

2

.

This leads to the expression of the coupling of the reso-
nance to the DN scattering state as

g2 =
1

2
Γ|t(MR)|.

Inspection of Fig. 8, together with the values of Γ(no
absorption)= 3 MeV and Γ(absorption)= 15 MeV, show
that the value of the coupling g2 barely changes from
the introduction of iIm δg̃, but of course the reso-
nance has become wider. Indeed g2(no absorption)/
g2(absorption)# 6/5.

The absorption diagram that we have considered is
not the only one, but it is the most relevant. On the
same footing we should consider the diagrams where the
Yukawa coupling produces Σc or even Σ∗

c(2520). The
analogy with the kaons made before, and the values of
these couplings that can be seen in Ref. [61], together
with the dynamical factor p3 of the cross section, make
the contribution of these terms of the order of 5% of the
Λc production and we neglect them. Analogously we can
also have DN → π(η)Λc(Σc) in the first hadron line of

gDN � gDN + i Im �g̃

two-body 
absorption 
contribution

DN loop

Re

Im

DNN quasi-bound state
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FCA calculation: result
Magnitude of the three-body amplitude square

9

3000 3100 3200 3300 3400 3500 3600 3700 3800

s1/2 [MeV]

0

10000

20000

30000

40000

50000

60000

|T
|2

FIG. 9. Modulus squared of the three-body scattering am-
plitude for I = 1/2 and J = 0 with reduced size of the NN
radius.

of particle X ,
√

〈r2〉X , and relative distance of particles
X and Y , RXY , are given as the second moment of the
one-body and two-body densities, respectively:

〈r2〉X =

∫

d3
r r

2ρX(r),

R2
XY =

∫

d3
x x

2ρXY (x).

In this setup, since the imaginary part of the DN po-
tential is not included, the Λ∗

c appears as a stable bound
state. Thus, in the variational approach, the DNN
three-body bound state can be found in the energy region
below the Λ∗

cN threshold
√

s ∼ 3536 MeV. If the three-
body (quasi-)bound state exists above the Λ∗

cN thresh-
old, variational calculation will find the Λ∗

cN two-body
scattering state as the ground state of the three-body
system.

A three-body bound state above the πΛcN threshold√
s ∼ 3363 MeV has a mesonic decay width. The three-

body decay width can be estimated by the matrix ele-
ment of the imaginary part of the DN potential as

ΓπYcN = − 2〈 Ψ |Im V̂DN | Ψ 〉,

where | Ψ 〉 is the obtained wave function of the ground
state. As seen in Fig. 2, the imaginary part of the DN
potential is much smaller than the real part. This may
justify the perturbative treatment of the imaginary part,
which ignores the dispersive effect on the energy of the
DNN system from the imaginary part.

V. RESULTS

A. Quasi-bound states in the FCA approach

We first study the quasi-bound state found in the FCA
calculation. In Figs. 9 and 10 we show the results for |T |2
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FIG. 10. Modulus squared of the three-body scattering am-
plitude for I = 1/2 and J = 1 with reduced size of the NN
radius
.
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FIG. 11. Modulus squared of the three-body scattering am-
plitude for I = 1/2 and J = 0 (with δG̃) with reduced NN
radius.

as functions of the total energy
√

s assuming the NN
system to have reduced size. Both for INN = 0, INN =
1(J = 1, J = 0), we obtain a neat peak. The resonance
energy for J = 0 is about 3486 MeV and the width is
extremely small. In the case of J = 1 we have a smaller
binding and the energy is about 3500 MeV, with a width
of around 9 MeV. We should note that the binding is
similar for both the spin channels. The position of the
peak in this approximation is, in a rough estimate, given
by the position of the pole of the Λc(2595). This gives
the value of s1 and through Eqs. (11), (12) the value of
s.

However, one should note the different strength of |T |2
in these two cases, but a direct comparison cannot be
done because the strength of the resonance amplitude at
the peak is related to the width, which strongly depends
on the spin. A proper comparison is better done after the

10

DN → DN
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FIG. 12. Modulus squared of the three-body scattering am-
plitude for I = 1/2 and J = 1 (with δG̃) with reduced NN
radius.

D absorption is included where the widths are similar.
Next we include the δg̃ to account for absorption and

plot |T |2 for the DNN system in Figs. 11 and 12 for
J = 0 (INN = 1) and J = 1 (INN = 0). The difference
of the peak position by the absorption effect is only a
few MeV (2-4 MeV) which is certainly within our uncer-
tainties. The novelty, which is welcome, is that |T |2 has
become now wider and acquires a width of about 20-25
MeV. We are now in a position to compare the strength
of these two amplitudes and we see that in the case of
J = 0 the strength of |T |2 at the peak is about a fac-
tor 15 larger than that for J = 1. This means that the
state that we find at J = 1 should be more difficult to
see, or alternatively we should see the small strength as
an indication that this state is more uncertain in our ap-
proximation, as should be the smaller shoulder that one
can see at higher energies for J = 1 in Fig. 12.

B. Quasi-bound states in the variational approach

Now we investigate the same system in the variational
approach. We first adopt HN1R potential for the nuclear
force. As a result of the variational calculation, we have
found that the total spin J = 1 system (INN = 0) is
unbound with respect to the Λ∗

cN threshold. A bound
state of spin J = 0 system (INN = 1) is found at

B ∼ 225 MeV,

measured from the DNN threshold (∼ 3745 MeV). This
corresponds to the total energy of the three-body system
as

MB ∼ 3520 MeV.

We also examine the Minnesota force and Av18 potential.
The results are summarized in Table I, together with the
contributions from the individual terms in Eq. (18).

TABLE I. Results of the energy compositions in the varia-
tional calculation for the ground state of the DNN system
with total isospin I = 1/2 (range parameter as = 0.4 fm).
Terms “bound” and “unbound” are defined with respect to
the Λ∗

cN threshold. All the numbers are given in MeV.

HN1R Minnesota Av18

J = 1 J = 0 J = 0 J = 0

unbound bound bound bound

B 208 225 251 209

MB 3537 3520 3494 3536

ΓπYcN - 26 38 22

Ekin 338 352 438 335

V (NN) 0 −2 19 −5

V (DN) −546 −575 −708 −540

Tnuc 113 126 162 117

ENN 113 124 181 113

P (Odd) 75.0 % 14.4 % 7.4 % 18.9 %

As seen in the Table I, the DNN system in the J = 0
channel is bound below the Λ∗

cN threshold (B ∼ 209
MeV) for all the NN potentials employed.1 A large ki-
netic energy of the deeply bound system is overcome by
the strong attraction of the DN potential, while the NN
potential adds a small correction. Comparing the results
with three different nuclear forces, we find that the bind-
ing energy is smaller when the NN potential has a harder
repulsive core (see Appendix A).

In the J = 1 channel, the ground state energy is ob-
tained slightly above the Λ∗

cN threshold. The fact that
the J = 1 channel is unbound is confirmed by changing
the parameter µ in the trial wave function, which controls
the size of the total system [30]. By increasing the sys-
tem size, the total energy gradually approaches the Λ∗

cN
threshold. This indicates that the lowest-energy state is
indeed a two-body scattering state of the Λ∗

cN channel.
A large fraction of the odd component in this channel
(∼ 75 %) is realized to enhance the INN = 1 compo-
nent which has larger fraction of the IDN = 0 than the
INN = 0 component. In fact, pure | (DN)I=0N 〉 state
can be decomposed into INN = 0 and INN = 1 compo-
nents with the ratio 1:3. Since the INN = 1 state is the
odd state in J = 1 (SNN = 1) channel, the 75 % fraction
of the odd component indicates that the DN pair forms
the Λ∗

c . We also examine the J = 1 channel with the
Minnesota force. Although the repulsive core is soft in
this case, no bound Λ∗

cN is found.
Using the imaginary part of the DN potential, we eval-

uate the mesonic decay width of the quasi-bound state in

1 Av18 case is almost at the Λ∗

c N threshold, but we confirm that
the wave function is localized as we will see in Sec. V C.

J=0 J=1

J=1 channel: M ~ 3500 MeV and M ~ 3700 MeV?
- week signal, not found in the variational calculation??
- I=1 DN interaction is important for this channel.

J=0 channel: M ~ 3500 MeV
- strong signal, consistent with the variational calculation

DNN quasi-bound state
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Possible experiments
Antiproton beam

Pion beam

Heavy Ion collision
Coalescence DNN (large binding), Λc*N (small binding)

- RHIC, LHC,...
S. Cho, et al, Phys. Rev. Lett. 106, 212001 (2011); Phys. Rev. C 84, 064910 (2011)

- J-PARC high momentum beamline?

⇡� + d ! D�⇤⇤+
c n ! D�[DNN ]+

⇡� + d ! D�D+np ! D�[DNN ]+

- PANDA?
p̄+3 He ! D̄0D0np ! D̄0[DNN ]+

DNN quasi-bound state
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Summary

DN interaction is constructed by 
regarding Λc* as “DN quasi-bound state”.

A narrow DNN quasi-bound state in spin 
J=0 and isospin I=1/2 channel.

DN forms a compact cluster, but Λc*N 
bounds loosely.

We study DN interaction and DNN system

Summary

M. Bayar et al., Phys. Rev. C 86, 044004 (2012)

BDNN ~ 250 MeV,      BΛc*N ~ 40 MeV
Γ ~ 20-40 MeV


