Energy and width of a narrow I=1/2 DNN **quasibound state**

Tetsuo Hyodo

Tokyo Institute of Technology

with M. Bayar, C.W. Xiao, A. Dote, M. Oka, E. Oset

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Introduction

 \bigvee DN interaction and $\Lambda_c(2595)$

- Variational calculation with DN potential
- FCA to Faddeev equation

Summary

Introduction

Why DN and DNN?

 \overline{K} nuclei <--- Λ*: a $\overline{K}N$ bound state in the $\pi\Sigma$ continuum D nuclei? <--- Λ_c*: a DN bound state in the $\pi\Sigma_c$ continuum Comparison with $\overline{K}N$ system in I=0 channel

- narrow negative parity Λ_c^* , analogous to $\Lambda(1405)$? (conventional view : $\Lambda_c^* \sim$ 3-quark state 200 MeV binding : too large?) DN interaction and $\Lambda_c(2595)$

DN bound state picture ?

Can Λ_c^* (with large binding) be a DN quasi-bound state?

- Vector meson exchange picture leads to a stronger DN interaction than KN (at threshold)

 $\frac{V_D}{V_K} = \frac{m_D}{m_K} \sim 3.8 \qquad \text{(next slide)}$

D (1867 MeV) is heavier than K (496 MeV).
 Kinetic energy is suppressed.
 If the DN interaction were the same with KN,
 system would develop a deeper quasi-bound state.

DN system can generate a strongly bound state: Λ_c^* .

 $B_{DN} > B_{\bar{K}N} = 15-30 \text{ MeV}$

DN interaction and $\Lambda_c(2595)$

Vector meson exchange for DN

DN (KN) interaction in vector meson exchange (low energy)

$$V \sim g\bar{u}\gamma^{\mu}u \times \frac{1}{k^2 - m_v^2} \left[g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{m_v^2}\right] \times g(q+q')^{\nu} \qquad q$$

- k << m_v + KSRF relation
 - $\rightarrow -\frac{1}{2f^2}(q^0 + q^{0\prime})$ (Weinberg-Tomozawa)
- at threshold

$$\rightarrow -\frac{m}{f^2}$$
 (at threshold)

Interaction in DN- $\pi\Sigma_c$ system (J/ Ψ exchange ignored)

- strong DN interaction --> large binding energy
- suppressed off-diagonal coupling --> narrow width of Λ_c^*

DN interaction and $\Lambda_c(2595)$

DN scattering amplitude

Coupled-channel DN ($\pi\Sigma_c$, $\eta\Lambda_c$, $K\Xi_c$, $K\Xi_c$ ', $D_s\Lambda$, $\eta'\Lambda_c$) scattering see T. Mizutani, A. Ramos, Phys. Rev. C74, 065201 (2006)

Subtraction constants (cutoff parameters) are chosen to reproduce Λ_c^* in |=0. Apply the same constants to |=1.

A resonance at ~ 2760 MeV is generated in |=1 channel. c.f. PDG 1*: $\Lambda_c(2765)$ or $\Sigma_c(2765)$??

DN local potential

Equivalent single-channel local potential

T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008)

$$v_{DN}(r;W) = \frac{M_N}{2\pi^{3/2} a_s^3 \tilde{\omega}(W)} [v^{\text{eff}}(W) + \Delta v(W)] \exp[-(r/a_s)^2]$$

- reproduces the coupled channel amplitude

- This potential reproduces the DN amplitude in CC model.
- Larger (smaller) real (imaginary) part than $\overline{K}N$

Strategy for DNN bound state

Coupled-channel model DN amplitude, $\Lambda_c(2595)$

DN singlechannel potential

real part

Three-body variational calculation

- Structure from wave function
- NN dynamics is dynamically solved.

Fixed-center approximation to Faddeev equation

Assume NN

distribution

- Two-body absorption
- Imaginary part of the amplitude is treated.

Coupled-channel ($\pi Y_c N$) effect is partly included.

Variational calculation: results

Results of the DNN system

- J=0 bound, J=1 unbound w.r.t. [DN]N
- mesonic decay width is small
- softer the core, larger the binding

	HN1R		Minnesota	Av18
	J = 1	J = 0	J = 0	J = 0
	unbound	bound	bound	bound
В	208	225	251	209
M_B	3537	3520	3494	3536
$\Gamma_{\pi Y_c N}$	-	26	38	22
$E_{\rm kin}$	338	352	438	335
V(NN)	0	-2	19	-5
V(DN)	-546	-575	-708	-540
$T_{ m nuc}$	113	126	162	117
E_{NN}	113	124	181	113
P(Odd)	75.0~%	14.4~%	7.4~%	18.9~%

209-251 MeV

Variational calculation: DN correlation

Isospin decomposition of DN two-body correlation

DN (I=0) correlation is similar to Λ_c^*

FCA calculation

Fixed-center approximation to Faddeev equation

- Complex DN amplitude
- all two-body pairs are in s-wave
- NN distribution is assumed (checked with the variational calculation result)

FCA calculation: two-body absorption

Two-body absorption --> imaginary part of DN amplitude

FCA calculation: result

Magnitude of the three-body amplitude square

J=0 channel: M ~ 3500 MeV

- strong signal, consistent with the variational calculation

J=1 channel: M ~ 3500 MeV and M ~ 3700 MeV?

- week signal, not found in the variational calculation??
- I=1 DN interaction is important for this channel.

Possible experiments

Antiproton beam

 $\bar{p} + {}^{3}\operatorname{He} \to \bar{D}^{0}D^{0}np \to \bar{D}^{0}[DNN]^{+}$

- PANDA?

Pion beam

 $\pi^- + d \to D^- D^+ np \to D^- [DNN]^+$

 $\pi^- + d \to D^- \Lambda_c^{*+} n \to D^- [DNN]^+$

- J-PARC high momentum beamline?

Heavy Ion collision Coalescence DNN (large binding), Λ_c^*N (small binding)

- RHIC, LHC,...

S. Cho, et al, Phys. Rev. Lett. 106, 212001 (2011); Phys. Rev. C 84, 064910 (2011)

We study DN interaction and DNN system

DN interaction is constructed by regarding Λ_c^* as "DN quasi-bound state". A narrow DNN quasi-bound state in spin J=0 and isospin I=1/2 channel. BDNN ~ 250 MeV, BAC*N ~ 40 MeV Γ~20-40 MeV DN forms a compact cluster, but Λ_c^*N bounds loosely. M. Bayar et al., Phys. Rev. C 86, 044004 (2012)