Meson-induced pentaquark productions

Tetsuo Hyodo^a,

Atsushi Hosaka^b, and Makoto Oka^a

Tokyo Institute of Technology^a

RCNP, Osaka^c

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Exotic hadrons in QCD

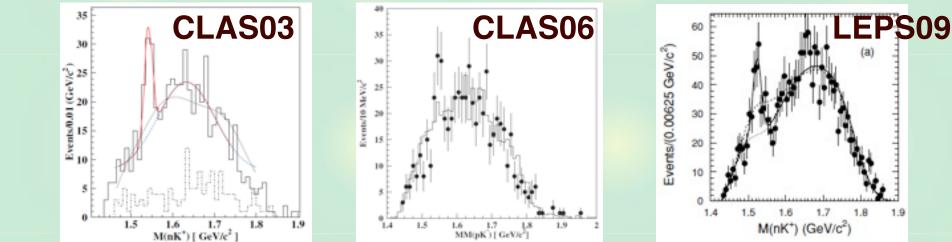
Θ⁺: strangeness S = +1, baryon number B = 1 minimal quark content ~ uudds : exotic!

D. Diakonov, V. Petrov, M.V. Polyakov, Z. Phys. A359, 305 (1997) T. Nakano, *et al.*, Phys. Rev. Lett. 91, 012002 (2003)

c.f. ∧(1405) ~ uud sū, Z(4430) ~ cēdū : crypto-exotic hadrons

Exotic hadrons are

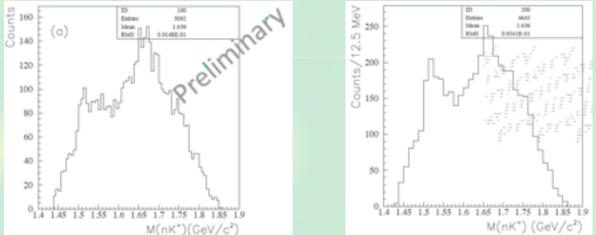
- not well established in experiments (~300 normal hadrons).
- not excluded in QCD.
- easily constructed in effective models.


(Non)existence of exotic hadrons : Saturation?

- c.f. nucleus: Coulomb repulsion, drip line, ... hydrogen molecule: covalent bond, ...
- Exotic hadrons --> quark binding mechanism (confinement)

Introduction

Pentaquark Θ⁺


γd --> K+K-pn reaction

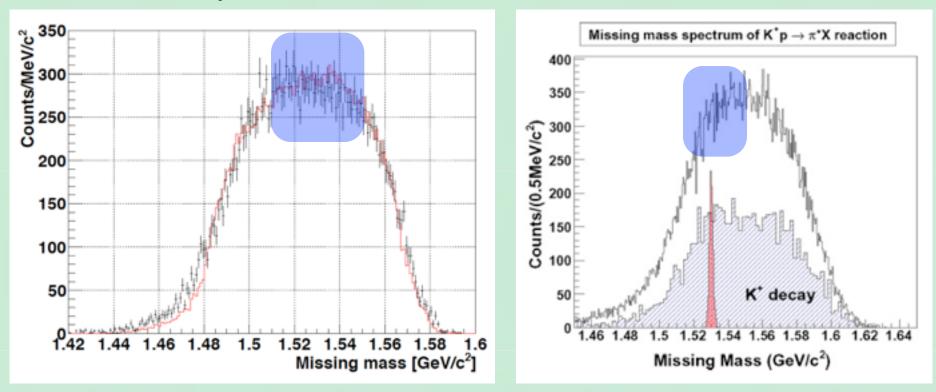
New results from LEPS

Y. Kato, Talk at FB20, M. Niiyama, Talk at HYP12

- K+, K- detected. momentum of n is determined by MMSA.

proton rejected, summed data

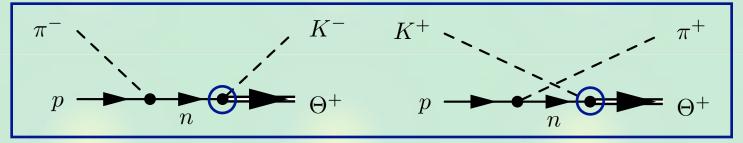
1.8

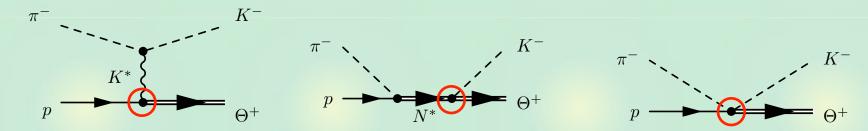

Introduction

Meson-induced experiments

π-p --> K-X : J-PARC E19, K+p --> π+X : KEK E559

K. Shirotori, et al., Phys. Rev. Lett. 109, 132002 (2012)


K. Miwa, et al., Phys. Rev. C77, 045203 (2008)


- upper limit (averaged over detected angles) < 0.26 µb/sr for π -p --> K-X, < 3.5 µb/sr for K+p --> π +X Impact on the existence of Θ +? --> theoretical analysis

Theoretical study of reactions

- Meson-induced Θ^+ production: relatively simple Effective Lagrangian approach --> upper limit of Γ_{Θ}
- We examine isospin I=0, spin-parity $J^{P}=1/2^{\pm}$, $3/2^{\pm}$ cases.
 - Born terms (must exist if Θ⁺ decays into KN)

- Other possible contributions: unknown couplings

Born terms only--> σ is proportional to Γ_{Θ}

Meson-induced O⁺ production

Interference with other contributions

- Our aim: upper limit of cross section --> upper limit of Γ_{Θ}
 - Destructive interference --> underestimation

$$\sigma \propto |T_{\text{Born}}|^2 = \left| \bar{T}_{\text{Born}} \sqrt{\Gamma_{\Theta}} \right|^2 < 1$$

$$\sigma \propto \left| \bar{T}_{\text{Born}} \sqrt{\Gamma_{\Theta}} + T_{\text{other}} \right|^2 < 1$$

$$10 \quad -9$$

Interference pattern in general depends on the reaction.

Negative result in various low energy reactions
 (π-p --> K-X, K+p --> π+X, pp --> Σ+X, γp --> K⁰X, ...)

It is unnatural that all the negative results are explained by destructive interference.

--> Born diagrams will provide a conservative upper limit.

Effective Lagrangians

Pseudoscalar (PS) scheme

$$\mathcal{L}_{KN\Theta}^{1/2^{\pm}} = g_{KN\Theta}^{1/2^{\pm}} \bar{\Theta}^{+} \Gamma K N + \text{h.c.}$$

$$\mathcal{L}_{\pi NN} = i g_{\pi NN} \bar{N} \gamma_5 \pi N \qquad \Gamma = \begin{cases} i \gamma_5 & \text{(positive parity)} \\ 1 & \text{(negative parity)} \end{cases}$$

- coupling constants: decay width of Θ⁺

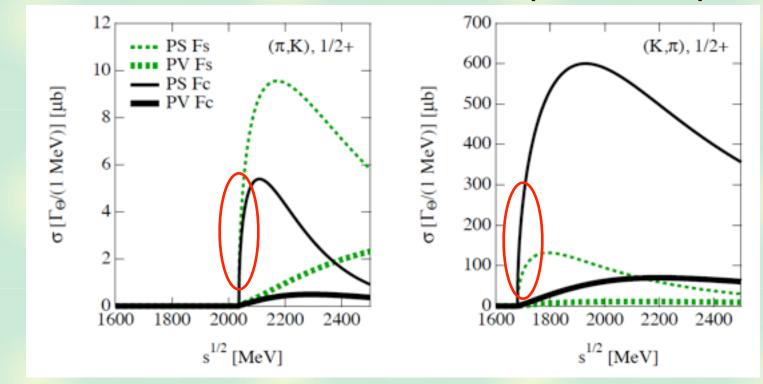
$$g_{KN\Theta}^{1/2^{\pm}} = \sqrt{\frac{2\pi M_{\Theta} \Gamma_{\Theta}}{|\boldsymbol{k}|(E \mp M)}}, \quad g_{\pi NN} = 13.5$$

Pseudovector (PV) scheme

$$\mathcal{L}_{KN\Theta}^{1/2^{\pm}} = \frac{-ig_A^{*\pm}}{2f} \bar{\Theta}^+ \gamma_{\mu} \Gamma \partial^{\mu} KN + \text{h.c.}$$

$$\mathcal{L}_{\pi NN} = \frac{g_A}{2f} \bar{N} \gamma_\mu \gamma_5 \partial^\mu \pi N$$

- generalized GT relation


$$g_A^{*\pm} = \frac{2f}{M_{\Theta} \pm M_N} g_{KN\Theta}^{1/2^{\pm}}, \quad g_A = 1.25, \quad f = 93 \text{ MeV}$$

Total cross sections

Theoretical uncertainties:

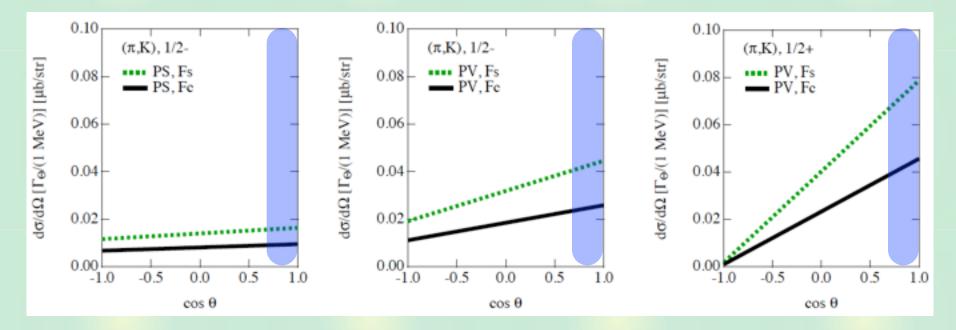
- two schemes of meson-baryon coupling (PV, PS)
- two types of hadron form factor (Fs, Fc)

Total cross sections with $J^{P}=1/2 + case (\Gamma_{\Theta} = 1 \text{ MeV})$

Threshold behavior of PS is different from PV.
 --> chiral low energy theorem

Total cross sections for various quantum numbers

- **Upper limit in experiments**
 - J-PARC E19: π-p --> K-X σ ≤ 10⁻¹ μb
 - KEK E559: K+p --> π+X σ ≤ 10⁰ μb


Total cross sections at experimental energies ($\Gamma_{\odot} = 1 \text{ MeV}$)

	$\pi^- p \to K^- \Theta^+$		$K^+p \to \pi^+ \Theta^+$	
$J^P = 1/2^+$	PS	PV	PS	PV
static	$9.2 \begin{array}{c} +1.4 \\ -1.3 \end{array}$	$0.51^{+0.07}_{-0.08}$	$119 \ ^{+14}_{-14}$	$9.6^{+1.1}_{-1.1}$
covariant	$5.3 \begin{array}{c} +2.8 \\ -2.0 \end{array}$	$0.29^{+0.16}_{-0.11}$	$595 \begin{array}{c} +16 \\ -20 \end{array}$	$46 \begin{array}{c} +1 \\ -2 \end{array}$
$J^P = 1/2^-$	PS	PV	PS	PV
static	$0.18^{+0.02}_{-0.03}$	$0.40^{+0.06}_{-0.06}$	$1.9^{+0.3}_{-0.2}$	$4.2^{+0.5}_{-0.5}$
covariant	$0.10\substack{+0.06\\-0.04}$	$0.23_{-0.09}^{+0.12}$	$9.6^{+0.3}_{-0.3}$	$20 \ ^{+1}_{-1}$
$J^P = 3/2^+$				
static	$10 \begin{array}{c} +2 \\ -1 \end{array}$		94 + 11 - 11 - 11 - 11 - 12 - 12 - 12 - 12	
covariant	$5.9 \ ^{+3.1}_{-2.2}$		$478 \begin{array}{c} +12 \\ -14 \end{array}$	
$J^P = 3/2^-$				
static	$5.5 \substack{+0.8 \\ -0.8}$		$8572 \begin{array}{c} +1019 \\ -992 \end{array}$	
covariant	$3.2 \ ^{+1.6}_{-1.2}$		$40544 \begin{array}{c} +1511 \\ -1824 \end{array}$	

If we consider the width should be larger than 0.1 MeV; --> spin 3/2 cases are ruled out.

Comparison with J-PARC data

Differential cross section at $P_{lab} = 1.92 \text{ GeV} (\Gamma_{\Theta} = 1 \text{ MeV})$

- Angular dependence is not so strong. J-PARC E19 experiment: K+ detected in forward angles.
- J-PARC experiment --> upper limit of Γ_{Θ}
 - (narrow width of 1/2- is theoretically unreasonable)

Summary

Summary

We study pentaquark productions in mesoninduced reactions with Born diagrams.

 \smile Cross sections for $J^P = 1/2^{\pm}$, $3/2^{\pm}$ cases. Spin 3/2 cases --> large cross section $\Gamma_{\Theta} \ll 0.1$ MeV: unlikely for hadrons Spin 1/2 cases may be possible. upper limit of Γ_{Θ} with J-PARC exp.

T. Hyodo, A. Hosaka, M. Oka, Prog. Theor. Phys. 128, 523-531 (2012)