Recent developments in antikaon-nucleon dynamics

Tetsuo Hyodo,

Tokyo Institute of Technology

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

$\overline{\mathsf{K}}$ meson and $\overline{\mathsf{K}}\mathsf{N}$ interaction

- Two aspects of $K(\overline{K})$ meson
 - NG boson of chiral SU(3)_R \otimes SU(3)_L --> SU(3)_V
 - relatively heavy mass: m_K ~ 496 MeV
 - --> peculiar role in hadron physics

KN interaction ...

- is coupled with $\pi\Sigma$ channel
- has a resonance below threshold

-->∧(1405)

meson-baryon v.s. qqq state, ...

fundamental building block
 for K-nuclei, K in medium, ...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

K nuclei v.s. normal nuclei

KN interaction

- strong attraction
- no repulsive core?

	I=0	l=1
NN	deuteron (2 MeV)	attractive
ΚN	Λ(1405) (15-30 MeV)	attractive

--> (quasi-)bound \overline{K} in nuclei

- Y. Nogami, Phys. Lett. 7, 288, (1963)
- T. Yamazaki, Y. Akaishi, Phys. Lett. B535, 70 (2002)

--> we need realistic KN interaction!

Constraints for KN interaction

K-p total cross sections to K-p, \overline{K}^{0} n, $\pi^{+}\Sigma^{-}$, $\pi^{-}\Sigma^{+}$, $\pi^{0}\Sigma^{0}$, $\pi^{0}\Lambda$.

- old experiments, large error bars, some contradictions
- wide energy range above the threshold

Determination of the scattering length by these constraints R. Bergery, U.C. Meissner, P. Nissler, Phys. Rev. C 74, 055201 (2006)

B. Borasoy, U.G. Meissner, R. Nissler, Phys. Rev. C 74, 055201 (2006)

--> large uncertainty!

SIDDHARTA measurement

Measurements of the kaonic hydrogen

- shift and width of atomic state <--> K-p scattering length

- SIDDHARTA experiment

M. Bazzi, et al., Phys. Lett. B704, 113 (2011); Talk by C. Curceanu

--> New constraint on the $\overline{K}N$ interaction

 \checkmark **1.** Λ(1405) in $\overline{K}N$ -πΣ scattering

2. Realistic KN-πΣ interaction with SIDDHARTA

(3. Applications to few-body systems) Talk by A. Gal Summary

1. Λ (1405) in \overline{K} N- $\pi\Sigma$ scattering

Chiral unitary approach

Description of S = -1, \overline{KN} s-wave scattering: $\Lambda(1405)$ in I = 0

- Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

- Amplitude <-- unitarity in coupled channels

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

(c.f. Chiral EFT for nuclear force)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995), E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998), J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001), M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully in various hadron scatterings.

1. Λ(1405) in KN-πΣ scattering

Pole structure in the complex energy plane

Resonance state ~ pole of the scattering amplitude

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A723, 205 (2003)

Exp.: O. Braun, et al., Nucl. Phys. B129, 715 (1977); J-PARC E31. Theor.: D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A42, 257 (2009); A47, 42 (2011)

1. Λ(1405) in KN-πΣ scattering

Origin of the two-pole structure

Leading order chiral interaction for $\overline{K}N-\pi\Sigma$ channel

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

Very strong attraction in \overline{KN} (higher energy) --> bound state Strong attraction in $\pi\Sigma$ (lower energy) --> resonance

Model dependence? Effects from higher order terms?

1. Λ (1405) in \overline{K} N- $\pi\Sigma$ scattering

Meson-baryon molecule strucure of $\Lambda(1405)$

What is the structure of $\Lambda(1405)$?

- Natural renormalization condition

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C 78, 025203 (2008)

- Nc (number of colors) scaling behavior

<u>T. Hyodo, D. Jido, L. Roca, Phys. Rev. D 77, 056010 (2008);</u> L. Roca, T. Hyodo, D. Jido, Nucl. Phys. A809, 65 (2008)

- Electromagnetic radii/form factors

<u>T. Sekihara, T. Hyodo, D. Jido, Phys. Lett. B669, 133 (2008);</u> <u>T. Sekihara, T. Hyodo, D. Jido, Phys. Rev. C 83, 055202 (2012)</u>

--> Dominance of the molecule component radius: complex number? (pole on the complex plane)

1. Λ(1405) in KN-πΣ scattering

Size measurement of resonances

Finite volume mass shift <--> Coupling to scattering state g²

M. Lüscher, Commun. Math. Phys. 104, 177 (1986)

g² <--> compositeness <--> spatial size

T. Sekihara, T. Hyodo, arXiv:1209.0577 [nucl-th]

- The relation is confirmed for bound states.
- Real-valued size can be defined for resonances.
- KN component of Λ(1405): 1.8-1.9 fm.

This supports the quasi-bound $\overline{K}N$ picture of $\Lambda(1405)$.

2. Realistic $\overline{K}N$ - $\pi\Sigma$ interaction with SIDDHARTA

Experimental constraints for S=-1 MB scattering

K-p total cross sections

KN threshold branching ratios, K-p scattering length

$\pi\Sigma$ mass spectra

- New data is becoming available (LEPS, CLAS, HADES,...)
- No model-independent way to relate two-body amplitude.
- Consistency of the result should be checked.

$\pi\Sigma$ scattering length (no data at present)

<u>Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, PTP 125, 1205 (2011);</u> <u>T. Hyodo, M. Oka, Phys. Rev. C 83, 055202 (2011)</u>

Construction of the realistic amplitude

Systematic χ^2 fitting with SIDDHARTA data

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B706, 63 (2011); Nucl. Phys. A881 98 (2012);

- Interaction kernel: NLO ChPT

Parameters: 6 cutoffs (+ 7 low energy constants in NLO)

Best-fit results

Good $\chi 2$: SIDDHARTA is consistent with cross sections

Shift, width, and pole positions

	TW	TWB	NLO
χ2 /d.o.f.	1.12	1.15	0.957

TW and **TWB** are reasonable, while best-fit requires **NLO**. Pole positions are now converging.

Remaining ambiguity

For K-nucleon interaction, we need both K-p and K-n.

$$a(K^{-}p) = \frac{1}{2}a(I=0) + \frac{1}{2}a(I=1) + \dots, \quad a(K^{-}n) = a(I=1) + \dots$$

$$a(K^{-}n) = \underbrace{0.29}_{0.27} + i0.76 \text{ fm} (TW) ,$$

$$a(K^{-}n) = \underbrace{0.27}_{0.57} + i0.74 \text{ fm} (TWB) ,$$

$$a(K^{-}n) = \underbrace{0.57}_{0.57} + i0.73 \text{ fm} (NLO) .$$

Some deviation: constraint on K-n? (<-- kaonic deuterium?) 16

3. Applications to few-body systems

J=0 KNN system

Theoretical calculations of KNN system (~ K-pp)

	SGM07	IS07	YA07	DHW09	IKS10*	BGL12
Method	Fadd.	Fadd.	Var.	Var.	Fadd.	Var.
RN int.	E-indep	E-indep	E-indep	E-dep	E-dep	E-dep
B _{KNN} [MeV]	55-70	60-95	48	17-23	9-16	15.7
Γ _{πΥΝ} [MeV]	90-110	45-80	61	40-70	34-46	41.2

N.V. Shevchenko, A. Gal, J. Mares, Phys. Rev. Lett. 98, 082301 (2007),

- Y. Ikeda, T. Sato, Phys. Rev. C76, 035203 (2007),
- T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007),
- A. Dote, T. Hyodo, W. Weise, Phys. Rev. C79, 014003 (2009),
- Y. Ikeda, Kamano, T. Sato, Prog. Thoer. Phys. 124, 533 (2010),
- * there is another pole at B = 67-89 MeV with large width.
- N. Barnea, A. Gal, E.Z. Liverts, Phys. Lett. B712 (2012)

KNN system forms a quasi-bound state with large width.

3. Applications to few-body systems

Comparison of K-p scattering length

Theoretical calculations of KNN system (~ K-pp)

	SGM07	IS07	YA07	DHW09	IKS10	BGL12
Method	Fadd.	Fadd.	Var.	Var.	Fadd.	Var.
RN int.	E-indep	E-indep	E-indep	E-dep	E-dep	E-dep
BRNN [MeV]	55-70	60-95	48	17-23	9-16	15.7
Γ _{πΥΝ} [MeV]	90-110	45-80	61	40-70	34-46	41.2

- New constraint on KNN system
- SIDDHARTA11 is obtained by the improved DT formula
- Models: isospin symmetric. Breaking is important at th.

Summary

Summary

We study the $\overline{K}N$ - $\pi\Sigma$ interaction based on chiral coupled-channel approach.

Accurate K-hydrogen data help us to construct realistic $\overline{K}N-\pi\Sigma$ interaction.

New KN interaction will reduce uncertainties of \overline{K} few-nucleon systems.