Antikaon-nucleon dynamics and its applications to few-body systems

Tetsuo Hyodo,

Tokyo Institute of Technology

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

K meson and **K**N interaction

- Two aspects of $K(\overline{K})$ meson
 - NG boson of chiral SU(3)_R \otimes SU(3)_L --> SU(3)_V
 - relatively heavy mass: m_K ~ 496 MeV
 - --> peculiar role in hadron physics
- **KN** interaction is ...
 - coupled with $\pi\Sigma$ channel
 - strongly attractive
 - --> quasi-bound state \(1405) meson-baryon v.s. qqq state, double pole, ...
 - fundamental building block
 for K-nuclei, K in medium,...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

K nuclei v.s. normal nuclei

KN interaction

- strong attraction
- no repulsive core?

	I=0	l=1
NN	deuteron (2 MeV)	attractive
ΚN	Λ(1405) (15-30 MeV)	attractive

--> Strong binding of K in nuclei High density (~10 ρ₀)?

T. Yamazaki, Y. Akaishi, Phys. Lett. B535, 70 (2002)

A. Dote, Y. Akaishi, H. Horiuchi, T. Yamazaki, Phys. Lett. B590, 51 (2004)

--> $\overline{K}N$ interaction: fundamental interaction in \overline{K} nuclei

Constraints for KN interaction

K-p total cross sections to K-p, \overline{K}^{0} n, $\pi^{+}\Sigma^{-}$, $\pi^{-}\Sigma^{+}$, $\pi^{0}\Sigma^{0}$, $\pi^{0}\Lambda$.

- old experiments, large error bars, some contradictions
- wide energy range above the threshold

Determination of the scattering length by these constraints

B. Borasoy, U.G. Meissner, R. Nissler, Phys. Rev. C74, 055201 (2006)

--> large uncertainty!

Scattering length from kaonic hydrogen

Measurements of the kaonic hydrogen

- shift and width of atomic state (Coulomb bound state)

$$\Delta E - \frac{i}{2}\Gamma = -2\alpha^3 \mu_c^2 a_{K^- p} [1 - 2\alpha \mu_c (\ln \alpha - 1) a_{K^- p}] \quad \longleftarrow \text{ scattering length}$$

U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

SIDDHARTA measurement

New accurate measurement by SIDDHARTA

M. Bazzi, et al., Phys. Lett. B704, 113 (2011) Talk by M.A. Iliescu (Fri. parallel VII-a)

- smallest uncertainties

--> New constraint on the $\overline{K}N$ interaction

 \checkmark **1.** Λ(1405) in $\overline{K}N$ -πΣ scattering

2. Realistic KN-πΣ interaction with SIDDHARTA

3. Applications to few-body systems

1. Λ(1405) in KN-πΣ scattering

Chiral unitary approach

Description of S = -1, \overline{KN} s-wave scattering: $\Lambda(1405)$ in I = 0

- Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

- Amplitude <-- unitarity in coupled channels

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),

E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),

J.A. Oller, U.G. Meissner, Phys. Lett. B500, 263 (2001),

M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others Talk by D. Jido (next)

It works successfully in various hadron scatterings.

1. Λ(1405) in KN-πΣ scattering

Pole structure in the complex energy plane

Resonance state ~ pole of the scattering amplitude

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003)

Two poles for one resonance (bump structure) --> Superposition of two states ?

Different πΣ spectra? K-d --> πΣΝ reaction

T. Hyodo, D. Jido, PPNP 67, 55 (2012)

Exp.: O. Braun, et al., Nucl. Phys. B129, 715 (1977); J-PARC E31. Theor.: D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A42, 257 (2009); A47, 42 (2011) Talk by D. Jido (next)

1. Λ(1405) in KN-πΣ scattering

Origin of the two-pole structure

Leading order chiral interaction for $\overline{K}N-\pi\Sigma$ channel

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

Very strong attraction in \overline{KN} (higher energy) --> bound state Strong attraction in $\pi\Sigma$ (lower energy) --> resonance

Model dependence? Effects from higher order terms?

Experimental constraints for S=-1 MB scattering

- K-p total cross sections
- **KN threshold observables**
 - threshold branching ratios
 - K-p scattering length <-- SIDDHARTA exp.

$\pi\Sigma$ mass spectra

- new data is becoming available (LEPS, CLAS, HADES,...)

$\pi\Sigma$ threshold observables (so far no data)

<u>Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, PTP 125, 1205 (2011);</u> <u>T. Hyodo, M. Oka, Phys. Rev. C 83, 055202 (2011)</u>

Construction of the realistic amplitude

Systematic x2 fitting with SIDDHARTA data

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B 706, 63 (2011); Nucl. Phys. A881 98 (2012); Talk by Y. Ikeda (Fri. parallel VII-a)

- Interaction kernel: NLO ChPT

Parameters: 6 cutoffs (+ 7 low energy constants in NLO)

Best-fit results

Good x2: SIDDHARTA is consistent with cross sections

Shift, width, and pole positions

	TW	TWB	NLO	
χ2/dof	1.12	1.15	0.957	

TW and **TWB** are reasonable, while best-fit requires **NLO**. Pole positions are now converging.

K-n scattering amplitude

For K-nucleon interaction, we need both K-p and K-n.

$$a(K^{-}p) = \frac{1}{2}a(I=0) + \frac{1}{2}a(I=1) + \dots, \quad a(K^{-}n) = a(I=1) + \dots$$

$$a(K^{-}n) = \underbrace{0.29}_{0.27} + i0.76 \text{ fm} (TW) ,$$

$$a(K^{-}n) = \underbrace{0.27}_{0.27} + i0.74 \text{ fm} (TWB) ,$$

$$a(K^{-}n) = \underbrace{0.57}_{0.57} + i0.73 \text{ fm} (NLO) .$$

Some deviation: constraint on K-n? (<-- kaonic deuterium?) 15

3. Applications to few-body systems

J=0 KNN system

Theoretical calculations of KNN system (~ K-pp)

	SGM07	IS07	YA07	DHW09	IKS10*	BGL12
Method	Fadd.	Fadd.	Var.	Var.	Fadd.	Var.
RN int.	E-indep	E-indep	E-indep	E-dep	E-dep	E-dep
B _{KNN} [MeV]	55-70	60-95	48	17-23	9-16	15.7
Γ _{πΥΝ} [MeV]	90-110	45-80	61	40-70	34-46	41.2

N.V. Shevchenko, A. Gal, J. Mares, Phys. Rev. Lett. 98, 082301 (2007),

- Y. Ikeda, T. Sato, Phys. Rev. C76, 035203 (2007),
- T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007),
- A. Dote, T. Hyodo, W. Weise, Phys. Rev. C79, 014003 (2009),
- Y. Ikeda, Kamano, T. Sato, Prog. Thoer. Phys. 124, 533 (2010),
- * there is another pole at B = 67-89 MeV with large width.
- N. Barnea, A. Gal, E.Z. Liverts, Phys. Lett. B712 (2012)

KNN system forms a quasi-bound state with large width.

3. Applications to few-body systems

Comparison of K-p scattering length

Theoretical calculations of KNN system (~ K-pp)

	SGM07	IS07	YA07	DHW09	IKS10	BGL12
Method	Fadd.	Fadd.	Var.	Var.	Fadd.	Var.
RN int.	E-indep	E-indep	E-indep	E-dep	E-dep	E-dep
BRNN [MeV]	55-70	60-95	48	17-23	9-16	15.7
Γ _{πΥΝ} [MeV]	90-110	45-80	61	40-70	34-46	41.2

- New constraint on KNN system
- SIDDHARTA11 is obtained by the improved DT formula
- Models: isospin symmetric. Breaking is important at th.

3. Applications to few-body systems

J=1 KNN system

J=1 system (~ K-d)

- I_{NN}=0 --> KN(I=0):KN(I=1) = 1:3

Less attractive, but maybe weakly bound (above $\Lambda^* \mathbb{N}$).

	UHO11	Oset et al. (12)	BGL12
Model	∧*N potential	FCA	Three-body variational
BRNN [MeV]	> M ∧*N	9	> M ∧*N
Γ _{πΥΝ} [MeV]	-	30	-

T. Uchino, T. Hyodo, M. Oka, Nucl. Phys. A868-869, 53 (2011)

E. Oset, et al., Nucl. Phys. A881, 127 (2012)

N. Barnea, A. Gal, E.Z. Liverts, Phys. Lett. B712 (2012)

Small binding energy

--> Close relation with K-d scattering length?

Y. Ikeda, T. Hyodo, W. Weise, work in progress

DNN system

Analogous system in the charm sector: DNN system.

<u>M. Bayar *et al.*, arXiv:1205.2275 [hep-ph], to appear in Phys. Rev. C</u> Talk by E. Oset (Tue. parallel III-b)

- Replace $\overline{\mathsf{K}}$ by D
- Λ(1405) in KN-πΣ : Λ_c(2595) in DN -πΣ_c
- Calculated in two different methods:
- Fixed center approximation to Faddeev equation
- Variational calculation with 1-channel potential

A quasi-bound state is found in J=0 channel.

Narrow width: advantageous to be observed

Summary

Summary

We study the $\overline{K}N$ - $\pi\Sigma$ interaction and its applications to few-body systems.

2. Accurate K-hydrogen data help us to construct realistic KN-πΣ interaction.

Strong KN attraction will generate various K few-body systems.