Recent developments in antikaon-nucleon dynamics

Tetsuo Hyodo,

Tokyo Institute of Technology

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

導入

低エネルギーのQCDの難しさ/面白さ 強い相互作用はQCD(クォーク、グルーオン)で記述される $\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + \bar{q}_{\alpha} (i\gamma^{\mu} D^{\alpha\beta}_{\mu} - m\delta^{\alpha\beta}) q_{\beta}$ QCDは漸近自由性をもち、低エネルギーでは非摂動的 1. カイラル対称性の自発的破れ:真空の変化 2. カラー閉じ込め: 観測される自由度はハドロン 幅広いスケールの物理、異なる対称性 log(m_q) u(3) d(5) **t(174000) b(4200)** c(1250) s(100) 重クォーク対称性 カイラル対称性 m_aで展開 1/m。で展開

2

- ・強い相互作用による量子多体系の諸相
 - 既知である基礎理論をもとに、多様な物理を明らかにする (c.f. 原子核物理/核力、物性物理/QED)
 - 例:カラー超伝導 <--> 超伝導
- ・少数系での多様性:共鳴状態

約310種の観測されたハドロンのうち、強い相互作用に対して 安定なのものは20ほど。残りは全てハドロン散乱内の共鳴状態 としてあらわれる。

例:ポテンシャル共鳴、フェッシュバッハ共鳴、、、

全てが単一のQCDラグランジアンから出てくる

ハドロン:強い相互作用による自己束縛系

導入

http://pda lbl aov/																					
$\frac{11}{100} \frac{1}{100} 1$								LIGHT UNFLAVORED (S = C = B = 0)			STRANGE $(S = \pm 1, C = B = 0)$		CHARMED, STRANGE $(C = S = \pm 1)$		$c\overline{c}$						
_	1 /0-	- ++++	4(1020)	2/0+ *		5-+	1/0+ ****	-0	1/0+ ****	a±	1/0+ ****	ו 🗌	$P(J^{PC})$,	$I^{G}(J^{PC})$	(, -	I(J ^P)	($I(J^P)$	• η _c (1S)	0+(0-+)
р п	1/2	****	$\Delta(1232)$ $\Delta(1600)$	3/2 *	***	Σ' 50	1/2 ****	=-	1/2 **** 1/2 ****	Λ_{c}^{-}	1/2 **** 1/2 ***	• π^{\pm}	$1^{-}(0^{-})$	• π ₂ (1670)	$1^{-}(2^{-+})$	• K [±]	1/2(0-)	• D_{s}^{\pm}	$0(0^{-})$	• J/ψ(1S)	$0^{-}(1^{})$
N(1	4			-		-	I I HE L	_	ور سلب	E		π ⁰ n	$1^{-}(0^{-+})$ $0^{+}(0^{-+})$	 φ(1680) φ(1690) 	$0^{-}(1^{-})$ $1^{+}(3^{-})$	• K ⁰	$1/2(0^{-})$ $1/2(0^{-})$	• D _s ^{*±} • D [*] (2217) [±]	$0(?^{\circ})$	• $\chi_{c0}(1P)$ • $\chi_{c1}(1P)$	$0^{+}(0^{+})^{+}(1^{$
N(1	₺	77	入催		İ.	EE	:「二日」		旧坊	₽-+-		f ₀ (500)	$0^+(0^{++})$	 ρ₃(1090) ρ(1700) 	$1^{+}(1^{-})$	• K ⁰ _L	1/2(0 ⁻)	• $D_{50}(2317)$ • $D_{51}(2460)^{\pm}$	$0(0^{+})$ $0(1^{+})$	• $h_c(1P)$?(1+-)'
N(1	3		5.			13/	TACT	ш		xu	Section 2	$\rho(770)$	$1^{+}(1^{-})$	$a_2(1700)$	$1^{-}(2^{++})$	K ₀ (800)	1/2(0+)	• $D_{s1}(2536)^{\pm}$	$0(1^+)$	• $\chi_{c2}(1P)$	$0^+(2^{++})$ $0^+(0^{-+})$
N(1650) N(1675)	1/2	- ****	$\Delta(1900)$	1/2 *	***	$\Sigma(1560)$ $\Sigma(1580)$	2/0 [—] *	=(1820) =(1050)	3/2 ***	$\Lambda_{c}(2940)^{+}$	+ *** 1/0+ ****	 ω(782) η'(958) 	$0^{+}(0^{-}+)$	• $\eta(1710)$ $\eta(1760)$	$0^{+}(0^{-}+)$	• K*(892) • K ₁ (1270)	$\frac{1}{2(1^{-})}$	 D₅₂(2573) D[*]. (2700)[±] 	0(?;)	• η _c (23) • ψ(25)	$0^{-}(0^{-})$
N(1073) N(1680)	5/2	+ ****	$\Delta(1900)$ $\Delta(1910)$	$\frac{3}{2}$ *	***	$\Sigma(1500)$	1/2 **	$\Xi(2030)$	> 5? ***	$\Sigma_{c}(2433)$	3/2+ ***	• f ₀ (980)	0+(0++)	 π(1800) 	$1^{-}(0^{-+})$	• K1(1400)	1/2(1+)	$D_{s1}^{*}(2860)^{\pm}$	0(? [?])	 ψ(3770) 	$0^{-(1^{-})}_{2^{2}(2^{+})}$
N(1		_					2 ⁺ ***	Ξ(2120)	- 2	$\Sigma_{c}(2800)$	***	• a₀(980) • ∉(1020)	$1^{-}(0^{+}^{+})$ $0^{-}(1^{-})$	$f_2(1810)$ X(1835)	$\frac{0^{+}(2^{+}^{+})}{2^{?}(2^{-}^{+})}$	• K*(1410)	$1/2(1^{-})$	$D_{sJ}(3040)^{\pm}$	0(? [?])	• X(3872) • X(3915)	$0^{+}(?^{+})$
N(1	V -	 (フレ	그프	〈不	Ē	′2 [—] ****	Ξ(2250)	**	Ξ_c^+	1/2+ ***	• h1(1170)	$0^{-}(1^{+})$	 φ₃(1850) 	0-(3)	• $K_0(1430)$ • $K_2^*(1430)$	$1/2(0^{+})$ $1/2(2^{+})$	BOTT	OM	• χ _{c2} (2P)	$0^+(2^{++})$
N(1	-	」 、		JHF	7 .14	サル	** '0 ⁻ ***	$\Xi(2370)$	**	=0 -c	1/2+ ***	• $b_1(1235)$	$1^{+}(1^{+})$ $1^{-}(1^{+})$	$\eta_2(1870)$	$0^+(2^{-+})$ $1^-(2^{-+})$	K(1460)	$1/2(0^{-})$	(B = ±	$\frac{1}{2(0^{-})}$	X(3940)	?'(?'')
N(1.20)	5/2	+ **	$\Delta(2000)$	5/2+ *	*	$\Sigma(1770)$	$\frac{1}{2^{+}}$ *	=(2500)	т	$=_{c}^{r_{+}}$	1/2 ⁺ ***	• $f_2(1270)$	$0^{+}(2^{++})$	• $\pi_2(1000)$ $\rho(1900)$	$1^{+}(1^{-})$	$K_2(1580)$ K(1630)	$\frac{1}{2(2^{-})}$ $\frac{1}{2(2^{?})}$	• B • B ⁰	$1/2(0^{-})$ $1/2(0^{-})$	X(4050) [±]	?(??)
N(1875)	3/2-	- ***	$\Delta(2150)$	1/2- *	¢	Σ(1775)	5/2 ****	Ω^{-}	3/2+ ****	-c = $c(2645)$	3/2 ⁺ ***	• f ₁ (1285)	$0^{+}(1^{++})$	f2(1910)	$0^{+}(2^{+}+)$	$K_1(1650)$	$1/2(1^+)$	• B^{\pm}/B^0 ADN	/IXTURE	X(4140)	$0^{+}(?^{?+})$
N(1000)	- 10-	4.4	4(0000)	- /^		E(1010)		0(0050)-	***	$\Xi_c(2790)$	1/2 ***	• $\eta(1295)$ • $\pi(1300)$	$1^{-}(0^{-+})$	• t ₂ (1950) ₀₃ (1990)	$1^{+}(3^{-})$	• $K^*(1680)$	$1/2(1^{-})$ $1/2(2^{-})$	• B+/B°/B°/ ADMIXTUR	<i>b</i> -baryon E	• $\psi(4160)$ X(4160)	$(1)^{(1)}$
N(1				/ 門		つ 木E	3 6 4	乍出	**	$\Xi_{c}(2815)$	3/2 ***	• a2(1320)	$1^{-}(2^{++})$	• f ₂ (2010)	0+(2++)	• K ₂ (1770)	1/2(2)	V _{cb} and V _{ub}	CKM Ma-	$X(4250)^{\pm}$?(??)
N(1				IR	JV	JIE	1-1	ГЛ		$\Xi_c(2930)$	* ***	• $f_0(1370)$ $h_1(1380)$	$0^{+}(0^{++})$ $2^{-}(1^{+-})$	$f_0(2020)$	$0^+(0^{++})$ $1^-(4^{++})$	• K ₂ (1820)	1/2(2-)	• B*	1/2(1-)	• X(4260) X(4350)	$2!(1^{})$ $0^{+}(2^{?+})$
N(2000)	5/2-	**	<i>∆</i> (2400)	9/2- *	*	Σ(2000)	1/2- *	1		$\Xi_{c}(2960)$ $\Xi_{c}(3055)$	**	• π ₁ (1300)	$1^{-}(1^{-+})$	• f ₄ (2050)	$0^{+}(4^{+})$	K(1830) K*(1950)	$1/2(0^{-})$ $1/2(0^{+})$	B [*] ₁ (5732) ■ B ₁ (5721) ⁰	$\frac{1}{2(1^+)}$	• X(4360)	?(1)
N(2040)	3/2-	+ *	<i>∆</i> (2420)	11/2+ *	***	Σ(2030)	7/2+ ****			$\Xi_{c}(3080)$	***	• η(1405)	$0^{+}(0^{-+})$	$\pi_2(2100)$	$1^{-}(2^{-+})$	$K_2^*(1980)$	1/2(2+)	• $B_2^*(5747)^0$	1/2(2+)	• ψ(4415) ×(4420)±	$0^{-}(1^{-})$
N(2060)	5/2	- ** - *	$\Delta(2750)$	$\frac{13}{2} *$	*	$\Sigma(2070)$	5/2 ⁺ * 2/2 ⁺ **			$\Xi_{c}(3123)$	*	 η(1420) ω(1420) 	$0^{-}(1^{-})$	f ₀ (2100) f ₂ (2150)	$0^{+}(0^{+})^{+}(2^{+})^{+}$	• K [*] ₄ (2045)	$1/2(4^+)$	BOTTOM, S	TRANGE	• X(4450)	?(1)
N(2100) N(2120)	3/2	- **	<u>Д(2900)</u>	13/2 · ·		$\Sigma(2000)$	7/2 *			Ω_c^{ν}	1/2 ⁺ ***	f2(1430)	$0^+(2^++)$	ρ (2150)	1+(1)	$K_2(2250)$ $K_3(2320)$	$1/2(2^{-})$ $1/2(3^{+})$	$(B = \pm 1, S)$	$5 = \pm 1$)		<u></u>
N(2190)	7/2-	- ****	Λ	1/2+ *	***	Σ(2250)	***			32 _c (2110)°	5/Z 1 1000	• $a_0(1450)$ • $\rho(1450)$	$1^{-}(0^{+})^{+})$ $1^{+}(1^{-})^{-}$	 φ(2170) ƒ(2200) 	$0^{-}(1^{-})$ $0^{+}(0^{+})$	K ₅ (2380)	1/2(5-)	• B ⁰ _S • B*	$0(0^{-})$ $0(1^{-})$	$\eta_b(1S)$	$0^{+}(0^{-+})$
N(2220)	9/2	****	A(1405)	1/2 *	***	Σ(2455)	**			Ξ_{cc}^+	*	 η(1475) 	$0^{+}(0^{-+})$	$f_{J}(2220)$	0+(2++)	$K_4(2500)$ K(3100)	$\frac{1/2(4^{-})}{2^{?}(2^{?})}$	• B ₅₁ (5830) ⁰	$0(1^+)$	• r(15)	$0^{-}(1^{-})$
N(2250) N(2600)	9/2	***	$\Lambda(1520)$	3/2 * 1/2 ⁺ *	**	Σ(2620) Σ(3000)	*			40	1/0+ ***	• $f_0(1500)$ $f_1(1510)$	$0^+(0^{++})$ $0^+(1^{++})$	n(2225)	or 4^{++}			• B [*] ₅₂ (5840) ⁰ B [*] (5050)	$0(2^+)$	• $\chi_{b0}(1P)$ • $\chi_{b1}(1P)$	$0^{+}(0^{+})^{+}$ $0^{+}(1^{+})^{+}$
N(2700)	13/2	+ **	A(1670)	$1/2^{-}$ *	***	$\Sigma(3170)$	*			$\Lambda_b^{\tilde{b}}$	1/2 * *** 1/2 ⁺ ***	• $f'_2(1525)$	$0^{+}(2^{+})$	$\rho_3(2250)$	1+(3)	(C= :	±1)	D _{sJ} (5850)	!(! [.])	• $h_b(1P)$?(1+-)
. ,			A(1690)	3/2- *	***	. ,				Σ_{b}^{*}	3/2+ ***	$f_2(1565)$	$0^+(2^{++})$	• f ₂ (2300)	$0^{+}(2^{++})$	• D±	1/2(0-)	BOTTOM, C (B = C =	HARMED = ±1)	• $\chi_{b2}(1P)$ • $\Upsilon(2S)$	$0^+(2^{++})$ $0^-(1^{})$
			A(1800)	$1/2^{-} *$	**					Ξ_b^0, Ξ_b^-	1/2+ ***	$h_1(1595)$	$0^{-}(1^{+})$	$f_0(2330)$	$0^{+}(0^{+}+)$	• D ^v • D*(2007) ⁰	$1/2(0^{-})$ $1/2(1^{-})$	• B_{c}^{\pm}	0(0-)	• Υ(1D)	$0^{-}(2^{-})$
			$\Lambda(1810)$	$\frac{1}{2} + \frac{5}{2} + \frac{1}{2}$	***					Ω_b^-	1/2+ ***	 π₁(1600) 	$1^{-}(1^{-+})$	• f ₂ (2340)	$0^{+(2^{++})}$	• D*(2010) [±]	1/2(1-)	_		• $\chi_{b0}(2P)$	$0^{+}(0^{++})$
			A(1830)	5/2 *	***							$a_1(1640)$ $f_0(1640)$	$1^{-}(1^{++})$ $0^{+}(2^{++})$	ρ ₅ (2350) a _c (2450)	$1^{+}(5^{})$ $1^{-}(6^{++})$	• $D_0^*(2400)^0$	$1/2(0^+)$			• $\chi_{b1}(2P)$ $h_b(2P)$	$?(1^{+})$
			<i>A</i> (1890)	3/2+ *	***							 η₂(1645) 	$0^{+}(2^{-+})$	f ₆ (2510)	$0^{+}(6^{+}+)$	• $D_0(2400)^{\circ}$	$1/2(0^{+})$ $1/2(1^{+})$			• χ _{b2} (2P)	0+(2++)
			A(2000)	*								• $\omega(1650)$	$0^{-}(1^{-})$ $0^{-}(3^{-})$	OTHER	LIGHT	$D_1(2420)^{\pm}$	1/2(??)			• $T(35)$ $\chi_b(3P)$	$\binom{1}{?(?^{?+})}$
			A(2100)	7/2 *	***							• #3(1070)	0 (3)	Further Sta	ates	$D_1(2430)^0$ • $D_2^*(2460)^0$	$\frac{1}{2(1^+)}$ $\frac{1}{2(2^+)}$			• T(45)	0-(1)
			<u>/(2110)</u>	5/2+ *	**											• $D_2^*(2460)^{\pm}$	1/2(2+)			$X(10610)^{\pm}$ $X(10650)^{\pm}$	$(1^+)^+$
			<i>Л</i> (2325)	3/2 *	¢	11			10	C f	毛米石		111		17	25.0	采田			 <i>γ</i>(10860) 	$0^{-}(1^{-})$
			/(2350) /(2585)	9/2 *	**		フノ	1	~ 1 3	う作	王况		1.	/~		J AH	1 浅貝			• <i>°</i> (11020)	0-(1)
			7(200)								• •					D(2750)	1/2(??)				

ハドロンの多様な性質

K meson and **K**N interaction

Two aspects of K ~ us, ds (K ~ us, ds) meson

- NG boson of chiral SU(3)_R \otimes SU(3)_L --> SU(3)_V
- relatively massive: m_K ~ 495 MeV (m_π, M_N ~ 140, 940 MeV)

--> peculiar role in hadron physics

KN interaction is ...

- coupled with $\pi\Sigma$ channel
- strongly attractive
 - --> quasi-bound state \(1405) meson-baryon v.s. qqq state, double pole, ...
- fundamental building block
 for K-nuclei, K in medium,...

<u>T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)</u> 兵藤哲雄、慈道大介:日本物理学会誌 第67巻第4号226 (2012)

K nuclei v.s. normal nuclei

KN interaction

- strong attraction
- no repulsive core?

	I=0	l=1
NN	deuteron (2 MeV)	attractive
ΚN	Λ(1405) (15-30 MeV)	attractive

--> Strong binding of K in nuclei High density (~10 ρ₀)?

T. Yamazaki, Y. Akaishi, Phys. Lett. B535, 70 (2002)

A. Dote, Y. Akaishi, H. Horiuchi, T. Yamazaki, Phys. Lett. B590, 51 (2004)

--> $\overline{K}N$ interaction: fundamental interaction in \overline{K} nuclei

Constraints for KN interaction

K-p total cross sections to K-p, \overline{K}^{0} n, $\pi^{+}\Sigma^{-}$, $\pi^{-}\Sigma^{+}$, $\pi^{0}\Sigma^{0}$, $\pi^{0}\Lambda$.

- old experiments, large error bars, some contradictions
- wide energy range above the threshold

Determination of the scattering length by these constraints

B. Borasoy, U.G. Meissner, R. Nissler, Phys. Rev. C74, 055201 (2006)

--> large uncertainty!

Scattering length from kaonic hydrogen

Measurements of the kaonic hydrogen

- shift and width of atomic state (Coulomb bound state)

$$\Delta E - \frac{i}{2}\Gamma = -2\alpha^3 \mu_c^2 a_{K^- p} [1 - 2\alpha \mu_c (\ln \alpha - 1) a_{K^- p}] \quad \longleftarrow \text{ scattering length}$$

U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Shift ε_{1s} [eV]

SIDDHARTA measurement

New accurate measurement by SIDDHARTA

M. Bazzi, et al., Phys. Lett. B704, 113 (2011)

- smallest uncertainties

 $\Delta E = -283 \pm 36 \pm 6 \text{ eV}, \quad \Gamma = 541 \pm 89 \pm 22 \text{ eV}$

Contents

Introduction

- Λ(1405) in meson-baryon scattering
 - Chiral SU(3) dynamics
 - Pole structure of $\Lambda(1405)$

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

Systematic x2 analysis with SIDDHARTA

- Subthreshold extrapolation of $\overline{\mathsf{K}}\mathsf{N}$ amplitude
- Predictions, remaining issues, ...

<u>Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B 706, 63 (2011);</u> Nucl. Phys. A881 98 (2012)

Summary

Chiral unitary approach

Description of S = -1, \overline{KN} s-wave scattering: $\Lambda(1405)$ in I = 0

- Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

- Amplitude <-- unitarity in coupled channels

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),

E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),

J.A. Oller, U.G. Meissner, Phys. Lett. B500, 263 (2001),

M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully in various hadron scatterings.

A(1405) in meson-baryon scattering s-wave low energy interaction in ChPT

NG boson-hadron scattering: chiral perturbation theory

$$\mathcal{L}^{\rm WT} = \frac{1}{4f^2} \operatorname{Tr} \left(\bar{B}i\gamma^{\mu} [\Phi \partial_{\mu} \Phi - (\partial_{\mu} \Phi) \Phi, B] \right)$$

s-wave contribution: Tomozawa-Weinberg (TW) term

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

$$\begin{split} V_{ij} &= -\frac{C_{ij}}{4f^2} (\omega_i + \omega_j) + \dots \\ C_{ij} &= \sum_{\alpha} [6 - C_2(\alpha)] \begin{pmatrix} 8 & 8 \\ I_{\bar{i}}, Y_{\bar{i}} & I_i, Y_i \end{pmatrix} \begin{pmatrix} \alpha \\ I, Y \end{pmatrix} \begin{pmatrix} 8 & 8 \\ I_{\bar{j}}, Y_{\bar{j}} & I_j, Y_j \end{pmatrix} \begin{pmatrix} \alpha \\ I_{\bar{j}}, Y_{\bar{j}} & I_j, Y_j \end{pmatrix} \\ Y &= Y_{\bar{i}} + Y_i = Y_{\bar{j}} + Y_j, \quad I = I_{\bar{i}} + I_i = I_{\bar{j}} + I_j, \end{split}$$

- Flavor SU(3) symmetry --> sign and strength
- Derivative coupling --> energy dependence
- Systematic improvement by higher order terms (later)
- When the interaction is strong, resummation is mandatory. 12

Scattering amplitude and unitarity

Unitarity of S-matrix: Optical theorem

Im
$$[T^{-1}(s)] = \frac{\rho(s)}{2}$$
 → phase space (known function)

General amplitude by dispersion relation

$$T^{-1}(\sqrt{s}) = \sum_{i} \frac{R_i}{\sqrt{s} - W_i} + \tilde{a}(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)}$$

R_i, W_i, a: not determined in scattering theory

Identify dispersion integral = loop function G, the rest = V^{-1}

$$T(\sqrt{s}) = \frac{1}{V^{-1}(\sqrt{s}) - G(\sqrt{s};a)}$$

Scattering amplitude

The function V is determined by the matching with ChPT $T^{(1)} = V^{(1)}, \quad T^{(2)} = V^{(2)}, \quad T^{(3)} = V^{(3)} - V^{(1)}GV^{(1)}, \quad \dots$

Amplitude ⊤: **consistent** with **chiral** symmetry + unitarity

Pole structure in the complex energy plane

Resonance state ~ pole of the scattering amplitude

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003)

Exp.: O. Braun, *et al.*, Nucl. Phys. B129, 715 (1977); J-PARC E31. Theor.: D. Jido, E. Oset, T. Sekihara, Eur. Phys. J. A42, 257 (2009); A47, 42 (2011)

14

Origin of the two-pole structure

Leading order chiral interaction for $\overline{K}N-\pi\Sigma$ channel

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

Very strong attraction in \overline{KN} (higher energy) --> bound state Strong attraction in $\pi\Sigma$ (lower energy) --> resonance

Model dependence? Effects from higher order terms?

Systematic $\chi 2$ analysis with SIDDHARTA

Experimental constraints for S=-1 MB scattering

- K-p total cross sections
- **KN threshold observables**
 - threshold branching ratios
 - K-p scattering length <-- SIDDHARTA exp.

$\pi\Sigma$ mass spectra

- new data is becoming available (LEPS, CLAS, HADES,...)

$\pi\Sigma$ threshold observables (so far no data)

<u>Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, PTP 125, 1205 (2011);</u> <u>T. Hyodo, M. Oka, Phys. Rev. C 83, 055202 (2011)</u>

Systematic x2 analysis with SIDDHARTA

Construction of the realistic amplitude

Systematic x2 fitting with SIDDHARTA data

<u>Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B 706, 63 (2011); Nucl. Phys. A881 98 (2012).</u>

- Interaction kernel: NLO ChPT

B. Borasoy, R. Nissler, W. Weise, Eur. Phys. J. A25, 79-96 (2005)

Parameters: 6 cutoffs (+ 7 low energy constants in NLO)

17

Systematic χ^2 analysis with SIDDHARTA

Best-fit results

Good x2: SIDDHARTA is consistent with cross sections

Systematic x2 analysis with SIDDHARTA

Shift, width, and pole positions

	TW	TWB	NLO
χ2/dof	1.12	1.15	0.957

- TW and TWB are reasonable, while best-fit requires NLO.
- Pole positions are now converging.

Systematic χ^2 analysis with SIDDHARTA

K-n scattering amplitude

For K-Nucleon interaction, we need both K-p and K-n.

$$a(K^{-}p) = \frac{1}{2}a(I=0) + \frac{1}{2}a(I=1) + \dots, \quad a(K^{-}n) = a(I=1) + \dots$$

 $a(K^-p) = -0.93 + i0.82 \text{ fm} (\text{TW}) ,$ $a(K^-p) = -0.94 + i0.85 \text{ fm} (\text{TWB}) ,$ $a(K^-p) = -0.70 + i0.89 \text{ fm} (\text{NLO})$

$$a(K^{-}n) = 0.29 + i0.76 \text{ fm} (TW) ,$$

 $a(K^{-}n) = 0.27 + i0.74 \text{ fm} (TWB) ,$
 $a(K^{-}n) = 0.57 + i0.73 \text{ fm} (NLO) .$

Some deviation: Constraint on K-n? (<-- kaonic deuterium?) 20

Summary

Summary 1

We study the $\overline{K}N-\pi\Sigma$ interaction and $\Lambda(1405)$ based on chiral SU(3) symmetry and unitarity

KN interaction is closely related to the structure of Λ(1405) and the K nuclei.

Coupled-channel unitarity is important for the strongly interacting KN-πΣ.

Solution Two poles for $\Lambda(1405)$ follows from attractive KN and πΣ interactions

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

Summary

Summary 2

Systematic analysis with new accurate measurement of kaonic hydrogen

- New KN threshold data by SIDDHARTA
 consistent with cross section data
 - Implication of the improved framework:
 - Uncertainty in subthreshold extrapolation is significantly reduced.
 |=1 constraint is desired.

New input for \overline{K} fey-body calculation

<u>Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B 706, 63 (2011);</u> <u>Nucl. Phys. A881 98 (2012)</u>