# Hadron composite systems in chiral dynamics





# **Tetsuo Hyodo**

Tokyo Institute of Technology

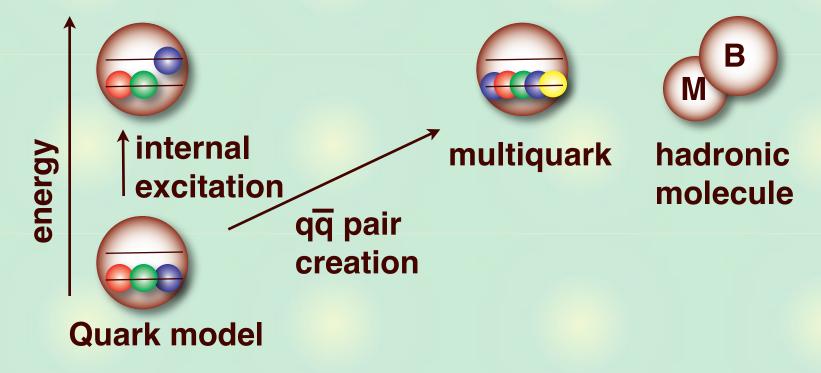
supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"



#### Introduction

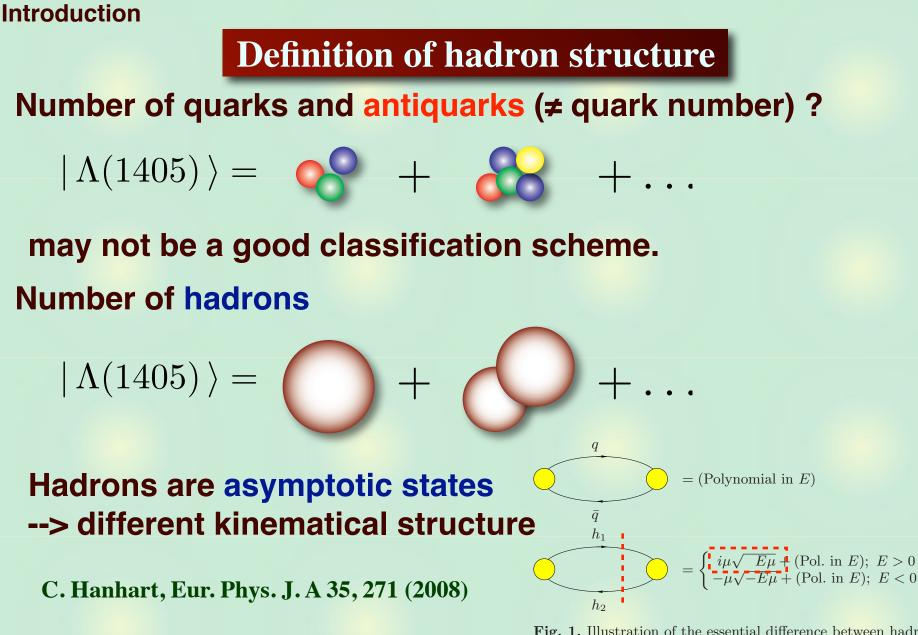
## **Structure of hadron resonances**

#### **Example) baryon excited state**



What are 3q state, 5q state, MB state, ...?

**Clear (model-independent) definition of the structure?** 



**Fig. 1.** Illustration of the essential difference between hadron loops (or loops of colour neutral objects) and quark loops (or loops of coloured objects): only the former have nonanalyticities.

#### Contents

## Contents

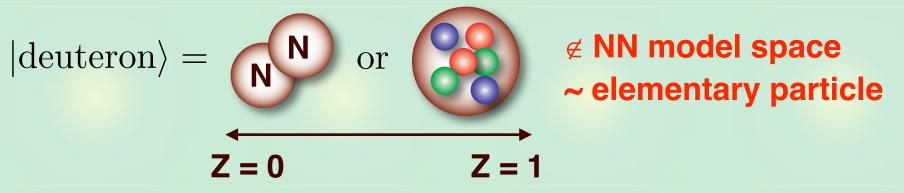
Introduction **Definition of compositeness**  Nonrelativistic quantum mechanics S. Weinberg, Phys. Rev. 137, B672 (1965) Yukawa field theory **D.** Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963) **Application to chiral dynamics**  Compositeness of bound states **T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)** 



## Weinberg's compositeness and deuteron

### Z: probability of finding deuteron in a bare elementary state

S. Weinberg, Phys. Rev. 137, B672 (1965)



model independent relation for weakly bound state

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right]R + \mathcal{O}(m_\pi^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right]R + \mathcal{O}(m_\pi^{-1})$$

a<sub>s</sub>: scattering length r<sub>e</sub>: effective range <-- Experiments R: deuteron radius (binding energy)

 $a_s = +5.41 \text{ [fm]}, \quad r_e = +1.75 \text{ [fm]}, \quad R \equiv (2\mu B)^{-1/2} = 4.31 \text{ [fm]}$ 

 $\Rightarrow Z \lesssim 0.2$  --> deuteron is almost composite!

**Definition of the compositeness 1-Z** 

#### Hamiltonian of two-body system: free + interaction V

 $\mathcal{H} = \mathcal{H}_0 + V$ 

### **Complete set for free Hamiltonian: bare IB<sub>0</sub> > + continuum**

$$1 = |B_0\rangle\langle B_0| + \int d\boldsymbol{k} |\boldsymbol{k}\rangle\langle \boldsymbol{k}|$$

$$\mathcal{H}_0 | B_0 \rangle = E_0 | B_0 \rangle, \quad \mathcal{H}_0 | \mathbf{k} \rangle = E(\mathbf{k}) | \mathbf{k} \rangle$$

### Physical bound state IB> : eigenstate of full Hamiltonian

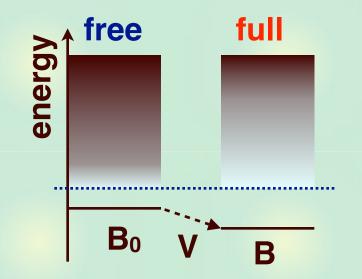
$$(\mathcal{H}_0 + V)|B\rangle = -B|B\rangle$$

## **B: binding energy**

Define Z as the overlap of B and B<sub>0</sub> : probability of finding the physical bound state in the bare state IB>

 $Z \equiv |\langle B_0 | B \rangle|^2$ 

## 1 - Z : Compositeness of the bound state



#### **Model-independent but approximated method**

#### With the Schrödinger equation, we obtain

$$-Z = \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle : B = \mathbf{k} \langle \mathbf{k} | V | B \rangle \\ = \mathbf{k} \langle \mathbf{k} | V | B \rangle : B = \mathbf{k} \langle \mathbf{k} | V | B \rangle$$

 $= 4\pi\sqrt{2\mu^3} \int_0^\infty dE \frac{\sqrt{E}|G_W(E)|^2}{(E+B)^2} \qquad \langle \mathbf{k} | V | B \rangle \equiv G_W[E(\mathbf{k})] \quad \text{for s-wave}$ 

- **Approximation:** For small binding energy B<<1, the vertex  $G_W(E)$  can be regarded as a constant:  $G_W(E) \sim g_W$
- Then the integration can be done analytically, leading to

 $1 - Z = 2\pi^2 \sqrt{2\mu^3} \frac{g_W^2}{\sqrt{B}}$ 

#### **Compositeness <-- coupling gw and binding energy B**

S. Weinberg, Phys. Rev. 137 B672 B678 (1965)

- Model-independent: no information of V
- Approximated: valid only for small B

Z in Yukawa model

## Field theory with Yukawa coupling (ψ,φ,Β₀)

see D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

$$\mathcal{L}_{0} = \bar{\psi}(i\partial \!\!\!/ - M)\psi + \frac{1}{2}(\partial_{\mu}\phi\partial^{\mu}\phi - m^{2}\phi^{2}) + \bar{B}_{0}(i\partial \!\!\!/ - M_{B_{0}})B_{0}$$
$$\mathcal{L}_{\text{int}} = g_{0}\bar{\psi}\phi B_{0} + (\text{h.c.})$$

Physical bound state B at total energy W=M<sub>B</sub>

Free (full) propagator of B<sub>0</sub> (B) field (positive energy part)

$$\Delta_0(W) = \frac{1}{W - M_{B_0}}, \quad \Delta(W) = \frac{Z}{W - M_B}$$

Z: field renormalization constant

**Dyson equation: relation between full and free propagators** 

$$\Delta(W) = \Delta_0(W) + \Delta_0(W)g_0G(W)g_0\Delta(W)$$

 $B_0$ 

#### **Master formula of compositeness**

#### Solution of Dyson equation and renormalization

$$\Delta(W) = \frac{1}{W - M_{B_0} - g_0^2 G(W)} \to \frac{1}{W - g_0^2 G(W; a)}$$

**Renormalization condition, pole at W=M**<sub>B</sub> :  $M_B = g_0^2 G(M_B; a)$ 

#### The field renormalization constant: residue of the propagator

$$Z = \lim_{W \to M_B} \frac{W - M_B}{W - g_0^2 G(W; a)} = \frac{1}{1 - g_0^2 G'(M_B)}$$

#### Physical coupling constant: residue of T-matrix

$$g^2 = g_0^2 Z$$

#### **Compositeness in Yukaw**a theory

$$1 - Z = -g^2 G'(M_B)$$

**Compositeness:** summary

**Compositeness of the bound state <-- g and MB** 

Method 1: nonrelativistic quantum mechanics

 $1 - Z_{NR} = g^2 \frac{M |\lambda^{1/2} (M_B^2, M^2, m^2)|}{16\pi M_B^2 (M + m - M_B)} \quad \text{for } M_B \to M + m$ 

model independent, but valid only for weak binding

#### Method 2: field theory with Yukawa coupling

 $1 - Z = -g^2 G'(M_B)$ 

exact (any M<sub>B</sub>), but Lagrangian dependent

**Application?** 

For a bound state, compositeness is determined by physical mass  $M_B$  and coupling constant g.

Model calculation, Lattice QCD, Experiments, ...

## **Chiral dynamics: overview**

## Description of S = -1, $\overline{K}N$ s-wave scattering: $\Lambda(1405)$ in I=0

- Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

## - Amplitude <-- unitarity in coupled channels

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)



N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),

E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),

J.A. Oller, U.G. Meissner, Phys. Lett. B500, 263 (2001),

M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), .... many others

#### It works successfully in various hadron scatterings.

A review: T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

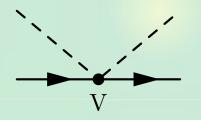
### **Natural renormalization condition**

Single-channel scattering of meson m and baryon M.

$$T(W) = \frac{1}{1 - V(W)G(W;a)} \bigvee_{\longleftarrow} V(W)$$
 cutoff parameter

V: 4-point interaction, attractive

 $V(W) = \begin{cases} V^{(\text{const})} = Cm & \text{constant interaction} \\ V^{(WT)}(W) = C(W - M) & \text{WT interaction} \end{cases}$ 



#### Bound state condition: pole at W=MB

 $1 - V(M_B)G(M_B; a) = 0$ 

#### **Coupling constant: residue of the pole**

$$g^{2} = \lim_{W \to M_{B}} (W - M_{B})T(W) = \begin{cases} -[G'(M_{B})]^{-1} \\ -\left[G'(M_{B}) + \frac{G(M_{B};a)}{M_{B} - M}\right]^{-1} \end{cases}$$

constant interaction WT interaction

#### We determine mass and coupling of the bound state

#### **Compositeness of bound states**

#### **Compositeness in Yukawa theory**

$$1 - Z = -g^2 G'(M_B) = \begin{cases} 1 & \text{constant interaction} \\ \left[1 + \frac{G(M_B; a)}{(M_B - M)G'(M_B)}\right]^{-1} & \text{WT interaction} \end{cases}$$

- constant interaction --> purely composite bound state
- WT interaction --> mixture of composite and elementary
- Purely composite bound state for WT interaction:
  - $G'(M_B) = -\infty$  or  $G(M_B; a) = 0$

 $M_B = M + m$  or  $C \to -\infty$ 

- 1) zero energy bound state
- 2) infinitely strong two-body attraction

## **Relation with natural renormalization scheme?**

#### **Consistency check of the natural renormalization scheme**

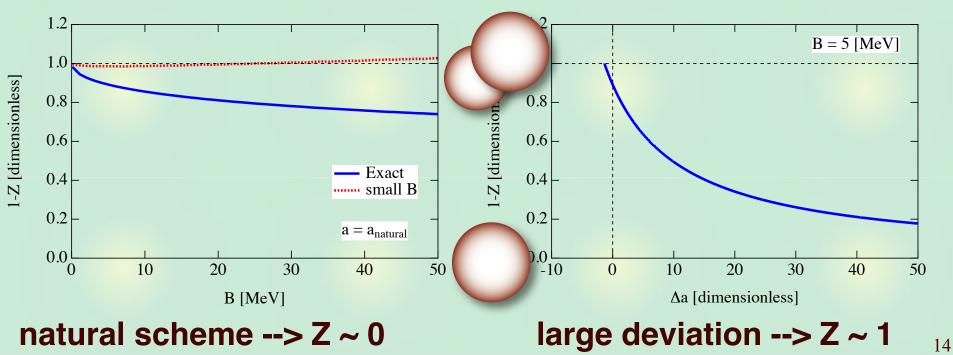
Natural renormalization condition

<-- to exclude elementary contribution from the loop function

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

 $G(W = M; a_{\text{natural}}) = 0$ 

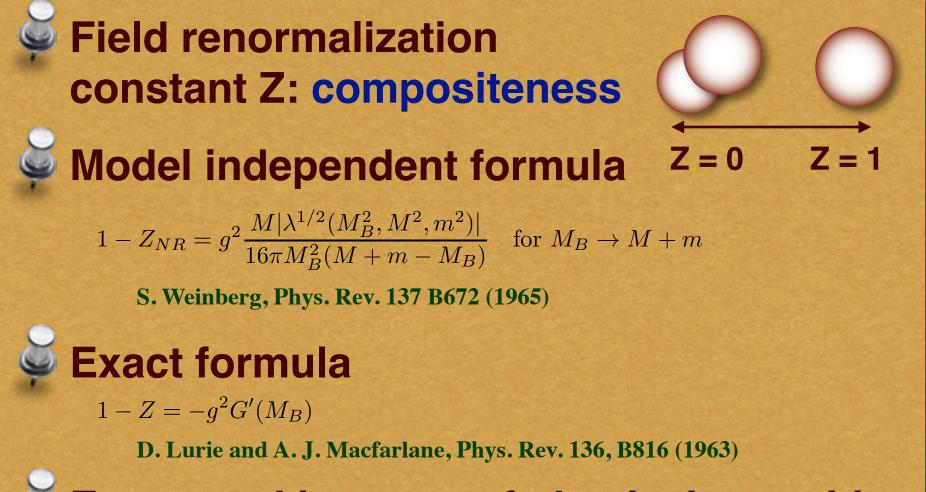




#### Summary

**Summary 1** 

# **Compositeness of the bound state**



**Expressed in terms of physical quantities** 

Summary

## Summary 2

# **Application to chiral unitary approach**

Bound state in chiral dynamics

Energy independent interaction --> purely composite bound state

Energy-dependent chiral interaction --> mixture of composite and elementary

Natural scheme corresponds to Z ~ 0 --> composite particle is generated

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)

Summary

Summary 3

# **Future perspective**

Coupled-channel problem - maybe possible? **Hadron resonances** - Z becomes complex, not normalized? Application to other fields - Higgs boson - polaron-molecule transition in ultra-cold atoms R. Schmidt, T. Enss, Phys. Rev. A 83, 063620 (2011)