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Introduction

What are 3q state, 5q state, MB state, ...?

Clear (model-independent) definition of the structure?
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Definition of hadron structure
Number of quarks and antiquarks (≠ quark number) ?

Introduction

+ + . . .|�(1405) � =

Number of hadrons

+ + . . .|�(1405) � =

may not be a good classification scheme.
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Abstract. A method to identify hadronic molecules in the particle spectrum is reviewed and the conditions
for its applicability discussed. Special emphasis is put on the discussion of molecule candidates in the baryon
spectrum.

PACS. 13.30.Eg Hadronic decays – 13.75.-n Hadron-induced low- and intermediate-energy reactions and
scattering (energy ≤ 10 GeV) – 14.20.-c Baryons (including antiparticles)

1 Introduction

If we want to deduce any information about quark confine-
ment from the hadron spectrum, it is necessary to disen-
tangle those states that exist due to inter-quark (or quark-
gluon or gluon-gluon) interactions from those that exist
due to hadron-hadron interactions. The latter I will call
hadronic molecules, the former elementary states (some-
times I will also use the notion quark states, however, it
should become clear that the method outlined only al-
lows one to quantify the molecular component of a state
and not to draw any conclusion on the composition of
the elementary part, which might be a conventional me-
son/baryon or diquark-antidiquark/pentaquark or contain
valence gluons). Since also the individual hadrons are
made of quarks and gluons this distinction sounds quite
academic. However, this is not the case. In this presen-
tation I will first discuss under which circumstances we
have a chance to identify hadronic molecules in a model-
independent way. After this, the conditions are checked for
various baryons that are candidates for molecules in the
spectrum. Then, the example of the Λ(1520) is discussed
in some detail.

Before going into details some general remarks are use-
ful. What we call a hadronic molecule1 is an object that
exists as the result of non-perturbative hadron-hadron in-
teractions. For the considerations below it is not necessary
to assume a particular mechanism for the hadron-hadron
interaction. All that will be needed is that this interaction

! Original article based onmaterial presented atNSTAR2007.
a e-mail: c.hanhart@fz-juelich.de
1 In ref. [1] the same objects are baptized extraordinary

hadrons.
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Fig. 1. Illustration of the essential difference between hadron
loops (or loops of colour neutral objects) and quark loops
(or loops of coloured objects): only the former have non-
analyticities.

is attractive and sufficiently strong to form a bound state
—the latter property will be parameterized by an effective
coupling constant. To understand under which circum-
stances it is possible to disentangle hadronic molecules
and quark states, let us look at the analytic properties of
a general loop digram with either of these degrees of free-
dom as possibilities for the essential building block of a
particular state (for simplicity, in this section we discuss
the case of mesons only —the generalization of the argu-
ment to baryons is straightforward). Since quarks cannot
go on-shell, the corresponding loop integral needs to lead
to a function analytic in the energy. On the other hand, in
addition to an analytic part, the hadronic loop contains
also a non-analytic piece that originates from the unitar-
ity cut. This piece is genuine to the two-hadron loop. This
situation is illustrated in fig. 1. Thus, if we can identify
situations where this non-analytic piece gives the most
prominent contribution for molecules, we should have a

Hadrons are asymptotic states
--> different kinematical structure

C. Hanhart, Eur. Phys. J. A 35, 271 (2008)
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Weinberg’s compositeness and deuteron
Definition of compositeness

N
N|deuteron� = or

<-- Experiments

Z: probability of finding deuteron in a bare elementary state

Z = 0 Z = 1

∉ NN model space
~ elementary particle

-->  deuteron is almost composite!
as = +5.41 [fm], re = +1.75 [fm], R � (2µB)�1/2 = 4.31 [fm]

� Z � 0.2

model independent relation for weakly bound state

as: scattering length
re: effective range
R: deuteron radius (binding energy)

as =
�
2(1� Z)
2� Z

�
R +O(m�1

� ), re =
�
�Z

1� Z

�
R +O(m�1

� )

S. Weinberg, Phys. Rev. 137, B672 (1965)



Define Z as the overlap of B and B0 
: probability of finding the physical
bound state in the bare state |B>

1 - Z : Compositeness of the bound state

Z � |�B0 | B �|2
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Definition of the compositeness 1-Z
Hamiltonian of two-body system: free + interaction V

H = H0 + V

Complete set for free Hamiltonian: bare |B0 > + continuum
1 = | B0 ��B0 | +

�
dk| k ��k |

H0|B0 � = E0|B0 �, H0|k � = E(k)|k �

Physical bound state |B> : eigenstate of full Hamiltonian

B: binding energy
(H0 + V )|B � = �B|B �

B V

full

en
er

gy
B0

free

Definition of compositeness
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Model-independent but approximated method
With the Schrödinger equation, we obtain

1
(E(p) + B)2

g(p)B = −3

p

�k |V | B � : B

�
k

V

= 4�
�

2µ3

� �

0
dE

�
E|GW (E)|2

(E + B)2
�k |V | B � � GW [E(k)] for s-wave

Approximation: For small binding energy B<<1, the vertex 
GW(E) can be regarded as a constant: GW (E) � gW

1 � Z =
�

dk
|�k |V | B �|2

[E(k) + B]2

- Model-independent: no information of V
- Approximated: valid only for small B

S. Weinberg, Phys. Rev. 137 B672-B678 (1965)
Compositeness <-- coupling gw and binding energy B

Then the integration can be done analytically, leading to
1� Z = 2�2

�
2µ3

g2
W�
B

Definition of compositeness
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1
(E(p) + B)2

g(p)B = −3

p

Definition of compositeness

Field theory with Yukawa coupling (ψ,φ,B0)
see D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

Z in Yukawa model

L0 = ⇥̄(i/⇤ �M)⇥ +
1

2
(⇤µ�⇤

µ��m2�2) + B̄0(i/⇤ �MB0)B0

Lint = g0⇥̄�B0 + (h.c.)

Free (full) propagator of B0 (B) field (positive energy part)
�0(W ) =

1

W �MB0

, �(W ) =
Z

W �MB

Physical bound state B at total energy W=MB

Z: field renormalization constant

�(W ) = �0(W ) +�0(W )g0G(W )g0�(W )

Dyson equation: relation between full and free propagators

= +

B0 g0
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1
(E(p) + B)2

g(p)B = −3

p

Definition of compositeness

Master formula of compositeness
Solution of Dyson equation and renormalization

Z = lim
W!MB

W �MB

W � g20G(W ; a)
=

1

1� g20G
0(MB)

The field renormalization constant: residue of the propagator

Renormalization condition, pole at W=MB : MB = g20G(MB; a)

Physical coupling constant: residue of T-matrix
g2 = g20Z

1� Z = �g2G0(MB)

Compositeness in Yukawa theory

�(W ) =
1

W �MB0 � g20G(W )
! 1

W � g20G(W ; a)
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1
(E(p) + B)2

g(p)B = −3

p

Definition of compositeness

Compositeness: summary
Compositeness of the bound state <-- g and MB

Method 1: nonrelativistic quantum mechanics

1� ZNR = g2
M |�1/2

(M2
B,M

2,m2
)|

16⇥M2
B(M +m�MB)

for MB ⇥ M +m

model independent, but valid only for weak binding

1� Z = �g2G0(MB)

Method 2: field theory with Yukawa coupling

exact (any MB), but Lagrangian dependent 

Application?
For a bound state, compositeness is determined by physical 
mass ``MB” and coupling constant ``g”.

Model calculation, Lattice QCD, Experiments, ... 
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Description of S = -1, KN s-wave scattering: Λ(1405) in I=0
Chiral dynamics: overview

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Interaction <-- chiral symmetry

- Amplitude <-- unitarity in coupled channels

Application to chiral dynamics

T

= +
T

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), .... many others

It works successfully in various hadron scatterings.

chiral cutoff
T =

1
1� V G

V

A review: T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)
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Natural renormalization condition
Single-channel scattering of meson m and baryon M.

Application to chiral dynamics

T (W ) =
1

1� V (W )G(W ; a)
V (W )

Bound state condition: pole at W=MB

1� V (MB)G(MB ; a) = 0

Coupling constant: residue of the pole

g2 = lim

W!MB

(W �MB)T (W ) =

8
><

>:

�[G0
(MB)]

�1
constant interaction

�

G0

(MB) +
G(MB ; a)

MB �M

��1

WT interaction

We determine mass and coupling of the bound state

cutoff parameter
V: 4-point interaction, attractive

V (W ) =

(
V (const)

= Cm constant interaction

V (WT)

(W ) = C(W �M) WT interaction

V
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Compositeness of bound states
Compositeness in Yukawa theory

Application to chiral dynamics

- constant interaction --> purely composite bound state
- WT interaction --> mixture of composite and elementary

- Purely composite bound state for WT interaction:
G0

(MB) = �1 or G(MB; a) = 0

MB = M +m or C ! �1

1) zero energy bound state 
2) infinitely strong two-body attraction

1� Z = �g2G0
(MB) =

8
><

>:

1 constant interaction
1 +

G(MB; a)

(MB �M)G0
(MB)

��1

WT interaction

Relation with natural renormalization scheme?
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Natural renormalization condition
<-- to exclude elementary contribution from the loop function
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Consistency check of the natural renormalization scheme

natural scheme --> Z ~ 0                 large deviation --> Z ~ 1

1) a = anatural, vary B                   2) B = 5 MeV, vary a

Application to chiral dynamics
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 Exact
 small B

a = anatural

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

G(W = M ; anatural) = 0
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Summary 1

Field renormalization                          
constant Z: compositeness

Model independent formula

Exact formula

Expressed in terms of physical quantities

Compositeness of the bound state

Z = 0 Z = 1

Summary

S. Weinberg, Phys. Rev. 137 B672 (1965)

D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

1� ZNR = g2
M |�1/2

(M2
B,M

2,m2
)|

16⇥M2
B(M +m�MB)

for MB ⇥ M +m

1� Z = �g2G0(MB)
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Bound state in chiral dynamics

Natural scheme corresponds to Z ~ 0
--> composite particle is generated

Summary

Application to chiral unitary approach
Summary 2

Energy independent interaction
--> purely composite bound state

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C85, 015201 (2012)

Energy-dependent chiral interaction
--> mixture of composite and elementary
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Coupled-channel problem

Hadron resonances

Application to other fields
- Z becomes complex, not normalized?

Summary

Future perspective
Summary 3

- Higgs boson
- polaron-molecule transition in 
  ultra-cold atoms

R. Schmidt, T. Enss, Phys. Rev. A 83, 063620 (2011)

- maybe possible?


