
DN interaction, $\Lambda_c(2595)$, and DNN quasi-bound state

Tetsuo Hyodo

Tokyo Institute of Technology

with M. Bayar, C.W. Xiao, A. Dote, M. Oka, E. Oset

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Introduction

 \bigvee DN interaction and $\Lambda_c(2595)$

- Variational calculation with DN potential
- FCA to Faddeev equation

Summary

Introduction

Conventions for heavy mesons

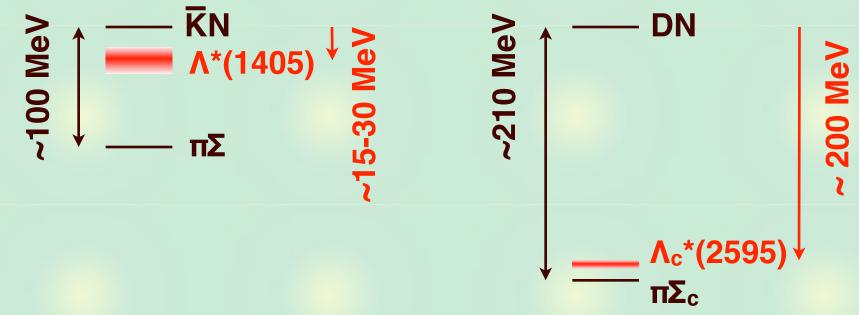
Convention of quantum number of quarks

strange	charm	bottom
S = -1	C = +1	B = -1

Heavy-light mesons: bar for negative flavor-ness (q~u,d)

with q	$\overline{\mathbf{K}}$ (s $\overline{\mathbf{q}}$)	D (cq)	B (bq)	
with q	K (s q)	$\overline{\mathbf{D}}$ ($\overline{\mathbf{c}}$ q)	B (bq)	

DN <--> KN : non-exotic light quark annihilation


D
N <--> KN : exotic Θ⁺, Yasui-Sudoh

Introduction

Why DN and DNN?

Comparison with KN system in I=0 channel

- large mass splitting between DN and $\pi\Sigma_c$
- narrow negative parity Λ_c^* , analogous to $\Lambda(1405)$?

 Λ^* : a $\overline{K}N$ bound state in the πΣ continuum --> \overline{K} nuclei Λ_c^* : a DN bound state in the πΣ_c continuum --> D nuclei? (c.f. conventionally, $\Lambda_c^* \sim 3$ -quark state)

DN bound state picture ?

Can Λ_c^* (with large binding) be a DN quasi-bound state?

D (1867 MeV) is heavier than K (496 MeV).
 Kinetic energy is suppressed.
 If the DN interaction were the same with KN,
 system would develop a deeper quasi-bound state.

- Vector meson exchange picture leads to a stronger DN interaction than $\overline{K}N$ at threshold

 $\frac{V_D}{V_K} = \frac{m_D}{m_K} \sim 3.8$ (next slide)

DN system can generate a strongly bound state: Λ_c^* .

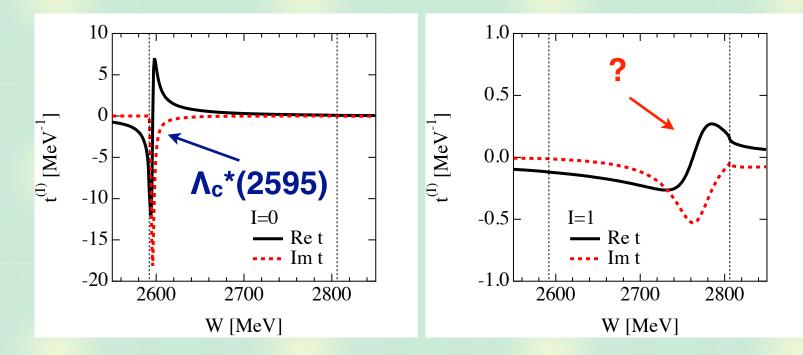
DN interaction and $\Lambda_c(2595)$

Vector meson exchange for DN

DN (KN) interaction in vector meson exchange (low energy)

Interaction in DN- $\pi\Sigma_c$ system

- strong DN interaction --> large binding energy
- suppressed off-diagonal coupling --> narrow width of Λ_c^*


DN interaction and $\Lambda_c(2595)$

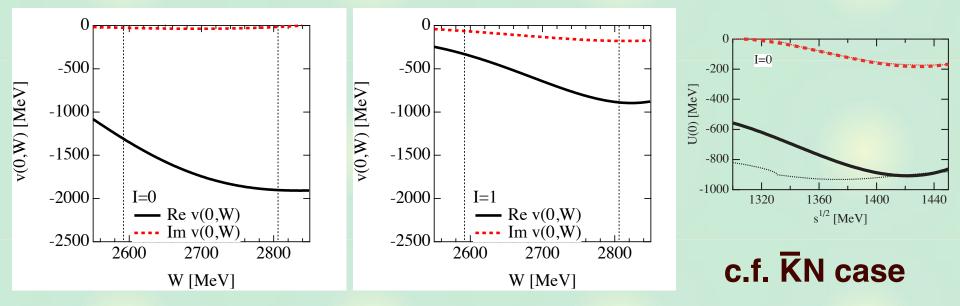
DN scattering amplitude

Coupled-channel DN ($\pi\Sigma_c$, $\eta\Lambda_c$, $K\Xi_c$, $K\Xi_c$ ', $D_s\Lambda$, $\eta'\Lambda_c$) scattering

see T. Mizutani, A. Ramos, Phys. Rev. C74, 065201 (2006)

Subtraction constants (cutoff parameters) are chosen to reproduce Λ_c^* in I=0. Apply the same constants to I=1.

A resonance at ~ 2760 MeV is generated in I=1 channel. c.f. PDG 1*: $\Lambda_c^*(2765)$ or $\Sigma_c^*(2765)$??


DN local potential

Equivalent single-channel local potential

see T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008)

$$v_{DN}(r;W) = \frac{M_N}{2\pi^{3/2} a_s^3 \tilde{\omega}(W)} [v^{\text{eff}}(W) + \Delta v(W)] \exp[-(r/a_s)^2]$$

- reproduces the coupled channel amplitude

This potential reproduces the DN amplitude in CC model. Larger (smaller) real (imaginary) part than $\overline{K}N$

DN molecule?

Our model space: meson-baryon channels. No bare field.

- Is the quasi-bound state a DN molecule?

No. Pole contribution can be hidden in the cutoff.

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

$$T = \frac{1}{(V^{(1)})^{-1} - G(\underline{a})}$$
$$T = \frac{1}{(V^{(1)} + V^{(2)})^{-1} - G(\underline{a'})}$$
$$fpole$$

Once the cutoff parameter is chosen to reproduce data, it can play a role of bare field as well as other coupled channels ($\pi\Sigma_c^*$, D*N, etc.), which are not included in the model space.

Strategy for DNN bound state

Coupled-channel model DN amplitude, $\Lambda_c(2595)$

DN singlechannel potential

real part

Three-body variational calculation

- Structure from wave function
- NN dynamics is dynamically solved.

Fixed-center approximation to Faddeev equation

Assume NN

distribution

- Two-body absorption
- Imaginary part of the amplitude is treated.

Coupled-channel (πY_cN) effect is **partly** included.

Variational calculation: setup

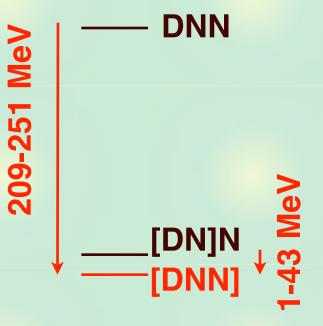
```
Quantum number: I=1/2, J<sup>P</sup>=0<sup>-</sup>, 1<sup>-</sup>
```

```
- J<sup>P</sup>=0<sup>-</sup> "D+nn"
```

```
S<sub>NN</sub>=0
I<sub>NN</sub>=1 (s-wave) --> DN(I=0):DN(I=1) = 3:1
```

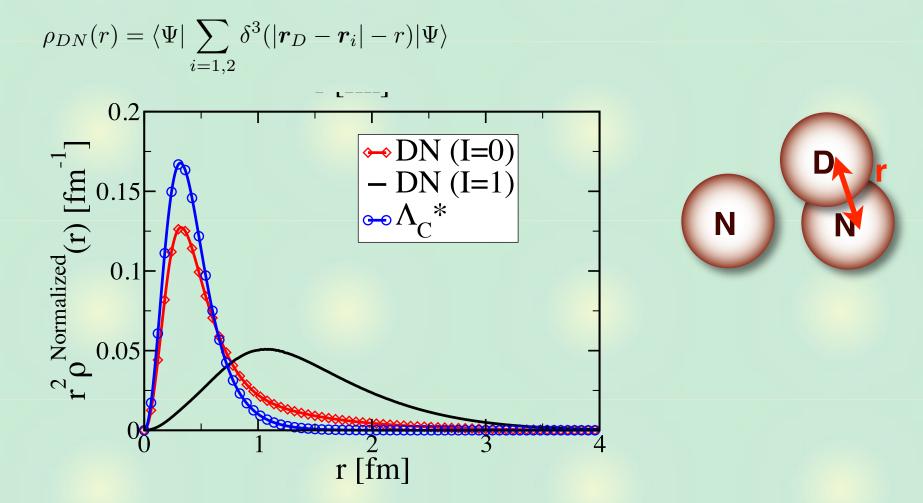
```
- J<sup>P</sup>=1<sup>-</sup> "D+d"
S<sub>NN</sub>=1
I<sub>NN</sub>=0 (s-wave) --> DN(I=0):DN(I=1) = 1:3
```

Two-body interactions


- DN imaginary part is neglected
- energy dependence is fixed at Λ_c^* (I=1 QBS disappears)
- three kinds of NN forces (Av18, HN1R, Minnesota)

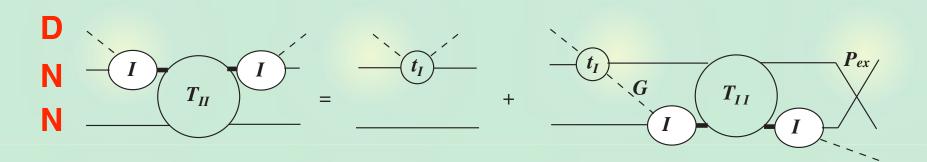
Variational calculation: results

Results of the DNN system


- J=0 bound, J=1 unbound w.r.t. [DN]N
- mesonic decay width is small
- softer the core, larger the binding

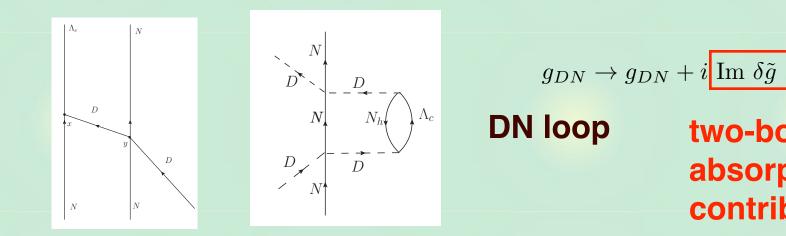
	HN1R		Minnesota	Av18
	J = 1	J = 0	J = 0	J = 0
	unbound	bound	bound	bound
В	208	225	251	209
M_B	3537	3520	3494	3536
$\Gamma_{\pi Y_c N}$	-	26	38	22
$E_{\rm kin}$	338	352	438	335
V(NN)	0	-2	19	-5
V(DN)	-546	-575	-708	-540
$T_{ m nuc}$	113	126	162	117
E_{NN}	113	124	181	113
P(Odd)	75.0~%	14.4 %	7.4~%	18.9~%

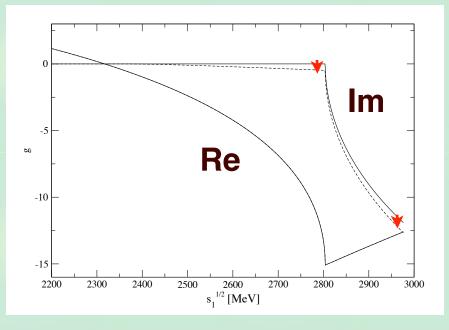
Variational calculation: DN correlation


Isospin decomposition of DN two-body correlation

DN (I=0) correlation is similar to Λ_c^*

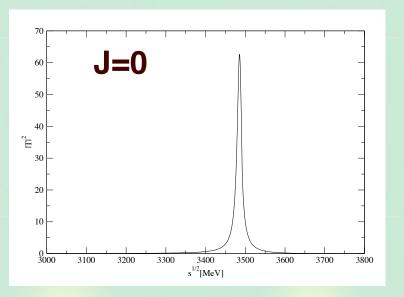
FCA calculation

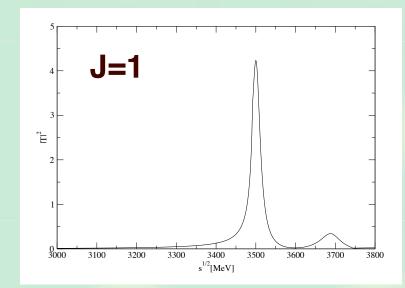

Fixed-center approximation to Faddeev equation


- Complex DN amplitude
- all two-body pairs are in s-wave
- NN distribution is assumed (chosen to be smaller than the deuteron)

FCA calculation: two-body absorption

Two-body absorption --> imaginary part of DN amplitude





FCA calculation: result

Magnitude of the three-body amplitude square

J=0 channel: M ~ 3500 MeV

- strong signal, consistent with the variational calculation
- J=1 channel: M ~ 3500 MeV and M ~ 3700 MeV?
 - week signal, not found in the variational calculation??
 - I=1 DN interaction is important for this channel.

Possible experiments

Antiproton beam

 $\bar{p} + {}^{3}\operatorname{He} \to \bar{D}^{0}D^{0}pn \to \bar{D}^{0}[DNN]$

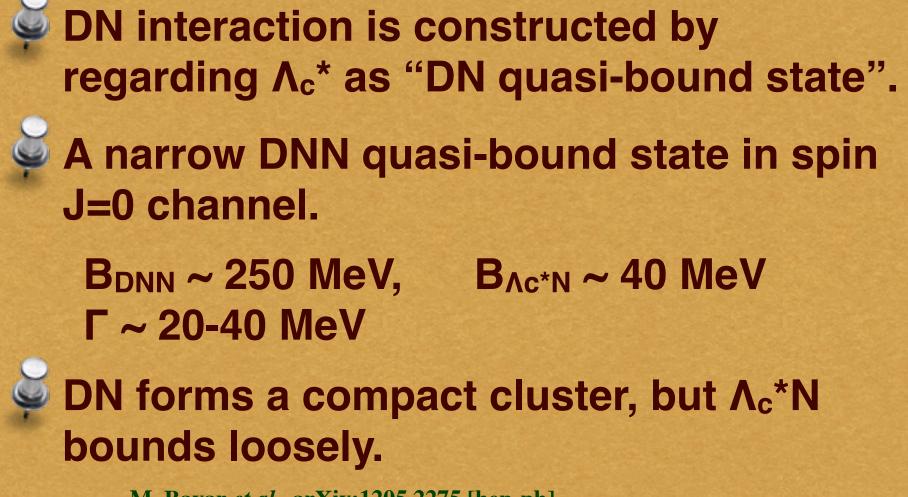
- PANDA?

Pion beam

 $\pi^- + d \to D^- D^+ np \to D^- [DNN]$

 $\pi^- + d \to D^- \Lambda_c^+ n \to D^- [DNN]$

- J-PARC high momentum beamline?


Heavy Ion collision Coalescence DNN (large binding), Λ_c*N (small binding)

- RHIC, LHC,...

S. Cho, et al, Phys. Rev. Lett. 106, 212001 (2011); Phys. Rev. C 84, 064910 (2011)

Summary

We study DN interaction and DNN system

M. Bayar et al., arXiv:1205.2275 [hep-ph]