D-meson-nucleon interaction

and DNN systems

Tetsuo Hyodo
Tokyo Institute of Technology
with M. Bayar, C.W. Xiao, A. Dote, M. Oka, E. Oset
supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Contents

Introduction
 $+$

- Variational calculation with DN potential
- FCA to Faddeev equation

Summary
 .

0

DN interaction and $\Lambda_{c}(2595)$

DNN quasi-bound state
 DNN quasi-bound state

an

5
\qquad
an

Introduction

Conventions for heavy mesons

Convention of quantum number of quarks

strange	charm	bottom
$\mathrm{S}=-1$	$\mathrm{C}=+1$	$\mathrm{~B}=-1$

Heavy-light mesons: bar for negative flavor-ness (q~u,d)

with $\overline{\mathrm{q}}$	$\overline{\mathrm{K}}(\mathrm{s} \overline{\mathrm{q}})$	$\mathrm{D}(\mathrm{c} \overline{\mathrm{q}})$	$\overline{\mathrm{B}}(\mathrm{b} \overline{\mathrm{q}})$
with q	$\mathrm{K}(\overline{\mathrm{s} q})$	$\overline{\mathrm{D}}(\overline{\mathrm{q} q})$	$\mathrm{B}(\overline{\mathrm{b} q})$

DN <--> K̄N : non-exotic light quark annihilation

$\overline{\mathrm{D}} \mathrm{N}$ <--> KN : exotic
\mathbf{O}^{+}, Ikeda's talk

Why DN and DNN?

Comparison with $\bar{K} N$ system in $\mathrm{I}=0$ channel

- large mass splitting between DN and $\boldsymbol{\pi} \boldsymbol{\Sigma}_{\mathrm{c}}$
- narrow negative parity $\Lambda_{c}{ }^{*}$, analogous to $\Lambda(1405)$?
Λ^{*} : a $\bar{K} N$ bound state in the $\Pi \Sigma$ continuum $-->\bar{K}$ nuclei $\Lambda_{c}{ }^{*}$: a DN bound state in the $\boldsymbol{\pi} \boldsymbol{\Sigma}_{\mathrm{c}}$ continuum $-->\mathrm{D}$ nuclei?

DN interaction and $\Lambda_{c}(2595)$

DN bound state picture?

Can $\Lambda_{c}{ }^{*}$ (with large binding) be a DN quasi-bound state?

- $D(1867 \mathrm{MeV})$ is heavier than $\overline{\mathrm{K}}$ (496 MeV). Kinetic energy is suppressed. If the DN interaction were the same with $\bar{K} N$, system would develop a deeper quasi-bound state.
- Vector meson exchange picture leads to a stronger DN interaction than $\overline{\mathrm{K}} \mathrm{N}$ at threshold

$$
\frac{V_{D}}{V_{K}}=\frac{m_{D}}{m_{K}} \sim 3.8 \quad \text { (next slide) }
$$

DN system can generate a strongly bound state: $\Lambda_{c}{ }^{*}$.

Vector meson exchange for DN

DN ($\bar{K} N$) interaction in vector meson exchange (low energy)

$$
\begin{aligned}
V & \sim g \bar{u} \gamma^{\mu} u \times \frac{1}{k^{2}-m_{v}^{2}}\left[g_{\mu \nu}-\frac{k_{\mu} k_{\nu}}{m_{v}^{2}}\right] \times g\left(q+q^{\prime}\right)^{\nu} \\
& \rightarrow-\bar{u} \gamma^{\mu} u \frac{g^{2}}{m_{v}^{2}} g_{\mu \nu}\left(q+q^{\prime}\right)^{\nu} \quad\left(k \ll m_{v}\right) \\
& \rightarrow-\frac{1}{2 f^{2}} \bar{u}\left(q+\not q^{\prime}\right) u \quad \text { (KSRF relation) (Weinl } \\
& \rightarrow-\frac{1}{2 f^{2}}\left(q^{0}+q^{0 \prime}\right) \quad \text { (nonrel. leading) } \\
& \rightarrow-\frac{m}{f^{2}} \quad(\text { at threshold) }
\end{aligned}
$$

Interaction in DN- $\boldsymbol{\Pi} \boldsymbol{\Sigma}_{\mathrm{c}}$ system

$$
V \sim\left(\begin{array}{cc}
-3 m_{D} & \sqrt{\frac{3}{\frac{3}{2} \kappa_{c}} \frac{m_{D}+m_{\pi}}{2}} \\
\sqrt{\frac{\sqrt[3]{2} \hbar_{c} m^{m}+m_{\pi}}{2}} & -4 m_{\pi}
\end{array}\right)
$$

$$
\kappa_{c} \sim \frac{m_{K^{*}}^{2}}{m_{D^{*}}^{2}} \sim \frac{1}{4}
$$

- strong DN interaction --> large binding energy
- suppressed off-diagonal coupling --> narrow width of $\Lambda_{c}{ }^{*}$

DN interaction and $\Lambda_{c}(2595)$

DN scattering amplitude

Coupled-channel DN ($\left.\boldsymbol{\Pi} \Sigma_{c}, \eta \Lambda_{c}, K \Xi_{c}, K \Xi_{c}{ }^{\prime}, D_{s} \Lambda, \eta{ }^{\prime} \Lambda_{c}\right)$ scattering see T. Mizutani, A. Ramos, Phys. Rev. C74, 065201 (2006)

Subtraction constants (cutoff parameters) are chosen to reproduce $\Lambda_{c}{ }^{*}$ in $\mathrm{I}=0$. Apply the same constants to $\mathrm{I}=1$.

A resonance at $\sim 2760 \mathrm{MeV}$ is generated in l=1 channel. c.f. PDG 1^{*} : $\Lambda_{c}{ }^{*}(2765)$ or $\Sigma_{c}{ }^{*}(2765)$??

DN interaction and $\Lambda_{c}(2595)$

DN local potential

Equivalent single-channel local potential see T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008)

$$
v_{D N}(r ; W)=\frac{M_{N}}{2 \pi^{3 / 2} a_{s}^{3} \tilde{\omega}(W)}\left[v^{\mathrm{eff}}(W)+\Delta v(W)\right] \exp \left[-\left(r / a_{s}\right)^{2}\right]
$$

- reproduces the coupled channel amplitude

This potential reproduces the DN amplitude in CC model. Larger (smaller) real (imaginary) part than $\bar{K} N$

Strategy for DNN bound state

Coupled-channel model DN amplitude, $\Lambda_{c}(2595)$

DN singlechannel potential
real part

Three-body variational calculation

- Structure from wave function
- NN dynamics is dynamically solved. Coupled-channel $\left(\pi Y_{c} N\right)$ effect is partly included.
- Two-body absorption
- Imaginary part of the amplitude is treated.

Fixed-center approximation to Faddeev equation

Variational calculation: setup

Quantum number: $\mathrm{I}=1 / 2, \mathrm{JP}^{\mathrm{P}}=\mathrm{O}^{-}, 1^{-}$

- JP=0-"D+nn"

$$
\begin{aligned}
& S_{\mathrm{NN}}=0 \\
& \mathrm{I}_{\mathrm{NN}}=1 \text { (s-wave) }- \text {-> DN(I=0):DN(I=1) = 3:1 }
\end{aligned}
$$

- JP=1-"D+d"

$$
\begin{aligned}
& S_{\text {NN }}=1 \\
& I_{\text {NN }}=0 \text { (s-wave) }-->\text { DN(I=0):DN(I=1) = } 1: 3
\end{aligned}
$$

Two-body interactions

- DN imaginary part is neglected
- energy dependence is fixed at $\Lambda_{c}{ }^{*}$ ($l=1$ QBS disappears)
- three kinds of NN forces (Av18, HN1R, Minnesota)

DNN quasi-bound state

Variational calculation: results

Results of the DNN system

- J=0 bound, J=1 unbound w.r.t. [DN]N
- mesonic decay width is small
- softer the core, larger the binding

	HN1R		Minnesota	Av18
	$J=1$	$J=0$	$J=0$	$J=0$
	unbound	bound	bound	bound
B	208	225	251	209
M_{B}	3537	3520	3494	3536
$\Gamma_{\pi Y_{C} N}$	-	26	38	22
$E_{\text {kin }}$	338	352	438	335
$V(N N)$	0	-2	19	-5
$V(D N)$	-546	-575	-708	-540
$T_{\text {nuc }}$	113	126	162	117
$E_{N N}$	113	124	181	113
$P(\mathrm{Odd})$	75.0%	14.4%	7.4%	18.9%

Variational calculation: DN correlation

Isospin decomposition of DN two-body correlation

$$
\rho_{D N}(x)=\langle\Psi| \sum_{i=1,2} \delta^{3}\left(\left|\boldsymbol{r}_{D}-\boldsymbol{r}_{i}\right|-x\right)|\Psi\rangle
$$

DN $(\mathrm{l}=0)$ correlation is similar to $\Lambda_{c}{ }^{*}$

DNN quasi-bound state

FCA calculation

Fixed-center approximation to Faddeev equation

- Complex DN amplitude
- all two-body pairs are in s-wave
- NN distribution is assumed
(chosen to be smaller than the deuteron)

DNN quasi-bound state

FCA calculation: two-body absorption

Two-body absorption --> imaginary part of DN amplitude

$$
g_{D N} \rightarrow g_{D N}+i \operatorname{Im} \delta \tilde{g}
$$

DN loop
two-body absorption contribution

FCA calculation: result

Magnitude of the three-body amplitude square

J=0 channel: M ~ 3500 MeV

- strong signal, consistent with the variational calculation

J=1 channel: M ~ 3500 MeV and M ~ 3700 MeV ?

- week signal, not found in the variational calculation??
- I=1 DN interaction is important for this channel.

Possible experiments

Antiproton beam

$$
\bar{p}+{ }^{3} \mathrm{He} \rightarrow \bar{D}^{0} D^{0} p n \rightarrow \bar{D}^{0}[D N N]
$$

- PANDA?

Pion beam

$$
\begin{aligned}
& \pi^{-}+d \rightarrow D^{-} D^{+} n p \rightarrow D^{-}[D N N] \\
& \pi^{-}+d \rightarrow D^{-} \Lambda_{c}^{+} n \rightarrow D^{-}[D N N]
\end{aligned}
$$

- J-PARC high momentum beamline?

Heavy lon collision
Coalescence DNN, $\Lambda_{c}{ }^{*} \mathbf{N}$

- RHIC, LHC,...
S. Cho, et al, Phys. Rev. Lett. 106, 212001 (2011); C 84, 064910 (2011)

Summary
 Summary
 Sumimary

We study DN interaction and DNN system

DN interaction is constructed by
regarding $\Lambda_{c}{ }^{*}$ as "DN quasi-bound state".
DN interaction is constructed by
regarding $\Lambda_{c}{ }^{*}$ as "DN quasi-bound state". A narrow DNN quasi-bound state in spin
$\mathrm{J}=0$ channel. A narrow DNN quasi-bound state in spin
$\mathrm{J}=0$ channel.

DN interaction in I=1 channel (negative parity $\Sigma_{c}{ }^{*}$) is important for $\mathrm{J}=1$ result. M. Bayar et al., arXiv:1205.2275 [hep-ph]

$$
\begin{aligned}
& \text { BDNN } \sim 250 \mathrm{MeV}, \quad \mathrm{~B}_{\wedge c^{*} \mathrm{~N}} \sim 40 \mathrm{MeV} \\
& \Gamma \sim 20-40 \mathrm{MeV}
\end{aligned}
$$

DNN system

\qquad

*M. Bayar et al., arXiv:1205.2275 [hep-ph] —

