D-meson-nucleon interaction and DNN systems

Tetsuo Hyodo

Tokyo Institute of Technology

with M. Bayar, C.W. Xiao, A. Dote, M. Oka, E. Oset

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

2012, Jun. 12th

Contents

Introduction

 \triangleright DN interaction and $\Lambda_c(2595)$

DNN quasi-bound state

- Variational calculation with DN potential
- FCA to Faddeev equation

Summary

Conventions for heavy mesons

Convention of quantum number of quarks

strange	charm	bottom
S = -1	C = +1	B = -1

Heavy-light mesons: bar for negative flavor-ness (q~u,d)

with q	$\overline{\mathbf{K}}$ (s $\overline{\mathbf{q}}$)	$D(c\overline{q})$	$\overline{\mathbf{B}}$ (b $\overline{\mathbf{q}}$)
with q	K (sq)	$\overline{\mathbf{D}}$ ($\overline{\mathbf{c}}$ q)	B (b q)

DN <--> KN : exotic Θ+, Ikeda's talk

Why DN and DNN?

Comparison with KN system in I=0 channel

- large mass splitting between DN and $\pi\Sigma_c$
- narrow negative parity Λ_c^* , analogous to $\Lambda(1405)$?

 $Λ^*$: a $\overline{K}N$ bound state in the πΣ continuum --> \overline{K} nuclei

 Λ_c^* : a DN bound state in the $\pi\Sigma_c$ continuum --> D nuclei?

DN interaction and $\Lambda_c(2595)$

DN bound state picture?

Can Λ_c* (with large binding) be a DN quasi-bound state?

D (1867 MeV) is heavier than K (496 MeV).
 Kinetic energy is suppressed.
 If the DN interaction were the same with KN,
 system would develop a deeper quasi-bound state.

- Vector meson exchange picture leads to a stronger DN interaction than KN at threshold

$$rac{V_D}{V_K} = rac{m_D}{m_K} \sim 3.8$$
 (next slide)

DN system can generate a strongly bound state: Λ_c^* .

Vector meson exchange for DN

DN (KN) interaction in vector meson exchange (low energy)

$$V \sim g\bar{u}\gamma^{\mu}u \times \frac{1}{k^{2} - m_{v}^{2}} \left[g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{m_{v}^{2}} \right] \times g(q + q')^{\nu}$$

$$\rightarrow -\bar{u}\gamma^{\mu}u \frac{g^{2}}{m_{v}^{2}} g_{\mu\nu}(q + q')^{\nu} \quad (k \ll m_{v})$$

$$\rightarrow -\frac{1}{2f^{2}} \bar{u}(\not q + \not q')u \quad (KSRF \text{ relation}) \quad \textbf{(Weinberg-Tomozawa term)}$$

$$\rightarrow -\frac{1}{2f^{2}} (q^{0} + q^{0'}) \quad \text{(nonrel. leading)}$$

$$\rightarrow -\frac{m}{f^{2}} \quad \text{(at threshold)}$$

Interaction in DN- $\pi\Sigma_c$ system

$$V \sim \begin{pmatrix} -3m_D & \sqrt{\frac{3}{2}} \kappa_c \frac{m_D + m_{\pi}}{2} \\ \sqrt{\frac{3}{2}} \kappa_c \frac{m_D + m_{\pi}}{2} & -4m_{\pi} \end{pmatrix} \qquad \kappa_c \sim \frac{m_{K^*}^2}{m_{D^*}^2} \sim \frac{1}{4}$$

- strong DN interaction --> large binding energy
- suppressed off-diagonal coupling --> narrow width of Λ_c*

DN interaction and $\Lambda_c(2595)$

DN scattering amplitude

Coupled-channel DN ($\pi\Sigma_c$, $\eta\Lambda_c$, $K\Xi_c$, $K\Xi_c$, $D_s\Lambda$, $\eta'\Lambda_c$) scattering see T. Mizutani, A. Ramos, Phys. Rev. C74, 065201 (2006)

Subtraction constants (cutoff parameters) are chosen to reproduce Λ_c^* in I=0. Apply the same constants to I=1.

A resonance at ~ 2760 MeV is generated in I=1 channel. c.f. PDG 1*: Λ_c *(2765) or Σ_c *(2765) ??

DN interaction and $\Lambda_c(2595)$

DN local potential

Equivalent single-channel local potential

see T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008)

$$v_{DN}(r;W) = \frac{M_N}{2\pi^{3/2}a_s^3\tilde{\omega}(W)}[v^{\text{eff}}(W) + \Delta v(W)]\exp[-(r/a_s)^2]$$

- reproduces the coupled channel amplitude

c.f. KN case

This potential reproduces the DN amplitude in CC model.

Larger (smaller) real (imaginary) part than $\overline{K}N$

DNN quasi-bound state

Strategy for DNN bound state

Coupled-channel model DN amplitude, $\Lambda_c(2595)$

DN singlechannel potential

real part

Three-body variational calculation

- Structure from wave function
- NN dynamics is dynamically solved.

Assume NN distribution

Fixed-center approximation to Faddeev equation

- Two-body absorption
- Imaginary part of the amplitude is treated.

Coupled-channel ($\pi Y_c N$) effect is partly included.

Variational calculation: setup

```
Quantum number: I=1/2, JP=0-, 1-
```

```
- J^{P}=0^{-} "D+nn"

S_{NN}=0

I_{NN}=1 (s-wave) --> DN(I=0):DN(I=1) = 3:1
```

-
$$J^{P}=1^{-}$$
 "D+d"
 $S_{NN}=1$
 $I_{NN}=0$ (s-wave) --> $DN(I=0):DN(I=1)=1:3$

Two-body interactions

- DN imaginary part is neglected
- energy dependence is fixed at Λ_c^* (I=1 QBS disappears)
- three kinds of NN forces (Av18, HN1R, Minnesota)

Variational calculation: results

Results of the DNN system

- J=0 bound, J=1 unbound w.r.t. [DN]N
- mesonic decay width is small
- softer the core, larger the binding

	HN1R		Minnesota	Av18	MeV	
	J = 1	J = 0	J = 0	J = 0	Ž	
	unbound	bound	bound	bound	_	
B	208	225	251	209	25	
M_B	3537	3520	3494	3536	<u>, </u>	
$\Gamma_{\pi Y_c N}$	-	26	38	22	209-251	
$E_{ m kin}$	338	352	438	335		rı
V(NN)	0	-2	19	-5	,	L'
V(DN)	-546	-575	-708	-540		' ——[l
$T_{ m nuc}$	113	126	162	117		
E_{NN}	113	124	181	113		
P(Odd)	75.0 %	14.4 %	7.4 %	18.9 %		

Variational calculation: DN correlation

Isospin decomposition of DN two-body correlation

$$\rho_{DN}(x) = \langle \Psi | \sum_{i=1,2} \delta^{3}(|\boldsymbol{r}_{D} - \boldsymbol{r}_{i}| - x) | \Psi \rangle$$

DN (I=0) correlation is similar to Λ_c^*

FCA calculation

Fixed-center approximation to Faddeev equation

- Complex DN amplitude
- all two-body pairs are in s-wave
- NN distribution is assumed (chosen to be smaller than the deuteron)

FCA calculation: two-body absorption

Two-body absorption --> imaginary part of DN amplitude

$$g_{DN} \to g_{DN} + i \operatorname{Im} \delta \tilde{g}$$

DN loop

two-body absorption contribution

FCA calculation: result

Magnitude of the three-body amplitude square

J=0 channel: M ~ 3500 MeV

- strong signal, consistent with the variational calculation

J=1 channel: M ~ 3500 MeV and M ~ 3700 MeV?

- week signal, not found in the variational calculation??
- I=1 DN interaction is important for this channel.

Possible experiments

Antiproton beam

$$\bar{p} + ^3 \mathrm{He} \to \bar{D}^0 D^0 pn \to \bar{D}^0 [DNN]$$

- PANDA?

Pion beam

$$\pi^{-} + d \to D^{-}D^{+}np \to D^{-}[DNN]$$
$$\pi^{-} + d \to D^{-}\Lambda_{c}^{+}n \to D^{-}[DNN]$$

- J-PARC high momentum beamline?

Heavy Ion collision Coalescence DNN, Λ_c*N

- RHIC, LHC,...

S. Cho, et al, Phys. Rev. Lett. 106, 212001 (2011); C 84, 064910 (2011)

Summary

We study DN interaction and DNN system

DN interaction is constructed by regarding Λ_c^* as "DN quasi-bound state".

A narrow DNN quasi-bound state in spin J=0 channel.

B_{DNN} ~ 250 MeV, B_{Ac*N} ~ 40 MeV Γ~20-40 MeV

DN interaction in I=1 channel (negative) parity Σ_c^*) is important for J=1 result.

M. Bayar et al., arXiv:1205.2275 [hep-ph]