Determination of the $\pi\Sigma$ scattering lengths from the weak decays of Λ_c

Tetsuo Hyodo, and Makoto Oka

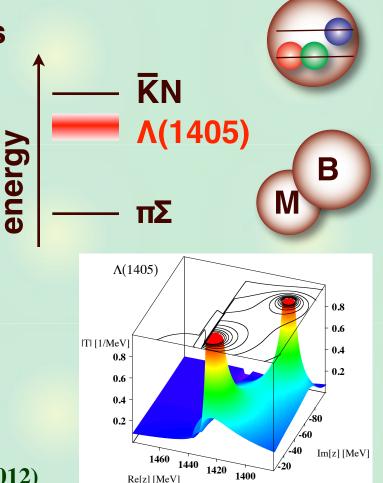
Tokyo Institute of Technology

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

K meson and **K**N interaction

- Two aspects of **K** meson
 - NG boson of chiral SU(3) \otimes SU(3) --> SU(3)
 - relatively heavy mass: M_K ~ 495 MeV
 - --> peculiar role in hadron physics
- **K**N interaction is ...
 - coupled with πΣ channel
 - strongly attractive
 - --> quasi-bound state Λ(1405) meson-baryon v.s. qqq state, double pole, ...
 - fundamental building block for K-nuclei, K in medium,...

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)



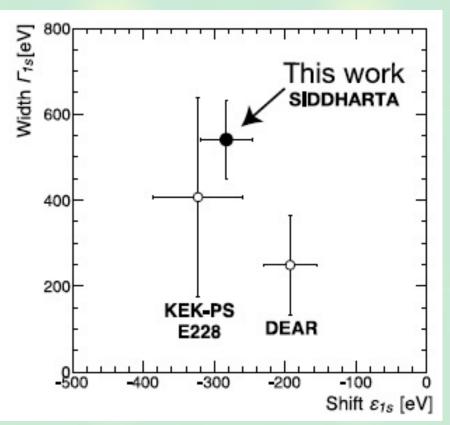
Recent progress

Accurate measurement of Kaonic hydrogen by SIDDHARTA

M. Bazzi, et al., Phys. Lett. B704, 113 (2011)

- smallest uncertainties

 $\Delta E = -283 \pm 36 \pm 6 \text{ eV}, \quad \Gamma = 541 \pm 89 \pm 22 \text{ eV}$



--> New constraint on the meson-baryon amplitude

Experimental constraints for S=-1 MB scattering

K-p total cross sections

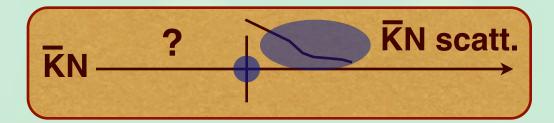
- old bubble chamber data, large errors

KN threshold observables

- threshold branching ratios (old but accurate)

$$\gamma = \frac{\Gamma(K^- p \to \pi^+ \Sigma^-)}{\Gamma(K^- p \to \pi^- \Sigma^+)} = 2.36 \pm 0.04$$
$$R_c = \frac{\Gamma(K^- p \to \pi^+ \Sigma^-, \pi^- \Sigma^+)}{\Gamma(K^- p \to \text{all inelastic channels})} = 0.664 \pm 0.011$$
$$R_n = \frac{\Gamma(K^- p \to \pi^0 \Lambda)}{\Gamma(K^- p \to \text{neutral states})} = 0.189 \pm 0.015$$

- K-p scattering length <-- SIDDHARTA

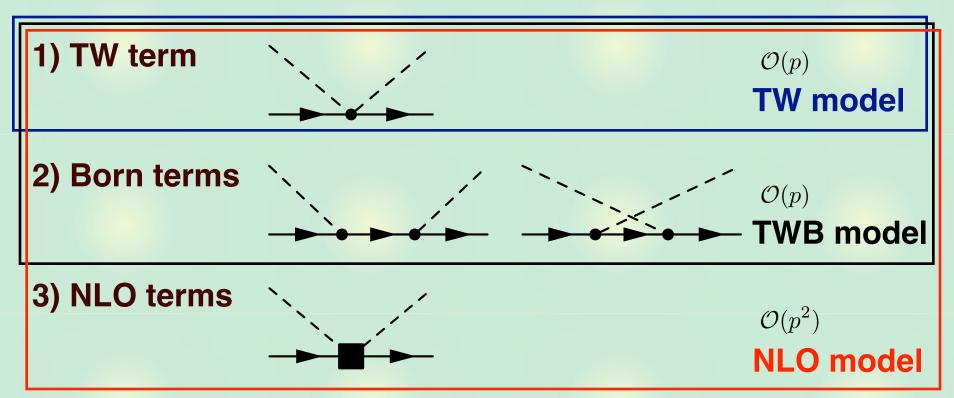


Construction of the realistic amplitude

Systematic analysis by chiral dynamics with SIDDHARTA

Y. Ikeda, T. Hyodo, W. Weise, Phys. Lett. B 706, 63 (2011); Nucl. Phys. A881, 98 (2012)

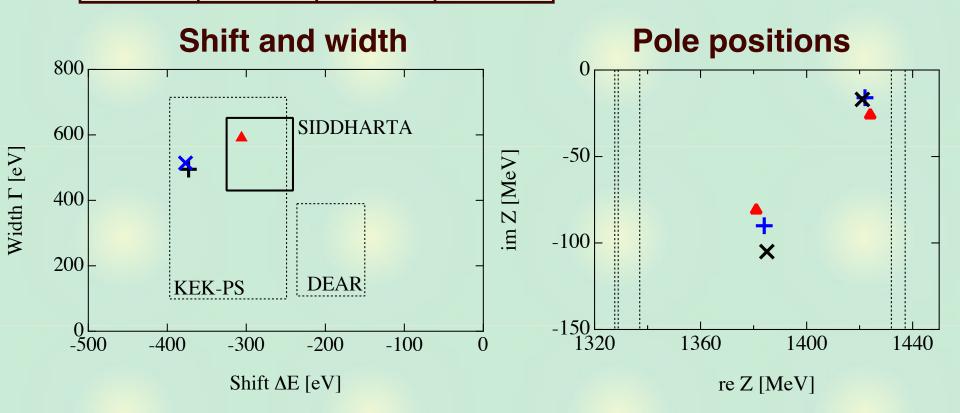
Interaction kernel: NLO ChPT



Parameters: 6 cutoffs (+ 7 low energy constants in NLO) --> fitted to cross section, branching ratio, and SIDDHARTA

Shift, width, and pole positions

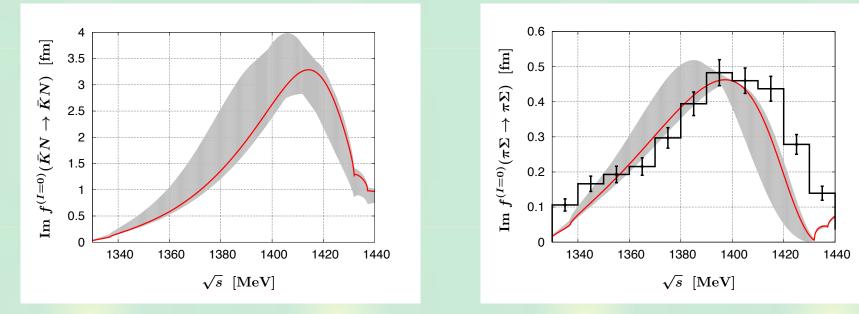
	TW	TWB	NLO
χ2/dof	1.12	1.15	0.957



TW and **TWB** are reasonable, while best-fit requires **NLO**. Pole positions are now converging.

Subthreshold extrapolation

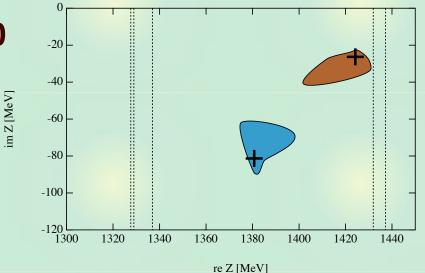
Predicted $\pi\Sigma$ spectrum in comparison with $\overline{K}N$



Note: Hemingway data is not I=0

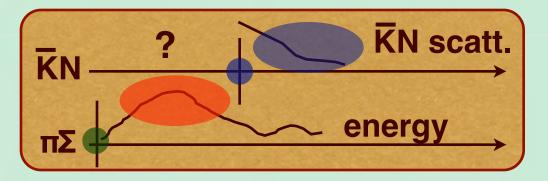
Shift of the peak position <-- two poles

Uncertainty is reduced.



Experimental constraints for S=-1 MB scattering

- K-p total cross sections
- **K**N threshold observables
- threshold branching ratios
- K-p scattering length <-- SIDDHARTA



πΣ mass spectra

- new data is becoming available (LEPS, CLAS, HADES,...)

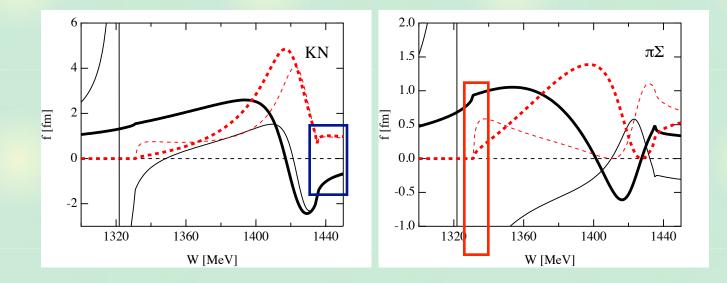
πΣ threshold observables (so far no data) ?

Importance of \pi\Sigma scattering length

Why threshold behavior of πΣ channel?

Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, PTP 125, 1205 (2011)

Simple model extrapolation with $\overline{K}N(I=0)$ being fixed --> large uncertainty at $\pi\Sigma$ threshold



Determination of $\pi\Sigma$ threshold observables --> understanding of $\Lambda(1405)$, K nuclei, DISTO result,...

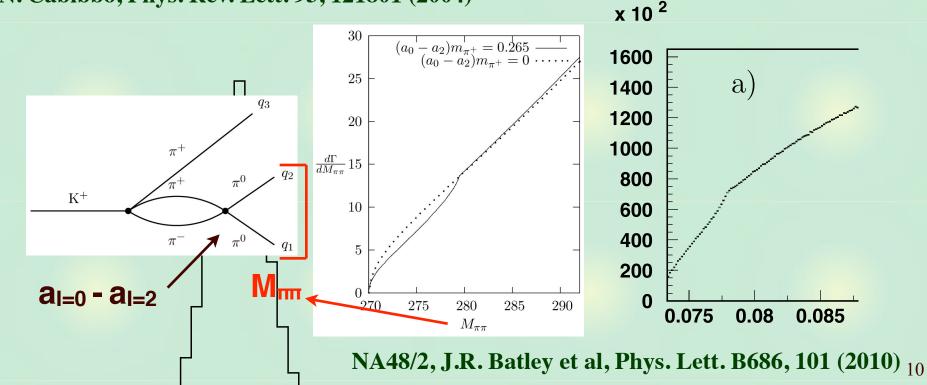
Determination of hadron scattering length

Extraction of hadron scattering length

- shift and width of atomic state (c.f. Kaonic hydrogen)
- extrapolation of low energy phase shift
- final state interaction from heavy particle's decay

Isospin violation + threshold cusp + amplitude interference

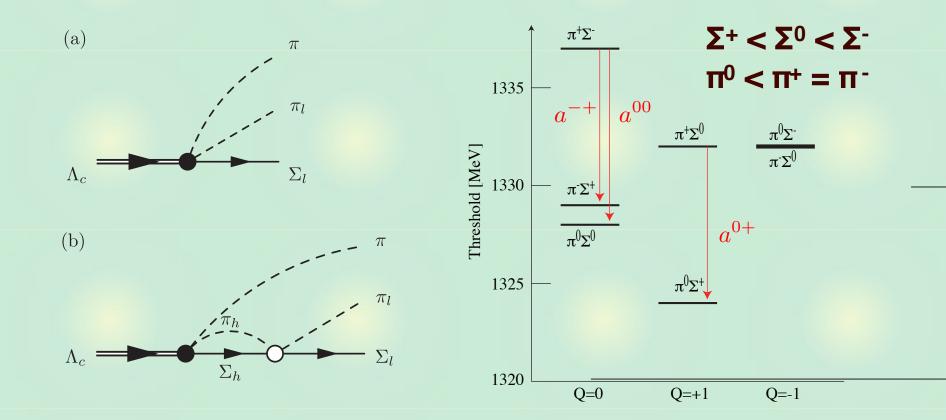
N. Cabibbo, Phys. Rev. Lett. 93, 121801 (2004)



possible decay modes

Threshold difference of \pi\Sigma channels

Isospin violation in πΣ channels



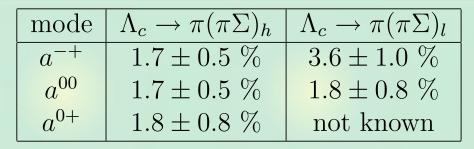
To utilize threshold cusp, appreciable mass difference between $(\pi\Sigma)_h$ and $(\pi\Sigma)_l$ is necessary.

$$a^{-+}: \pi^+\Sigma^- \to \pi^-\Sigma^+, \quad a^{00}: \pi^+\Sigma^- \to \pi^0\Sigma^0, \quad a^{0+}: \pi^+\Sigma^0 \to \pi^0\Sigma^+$$

possible decay modes

Determination of \pi\Sigma scattering length

Structure around the cusp in $(\pi\Sigma)_{I}$ + spectrum in $(\pi\Sigma)_{h}$ --> extraction of the scattering length



A lot of Λ_c (Belle, Babar, LHC, ...) --> feasible?

Isospin decomposition of three channels

$$a^{-+} = \frac{1}{3}a^{0} - \frac{1}{2}a^{1} + \frac{1}{6}a^{2} + \cdots$$
$$a^{00} = \frac{1}{3}a^{0} - \frac{1}{3}a^{2} + \cdots,$$
$$a^{0+} = -\frac{1}{2}a^{1} + \frac{1}{2}a^{2} + \cdots,$$

Three unknown scattering lengths, two constraints

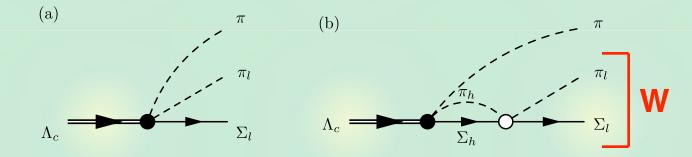
 $a^{-+} - a^{00} = a^{0+} + \cdots$

I=2 scattering length: lattice QCD (HAL QCD, NPLQCD,...)

Threshold cusp

Decay process and intermediate loop

Decay diagrams for $\Lambda_c \rightarrow \pi \pi_l \Sigma_l$ process



Spectral representation of the loop function

$$G(W) = \frac{1}{2\pi} \int_{W_{th}}^{\infty} dW' \frac{\rho(W')}{W - W' + i\epsilon} + (\text{subtractions}) \qquad \rho(W) = 2M_h \frac{q(W)}{4\pi W}$$

ρ: phase space, q: three-momentum

Imaginary part of the loop function (on-shell part):

Im
$$G(W) = -\frac{\rho(W)}{2}\Theta(W - W_{th})$$

amplitude (a) : real amplitude (b) : real (W < W_{th}), complex (W > W_{th})

Threshold cusp

Threshold cusp in the spectrum

Decomposition of the amplitude

 $\mathcal{M}(W) = \mathcal{M}_0(W) + \tilde{\mathcal{M}}_1(W) m_h \delta$

 $\delta \sim real (W < W_{th})$, imaginary (W > W_{th})

π_I **Σ**_I invariant mass spectrum (M₀, M₁: real)

$$\mathcal{M}|^{2} = \begin{cases} (\mathcal{M}_{0})^{2} + (\tilde{\mathcal{M}}_{1}m_{h})^{2}|\delta|^{2} & \text{for } W > W_{\text{th}} \\ (\mathcal{M}_{0})^{2} + 2\mathcal{M}_{0}\tilde{\mathcal{M}}_{1}m_{h}\delta + (\tilde{\mathcal{M}}_{1}m_{h})^{2}\delta^{2} & \text{for } W < W_{\text{th}} \end{cases}$$

$$\frac{d|\mathcal{M}|^2}{dW}\Big|_{W\to W_{\rm th}=0} - \frac{d|\mathcal{M}|^2}{dW}\Big|_{W\to W_{\rm th}=0} \propto -\frac{2\mathcal{M}_0\tilde{\mathcal{M}}_1m_hM_h}{M_h+m_h}\frac{1}{\delta} + \mathcal{O}(\delta)$$

--> threshold cusp It is purely kinematical effect. General phenomena.

 $\mathcal{M}|^2$

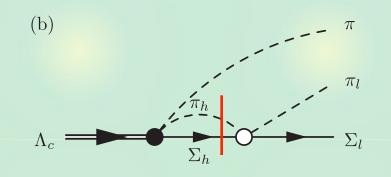
W

Threshold cusp

Relation to scattering length

The term which produces the cusp

- Energy is fixed at W = W_{th}
- On-shell kinematics for $\pi_h \, \Sigma_h$ channel



--> amplitude of $\pi_h \Sigma_h$ --> $\pi_l \Sigma_l$ at threshold: scattering length

General decomposition of the amplitude

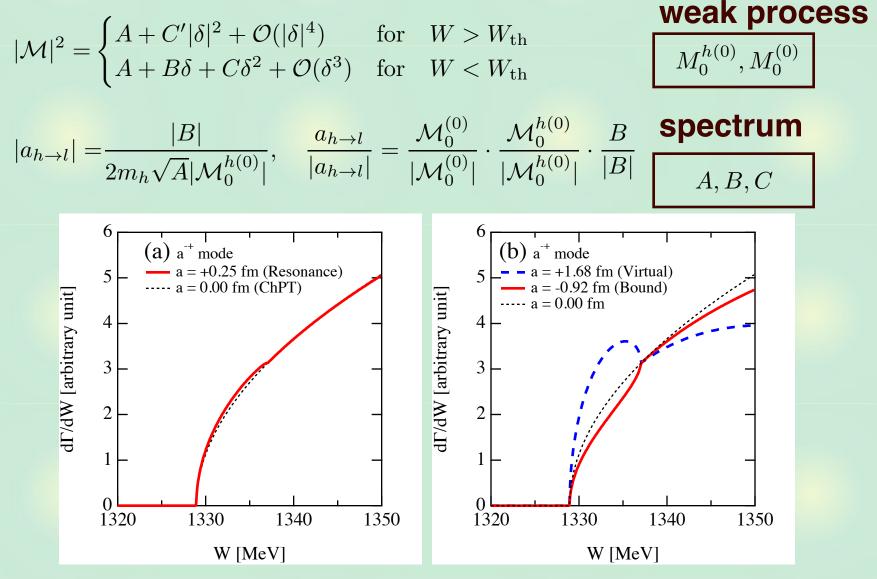
$$\mathcal{M}(W) = \mathcal{M}_0(W) + \tilde{\mathcal{M}}_1(W) e^{i\theta} m_h \delta$$

- Cusp appears, but relative phase affect to the structure.
- Relative phase can be calculated by the dynamical model of final state interactions.

Example of the spectrum

Determination of \pi\Sigma scattering length

Expansion of the decay spectrum (M₀, M₁: real)



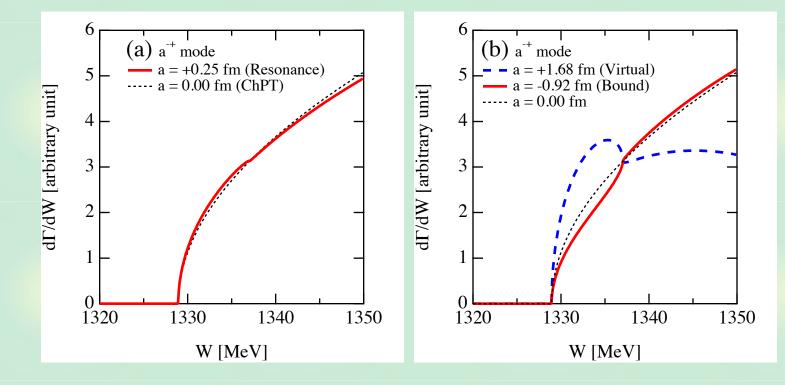
Example of the spectrum

Determination of \pi\Sigma scattering length

Expansion of the decay spectrum (relative phase θ = -12 deg)

 $|\mathcal{M}|^2 = \begin{cases} A + B'|\delta| + C'|\delta|^2 + \mathcal{O}(|\delta|^4) & \text{for } W > W_{\text{th}} \\ A + B\delta + C\delta^2 + \mathcal{O}(\delta^3) & \text{for } W < W_{\text{th}} \end{cases},$

$$|a_{h\to l}| = \frac{\sqrt{B^2 + (B')^2}}{2m_h\sqrt{A}|\mathcal{M}_0^{h(0)}|}, \quad \frac{a_{h\to l}}{|a_{h\to l}|} = \frac{\mathcal{M}_0^{(0)}}{|\mathcal{M}_0^{(0)}|} \cdot \frac{\mathcal{M}_0^{h(0)}}{|\mathcal{M}_0^{h(0)}|} \cdot \frac{B/\cos\theta}{|B/\cos\theta|}$$



Summary

Summary

πΣ scattering length from $Λ_c$ decay

> Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, Prog. Theor. Phys. 125, 1205 (2011)

Threshold cusp : kinematical effect

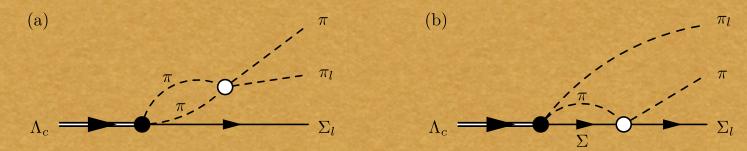
 $\tilde{\subseteq}$ Cusp in Λ_c --> mΣ decay is related with the πΣ scattering length.

T. Hyodo, M. Oka, Phys. Rev. C 83, 055202 (2011)

Summary

Summary

Future plans: estimate of amplitude



- relative phase between M₀ and M₁

 $a(\bar{K}^0 n \to K^- p) = \frac{1}{2}(a^{I=0} - a^{I=1})$

c.f. Kaonic hydrogen: $a(K^-p) = \frac{1}{2}(a^{I=0} + a^{I=1})$