On the compositeness of dynamically generated hadrons

Tetsuo Hyodo ${ }^{\text {a }}$,

Daisuke Jido ${ }^{\text {b }}$, and Atsushi Hosaka ${ }^{\text {c }}$

Tokyo Institute of Technology ${ }^{a} \quad$ YITP, Kyoto ${ }^{b} \quad$ RCNP, Osakac supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Introduction

Compositeness of deuteron

What is the structure of the deuteron?
S. Weinberg, Phys. Rev. 137, B672 (1965)
 \notin NN model space ~ elementary particle

$$
Z \equiv\left|\left\langle B_{0} \mid B\right\rangle\right|^{2} \quad 1=\left|B_{0}\right\rangle\left\langle B_{0}\right|+\int d \boldsymbol{k}|\boldsymbol{k}\rangle\langle\boldsymbol{k}|
$$

model independent relation for weakly bound state

$$
\begin{aligned}
& a_{s}= {\left[\frac{2(1-Z)}{2-Z}\right] \sqrt{R}+\mathcal{O}\left(m_{\pi}^{-1}\right), \quad, r_{e}=\left[\frac{-Z}{1-Z}\right]\left[R+\mathcal{O}\left(m_{\pi}^{-1}\right)<=-\right. \text { Experiments }} \\
& a_{s}=+5.41[\mathrm{fm}], \quad r_{e}=+1.75[\mathrm{fm}], \quad R \equiv(2 \mu B)^{-1 / 2}=4.31[\mathrm{fm}] \\
& \Rightarrow Z \lesssim 0.2 \quad \text {--> deuteron is almost composite }
\end{aligned}
$$

Introduction

Outline of this talk

Definition of compositeness (Yukawa model)

Example of "physical" state (dynamical model with attractive contact interaction)

Z in Yukawa model

Field theory with Yukawa coupling ($\Psi, \Phi, \mathrm{B}_{0}$)
see D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

$$
\begin{aligned}
& \mathcal{L}_{0}=\bar{\psi}(i \not \partial-M) \psi+\frac{1}{2}\left(\partial_{\mu} \phi \partial^{\mu} \phi-m^{2} \phi^{2}\right)+\bar{B}_{0}\left(i \not \partial-M_{B_{0}}\right) B_{0} \\
& \mathcal{L}_{\text {int }}=g_{0} \bar{\psi} \phi B_{0}+(\text { h.c. })
\end{aligned}
$$

Physical bound state B at total energy $W=M_{B}$
Free (full) propagator of $\mathrm{B}_{0}(\mathrm{~B})$ field (positive energy part)

$$
\Delta_{0}(W)=\frac{1}{W-M_{B_{0}}}, \quad \Delta(W)=\frac{Z}{W-M_{B}}
$$

Z: field renormalization constant
Dyson equation: relation between full and free propagators

$$
\Delta(W)=\Delta_{0}(W)+\Delta_{0}(W) g_{0} G(W) g_{0} \Delta(W)
$$

Master formula of compositeness

Solution of Dyson equation and renormalization

$$
\Delta(W)=\frac{1}{W-M_{B_{0}}-g_{0}^{2} G(W)} \rightarrow \frac{1}{W-g_{0}^{2} G(W ; a)}
$$

Renormalization condition, pole at $\mathbf{W}=\mathbf{M}_{\mathbf{B}}: M_{B}=g_{0}^{2} G\left(M_{B} ; a\right)$

The field renormalization constant: residue of the propagator

$$
Z=\lim _{W \rightarrow M_{B}} \frac{W-M_{B}}{W-g_{0}^{2} G(W ; a)}=\frac{1}{1-g_{0}^{2} G^{\prime}\left(M_{B}\right)}
$$

Physical coupling constant: residue of T-matrix

$$
g^{2}=g_{0}^{2} Z
$$

Compositeness in Yukawa theory

$$
1-Z=-g^{2} G^{\prime}\left(M_{B}\right)
$$

Physical coupling constant

Single-channel scattering of meson m and baryon M

$$
T(W)=\frac{1}{1-V(W) G(W ; a)} V(W)
$$

V: 4-point interaction, attractive

$$
V(W)= \begin{cases}V^{(\text {const })}=C m & \text { constant interaction } \\ V^{(\mathrm{WT})}(W)=C(W-M) & \text { WT interaction }\end{cases}
$$

Bound state condition: pole at $\mathrm{W}=\mathrm{M}_{\mathrm{B}}$

$$
1-V\left(M_{B}\right) G\left(M_{B} ; a\right)=0
$$

Coupling constant: residue of the pole

$$
g^{2}=\lim _{W \rightarrow M_{B}}\left(W-M_{B}\right) T(W)= \begin{cases}-\left[G^{\prime}\left(M_{B}\right)\right]^{-1} & \text { constant interaction } \\ -\left[G^{\prime}\left(M_{B}\right)+\frac{G\left(M_{B} ; a\right)}{M_{B}-M}\right]^{-1} & \text { WT interaction }\end{cases}
$$

Coupling g <-- mass (and cutoff)

Example of "physical" bound state

Compositeness of bound states

Coupling g --> master formula

$$
1-Z=-g^{2} G^{\prime}\left(M_{B}\right)= \begin{cases}1 & \text { constant interaction } \\ {\left[1+\frac{G\left(M_{B} ; a\right)}{\left(M_{B}-M\right) G^{\prime}\left(M_{B}\right)}\right]^{-1}} & \text { WT interaction }\end{cases}
$$

Constant interaction : purely composite bound state

- equivalence between ϕ^{4} and Yukawa for $M_{0}->\infty$

WT interaction : mixture of composite and elementary

- Compositeness is normalized

$$
0 \leq 1-Z \leq 1
$$

- pole term through renormalization
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008).

$$
\tilde{V}(W)=C(W-M)-C \frac{(W-M)^{2}}{\left(W-M_{\mathrm{eff}}\right)}
$$

Check of the natural renormalization scheme

Natural renormalization condition

<-- to exclude elementary contribution from the loop function

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

$$
G\left(W=M ; a_{\text {natural }}\right)=0
$$

1) $\mathbf{a}=a_{\text {natural, }}$ vary $B=M_{B}-M-m$
2) $B=5 \mathrm{MeV}$, vary a

natural scheme --> Z ~ 0
large deviation --> Z ~ 1

We study compositeness of bound states

constant Z: compositeness

Field renormalization

Master formula
coupling: $g^{2}=g_{0}^{2} Z$
compositeness: $1-Z=-g^{2} G^{\prime}\left(M_{B}\right)$
Example of dynamical bound state constant int. --> purely composite WT int. --> mixture
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C 85, 015201 (2012)

Summary

Field renormalization
constant Z: compositeness

Master formula
coupling: $g^{2}=g_{0}^{2} Z$

\qquad
\qquad
 \%

