ハドロン励起状態の 多様性とその検証

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

導入

低エネルギーのQCDの難しさ/面白さ 強い相互作用はQCD(クォーク、グルーオン)で記述される $\mathcal{L}_{\text{QCD}} = -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu}_{a} + \bar{q}_{\alpha} (i\gamma^{\mu} D^{\alpha\beta}_{\mu} - m\delta^{\alpha\beta}) q_{\beta}$ QCDは漸近自由性をもち、低エネルギーでは非摂動的 1. カイラル対称性の自発的破れ:真空の変化 2. カラー閉じ込め: 観測される自由度はハドロン 幅広いスケールの物理、異なる対称性 log(m_q) u(3) d(5) **t**(174000) **b(4200)** c(1250) s(100) 重クォーク対称性 カイラル対称性 m_aで展開 1/m。で展開

2

ハドロン物理の研究対象

カラー閉じ込め:ヤンミルズ方程式と質量ギャップ問題

http://www.claymath.org/millennium/

Yang-Mills Existence and Mass Gap: Prove that for any compact simple gauge group G, quantum Yang-Mills theory of \mathbb{R}^4 exists and has a mass gap $\Delta > 0$.

全てが単一のQCDラグランジアンから出てくる

導入

http://pda.lbl.aov/

	. •	- P	- F -	9.		- 9																
p P ₁₁ ****		Δ(1232)	P30.		Σ ⁺	Pti		. <u></u> ≡0	P ₁₁ ****	Λ_c^+			LIGHT UNFLAVORED (S = C = B = 0)			STRANCE $(S = \pm 1, C = B = 0)$		CHARMED, STRANGE (C = S = ±1)		$e^{e^{\frac{\pi}{p}}}$		
MIT I			A(14001	ρ			Α.		-	A	A PARARAT			$I^{0}(f^{C})$		$I^{G}(f^{C})$		(f')		(7)	• q.(15)	6+(0-+)
MO Z	主	5	ナトを	독분		i i		包巾		日日 t	亟干-			1-(0-)	• m2(1670)	1-(2-+)	• K*	1/2(0~)	• D =	0(0-)	 J/ψ(15) (17) 	0~(1~~)
M[1	X	· •	05	킨트	E \	- JI	12	X"	田く	月月冬	衣し			0+(0-+)	• @(1680) • @(1690)	1+01	• A ⁰	1/2(0-)	·0.	0(11)	• Xe(1P)	0+(1++)
N(1esu	31		21(1900)	531		2 (1900)			=(16/0)	D11	A_(2940)*		 4(600) 	0+(0++)	 p(1700) 	1+(1)	• A ⁰	$1/2(0^{-1})$	• D _{s1} (2460)*	0(1+)	$\bullet h_{c}(1P)$	$\gamma^{2}(1 + -)$
M(1675 M(1680			A(1905)	F35		Σ(1580) Σ(1620)	D13 5		E(1990) E(2030)		Σ.(2455)		• p(770) • p(787)	17(1)	+(1700)	0+10++1	A(2(800)	1/2(0")	 D₁₁(2536)* D₁(2536)* 	0(1+)	• 3ce(1P) • m(25)	0+10-+1
N(1			20(1910)	201	-	- (none)			E(2120)		5.(2800)		• qr(950)	0+(0-+)	9(1765)	0+(0-+)	 K₁(1270) 	1/2(1*)	Dri (2706)*	0(17)	• 9(25)	0-(1)
N(1	告	2		、立	了太	華ど	Ξ,		E(2290)		=		 f₀(980) 	0+(0++)	• x (1800)	1-(0-+)	 K₁(1400) 	$1/2(1^+)$	BOTT	CIM.	• 9(3770)	0 (1)
M[1	М	J	VJY	JE	ID 1	冉迟			E(2370)		20		• d(102 0)	0-0	X(18.95)	20-+1	 A*(1410) A*(1430) 	1/2(1**)	(8-	#4)	xc(2P)	0+12++1
N(1				1		T(1770)	D.		E(2500)	•	$\Xi_c^{p_+}$	•••	 h(1170) 	0-(1 * -)	 φ₁(1850) 	0-(1)	 A(\$(1430) 	1/2(2*)	• B [#]	$1/2(0^{})$	X(3940)	77(177)
M(2000	E E		A(2000) A(2150)	P35		£(1775)	Dis		9-		20 20		 b(1235) b(1200) 	1*(1 * *)	m.(1870)	0+(2-+)	A(1460)	1/2(0~)	• 8° • 8*/8° AD	1/2(0)	 X(3945) WADAD 	1.(1.1.)
N(2004			4(2000)	- 211		T/IR401	0.	•	0(2250)-	***	E(2645) E(2790)		 6(1270) 	0+(2++)	p(1900)	1+(1)	A(1580) A(1630)	1/2(27)	 B⁺/B⁰/B⁰₂ 	/b baryon	• 9(4160)	0-(1)
M[2	11	L	1)E	日/	うせ	37	= 1	七日		E-(2815)		 6(1285) 	0 ⁺ (1 ⁺⁺)	6(1910)	0+(7 ++)	N ₁ (1690)	$1/2(1^+)$	ADMOCTUR Via and Via	CKM Ma	X(4364)	77(077)
M[2			H		JL	ノイゼ	3 /	LT	FH		三(2930)	•	• #(1300)	1-(0-+)	 f_(1950) m_(1950) 	1+01	 A*(1680) A*(1720) 	1/2(1-)	trix Element	1/20173	• X(4360) X(4360)	70
N(2200	0		A/34001	-		2 (2000)	5.1				$\Xi_{c}(2980)$		· ap(1320)	1-(2++)	 6(2010) 	0+(2++)	 K_1(1780) 	1/2(37)	85(5732)	T(T)	• \$(4415)	0-(1)
M[2220	H		A(2420)	Hen		£(2030)	F17				$\Xi_c(3055)$ = (3000)		 &(1370) &(13870) 	0 ⁺ (0 ⁺ ⁺)	6(2020)	0-(0++)	 K₁(1830) 	1/2(2-)	 B₁(5721)⁰ 	$1/2(1^{+})$	X[4660]	5-(1)
N(2250) G		A(2750)	6.33	**	$\Sigma(2070)$	F15	•			=(3123)		• m (1400)	1-0-+1	• 6(2050)	0+(4++)	A(1830) A(1940)	1/2(0~)	• 0.2(2(4))*	1/2(2 -)		5
M[2600	h,		A(2950)	$K_{3,15}$	**	Σ(2080) Σ(2080)	P13				Ω_c^0	•••	 n(1405) 	0+(0-+)	#2(2100)	$1^{-}(2^{-+})$	A(1980)	1/2(2*)	BOTTOM, S	TRANSE	\$h(15)	0"(0 ")
M(2700) K)	10				E (7100) E (2250)	017				$\Omega_c(2770)^{0}$		 6(1420) (1420) 	0.0)	6(2100)	010111	 A[*]₄(2045) 	$1/2(4^+)$	• H ⁰	00.01	• Ye(1P)	0+(0++)
			A(1405)	Sec		L'inner							6(1430)	6+(2++)	p(2150)	1+(1)	K ₂ (2250) K ₂ (2320)	1/2(27)	•B*	0(17)	• $\chi_{\rm H}(1P)$	0+(1++)
			A 1500	Des	11.1						- ee		 4₀(1450) 	1-(0++)	\$(2175)	0-(1)	A(\$(2300)	1/2(5-)	 B_{c1}(\$830)⁰ 	$1/2(1^+)$	• Xre(1P)	0-(2)
			A(1600)	P_{01}	***	ΙΛ	74	IU	5)		R.		• m(1475)	0+(0-+)	6(2200)	6+Q ++ e	4 84(2500)	1/2(47)	· 8 (5840) ·	1/2(2-)	7(1D)	0-(2)
			A(1670)	501		P 1	•		-,		Σa		 fc(1900) 	0+(0++)	e(22.25)	$0^+(0^{-+})$	- A((3100)	T ((111)	BOTTON	Children and Children	 χ₁₀(2P) 	0+(0++)
			A(1800)	5							Σ.		5(1510)	0°(0°**)	p ₃ (2250)	1+(3)	CHARMED		(8 = C = ±1)		 χ_R(2P) 0° (1 ° χ_R(2P) 0° (2 ° 	0-(1)
			A(1810)	P01	***						-b -b		5(1965)	0+(2++)	6(2300)	0+(4++)	•D*	1/2(0~)	• B _c ^k	0(07)	 7(35) 	0-(1)
			A(1820)	F05									P(1570)	1+(1)	6(2330)	01011)	 D⁰ 	1/2(0-)			 7(45) 7(100000) 	0-(1)
			A(1830)	D_{05}									h(1595)	1-0-1	 f₂(2340) (7357) 	1+6	 D*(2007)^D 	1/2(1-)			 7(10000) 7(11020) 	0 (1)
			A(1890)	P_{03}									41(1640)	1-(1++)	4,(2450)	1-(6++)	D*(2010)*	1/2(0 °)			100.070	INDIDATIC
			A(7020)	Fee.									6(1640)	0+(2++)	6,(2510)	0+(6++)	D [*] ₂ (2400)*	$1/2(0^+)$			NON off	ANDE
			A(2100)	Gur									• @(1645) • w(1652)	0-0-0	OTHER	RUGHT	• D1(2420)	1/2(1*)			DATES	
			A(2110)	F25	***								• un(1670)	0-(3)	Further St.	atm	D1(2430)*	1/2(7*)				
			A(2325)	Dpa	•	1 1 1	1 -	* •		10	∩揺業	い 「日本					 [77] (460¹⁰) 	1/200	1	66	111	*2
			A(25.05)	H _{Q9}		/ \ `	ノノ	1.	∕~	13	U作里法	识					1460	1/2(2*)		Ο	パ里	枳
			(1200)			I	-	-					1.0				ry.(2640)	1/2(t, t)			· · · · · ·	• •

ハドロンの多様な性質

観測されているハドロンの表 (Particle Data Group)

導入 8 バリオン励起状態の構造 ・構成子クォーク模型(3クォーク) ・エキゾチック構造(5クォーク、ハドロン分子) Β M Λ(1405)の構造の実験的検証 ・相対論的重イオン衝突の生成量 まとめ

構成子クォーク模型

QCD:クォーク間でグルーオンを交換

クォーク模型:閉じ込めポテンシャル

非摂動相互作用が閉じ込めポテンシャルを作ると考える

それでも残ったクォーク間の相関:残留相互作用

例) カラースピン相互作用(1グルーオンの交換)

$$\mathcal{H}_{cs} = -\frac{f_{cs}}{m_i m_j} (\lambda_i^c \cdot \lambda_j^c) (\boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j)$$

対称性で決めた波動関数 --> バリオン基底状態をよく記述

励起状態の実験との比較

バリオン励起状態のスペクトル(カラースピン相互作用)

N. Isgur and G. Karl, Phys. Rev. D18, 4187 (1978)

模型の予言と実験データが幅広く一致

エキゾチックハドロン

クォーク模型:対称性から決まる波動関数+残留相互作用の摂動 --> ハドロンの性質をよく再現 --> 通常ハドロンの主要な構造

バリオン:3クォーク メソン:クォーク反クォーク対

上記の分類にあてはまらないもの、その他の構造 --> エキゾチックハドロン

条件:カラー白色

例) 4クォーク+反クォーク(ペンタクォーク)

閾値付近の分子的構造

通常ハドロン以外の構造

励起状態:2ハドロン状態へ崩壊 <mark>閾値近傍</mark>では基底状態と異なる構造?

--> ハドロン間の相互作用? --> カイラル対称性

カイラル動力学模型

ハド<mark>ロン</mark>分子を記述する模型:カイラル動力学

<u>T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)</u> <u>兵藤哲雄、慈道大介「カイラル動力学とK中間子を含むハドロン分子的状態」</u> <u>日本物理学会誌 4月号掲載予定</u>

構造の解明に向けて

Λ(1405)の構造: J^P=1/2-

(a) 3クォーク:クォーク模型に基づく構造(軌道角運動量1)

(b) 5クォーク: クォーク模型に基づく構造(軌道角運動量O)

(c) ハドロン分子:カイラル動力学模型に基づく構造

量子力学 --> 可能な状態の重ね合わせ

どのようにして構造の違い/主成分を実験で観測するか?

相対論的重イオン衝突

高エネルギーで原子核2つを衝突させる

--> クォークとグルーオンのプラズマ

K. Yagi, T. Hatsuda and Y. Miake, Quark-Gluon Plasma, Cambridge (2005)

ハドロン生成量と内部構造 相対論的重イオン衝突でのハドロン生成量を計算

PRL 106, 212001 (2011)

PHYSICAL REVIEW LETTERS

week ending 27 MAY 2011

Identifying Multiquark Hadrons from Heavy Ion Collisions

Sungtae Cho,¹ Takenori Furumoto,^{2,3} Tetsuo Hyodo,⁴ Daisuke Jido,² Che Ming Ko,⁵ Su Houng Lee,^{1,2} Marina Nielsen,⁶ Akira Ohnishi,² Takayasu Sekihara,^{2,7} Shigehiro Yasui,⁸ and Koichi Yazaki^{2,3}

(ExHIC Collaboration)

統計模型

- 熱平衡
- 通常ハドロンを記述
- コアレッセンス模型
- 波動関数の重なり
- 内部構造を反映

生成量の計算結果

相対論的重イオン衝突でのハドロン生成量を計算 (a) 3クォーク

Coal. / Stat. ratio at RHIC

ハドロン励起状態の構造とその検証方法を議論した

ハドロン物理の目的:低エネルギーQCDを理解する

バリオン励起状態:3クォーク、5クォーク、ハドロン分 子などの多様な構造が可能

T. Hyodo, D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012)

重イオン衝突での生成量:内部構造を反映

S. Cho, et al, Phys. Rev. Lett. 106, 212001 (2011); C 84, 064910 (2011)

<

Β