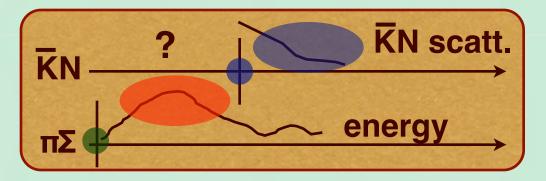
Determination of the $\pi\Sigma$ scattering lengths from the weak decays of Λc

Tetsuo Hyodo, and Makoto Oka

Tokyo Institute of Technology


supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Introduction

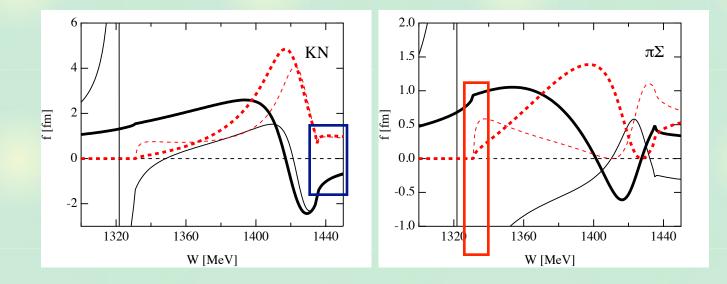
Experimental constraints for S=-1 MB scattering

- K-p total cross sections
- **K**N threshold observables
- threshold branching ratios
- K-p scattering length <-- SIDDHARTA (Talk by Y. Ikeda)

πΣ mass spectra

- new data is becoming available (LEPS, CLAS, HADES,...)

πΣ threshold observables (so far no data) ?


Introduction

Importance of \pi\Sigma scattering length

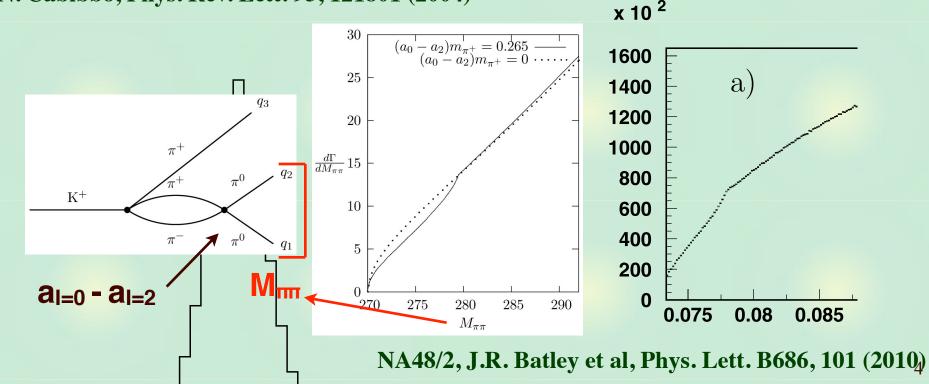
Why threshold behavior of πΣ channel?

Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, PTP 125, 1205 (2011)

Simple model extrapolation with $\overline{K}N(I=0)$ being fixed --> large uncertainty at $\pi\Sigma$ threshold

Determination of $\pi\Sigma$ threshold observables --> understanding of $\Lambda(1405)$, K nuclei, DISTO result,...

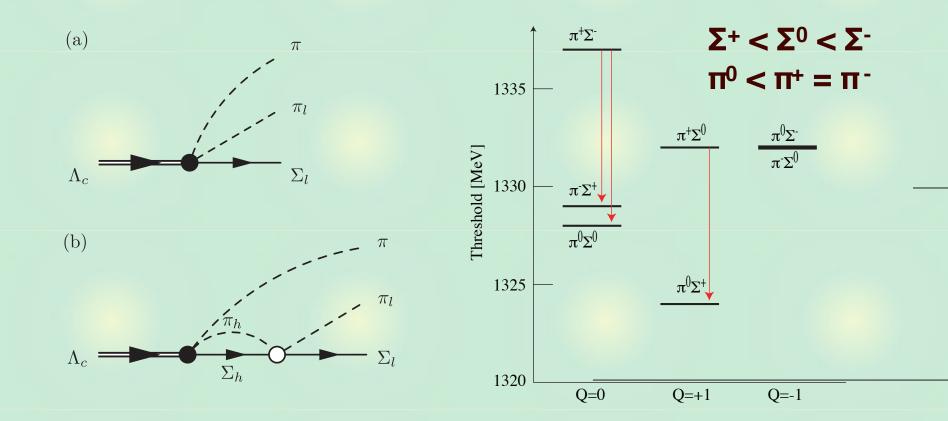
Introduction


Determination of hadron scattering length

Extraction of hadron scattering length

- shift and width of atomic state (c.f. Kaonic hydrogen)
- extrapolation of low energy phase shift
- final state interaction from heavy particle's decay

Isospin violation + threshold cusp + amplitude interference


N. Cabibbo, Phys. Rev. Lett. 93, 121801 (2004)

possible decay modes

Threshold difference of $\pi\Sigma$ channels

Isospin violation in \pi\Sigma channels

To utilize threshold cusp, appreciable mass difference between $(\pi\Sigma)_h$ and $(\pi\Sigma)_l$ is necessary.

$$\pi^+\Sigma^- \to \pi^-\Sigma^+, \quad \pi^+\Sigma^- \to \pi^0\Sigma^0, \quad \pi^+\Sigma^0 \to \pi^0\Sigma^+,$$

possible decay modes

Determination of \pi\Sigma scattering length

Isospin decomposition of three channels

$$a^{-+} = \frac{1}{3}a^{0} - \frac{1}{2}a^{1} + \frac{1}{6}a^{2} + \cdots,$$

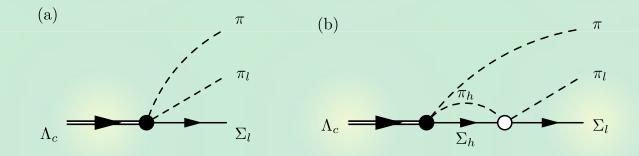
$$a^{00} = \frac{1}{3}a^{0} - \frac{1}{3}a^{2} + \cdots,$$

$$a^{0+} = -\frac{1}{2}a^{1} + \frac{1}{2}a^{2} + \cdots,$$

mode	$\Lambda_c \to \pi(\pi\Sigma)_h$	$\Lambda_c \to \pi(\pi\Sigma)_l$
a^{-+}	$1.7 \pm 0.5 ~\%$	$3.6 \pm 1.0 ~\%$
a^{00}	$1.7 \pm 0.5~\%$	$1.8 \pm 0.8 ~\%$
a^{0+}	$1.8 \pm 0.8 ~\%$	not known

A lot of Λ_c (Belle, Babar, LHC, ...) --> feasible?

Structure around the cusp in $(\pi\Sigma)_{I}$ + spectrum in $(\pi\Sigma)_{h}$ --> extraction of the scattering length


Three unknown scattering lengths, two constraints $a^{-+} - a^{00} = a^{0+} + \cdots$

I=2 scattering length: lattice QCD (HAL QCD, NPLQCD,...)

Threshold cusp

Decay process and intermediate loop

Decay diagrams for $\Lambda_c \rightarrow \pi \pi_l \Sigma_l$ process

Spectral representation of the loop function

$$G(W) = \frac{1}{2\pi} \int_{W_{th}}^{\infty} dW' \frac{\rho(W')}{W - W' + i\epsilon} + (\text{subtractions}) \qquad \rho(W) = 2M_h \frac{q(W)}{4\pi W}$$

ρ: phase space, q: three-momentum

Imaginary part of the loop function (on-shell part):

Im
$$G(W) = -\frac{\rho(W)}{2}\Theta(W - W_{th})$$

amplitude (a) : real amplitude (b) : real (W < W_{th}), complex (W > W_{th})

Threshold cusp

Threshold cusp in the spectrum

Decomposition of the amplitude

 $\mathcal{M}(W) = \mathcal{M}_0(W) + \tilde{\mathcal{M}}_1(W) m_h \delta$

 $\delta \sim real (W < W_{th})$, imaginary (W > W_{th})

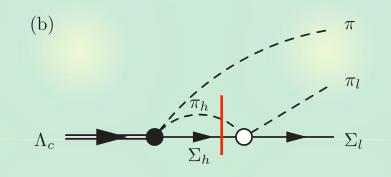
 $\pi_{I} \Sigma_{I}$ invariant mass spectrum (M₀, M₁: real)

$$\mathcal{M}|^{2} = \begin{cases} (\mathcal{M}_{0})^{2} + (\tilde{\mathcal{M}}_{1}m_{h})^{2}|\delta|^{2} & \text{for } W > W_{\text{th}} \\ (\mathcal{M}_{0})^{2} + 2\mathcal{M}_{0}\tilde{\mathcal{M}}_{1}m_{h}\delta + (\tilde{\mathcal{M}}_{1}m_{h})^{2}\delta^{2} & \text{for } W < W_{\text{th}} \end{cases}$$

$$\frac{d|\mathcal{M}|^2}{dW}\Big|_{W\to W_{\rm th}=0} - \frac{d|\mathcal{M}|^2}{dW}\Big|_{W\to W_{\rm th}=0} \propto -\frac{2\mathcal{M}_0\tilde{\mathcal{M}}_1m_hM_h}{M_h+m_h}\frac{1}{\delta} + \mathcal{O}(\delta)$$

--> threshold cusp It is purely kinematical effect. General phenomena.

 $\mathcal{M}|^2$


W

Threshold cusp

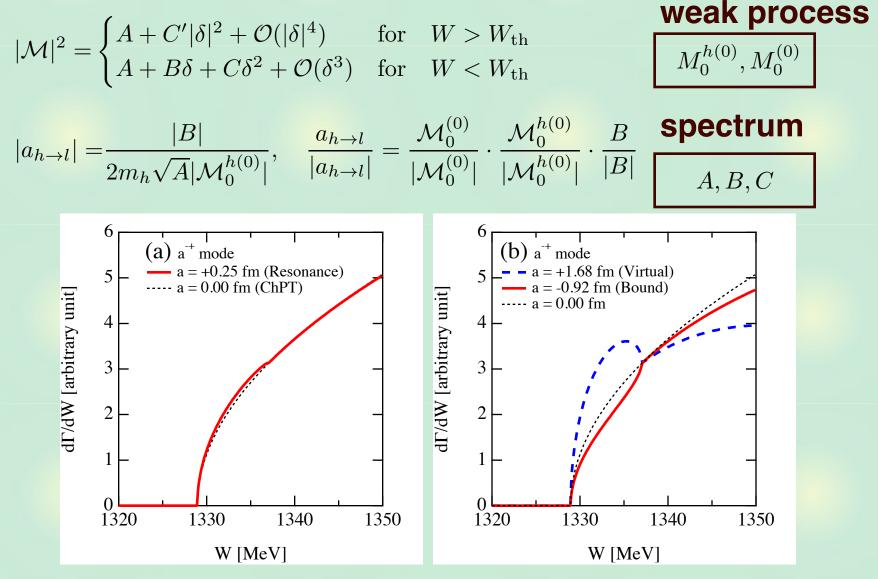
Relation to scattering length

The term which produces the cusp

- Energy is fixed at W = W_{th}
- On-shell kinematics for $\pi_h \, \Sigma_h$ channel

--> amplitude of $\pi_h \Sigma_h$ --> $\pi_l \Sigma_l$ at threshold: scattering length

General decomposition of the amplitude

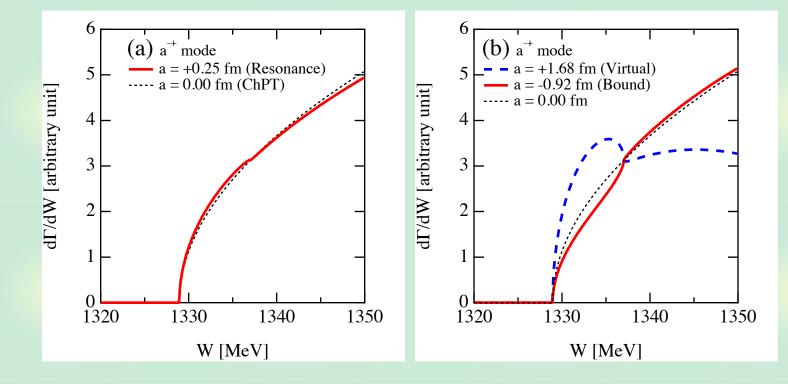

$$\mathcal{M}(W) = \mathcal{M}_0(W) + \tilde{\mathcal{M}}_1(W) e^{i\theta} m_h \delta$$

- Cusp appears, but relative phase affect to the structure.
- Relative phase can be calculated by the dynamical model of final state interactions.

Example of the spectrum

Determination of \pi\Sigma scattering length

Expansion of the decay spectrum (M₀, M₁: real)


Example of the spectrum

Determination of \pi\Sigma scattering length

Expansion of the decay spectrum (relative phase θ = -12 deg)

 $|\mathcal{M}|^2 = \begin{cases} A + B'|\delta| + C'|\delta|^2 + \mathcal{O}(|\delta|^4) & \text{for } W > W_{\text{th}} \\ A + B\delta + C\delta^2 + \mathcal{O}(\delta^3) & \text{for } W < W_{\text{th}} \end{cases},$

$$|a_{h\to l}| = \frac{\sqrt{B^2 + (B')^2}}{2m_h\sqrt{A}|\mathcal{M}_0^{h(0)}|}, \quad \frac{a_{h\to l}}{|a_{h\to l}|} = \frac{\mathcal{M}_0^{(0)}}{|\mathcal{M}_0^{(0)}|} \cdot \frac{\mathcal{M}_0^{h(0)}}{|\mathcal{M}_0^{h(0)}|} \cdot \frac{B/\cos\theta}{|B/\cos\theta|}$$

Summary

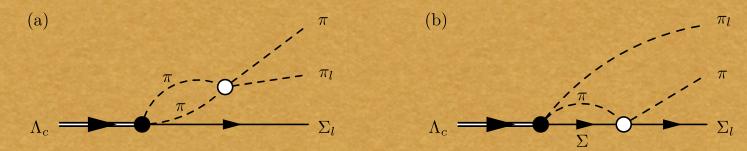
Summary

πΣ scattering length from $Λ_c$ decay

> Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, Prog. Theor. Phys. 125, 1205 (2011)

Threshold cusp : kinematical effect

 $\stackrel{\checkmark}{=}$ Cusp in Λ_c --> mΣ decay is related with the πΣ scattering length.


T. Hyodo, M. Oka, Phys. Rev. C 83, 055202 (2011)

Summary

Summary

Future plans: estimate of amplitude

- relative phase between M₀ and M₁

 $a(\bar{K}^0 n \to K^- p) = \frac{1}{2}(a^{I=0} - a^{I=1})$

c.f. Kaonic hydrogen: $a(K^-p) = \frac{1}{2}(a^{I=0} + a^{I=1})$