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Scattering length
Scattering length: amplitude at threshold
- characterizes the low energy scattering
- changes the sign if there is a bound state

Introduction

(In hadron physics we usually adopt the opposite sign
--> positive for attraction, negative for repulsion)

J.J. Sakurai, Modern Quantum Mechanics, p. 415

a = −f(k, θ)|k→0

dσ

dΩ
= |f(k, θ)|2, lim

k→0
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Importance of the πΣ scattering length

Simple model extrapolation with KN(I=0) being fixed
 --> large uncertainty at low energy

Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, PTP 125, 1205 (2011)
Structure of Λ(1405) and threshold behavior of πΣ scattering

- πΣ threshold behavior
  --> pole structure
  --> K (Λ*) nuclei

Introduction

10 Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato and K. Yazaki

Table I. Summary of numerical results. The model parameters are determined so as to reproduce
a value of the K̄N scattering length with I = 0, aK̄N = −1.70 + 0.68i fm. In each model, pole
1 is found as a resonance located between the πΣ and K̄N threshold. For pole 2, (R), (B) and
(V) denote resonance, bound state and virtual state in the πΣ channel, respectively.

Model A1 A2 B E-dep B E-indep
parameter (πΣ) dπΣ = −1.67 dπΣ = −2.85 ΛπΣ = 1005 MeV ΛπΣ = 1465 MeV
parameter (K̄N) dK̄N = −1.79 dK̄N = −2.05 ΛK̄N = 1188 MeV ΛK̄N = 1086 MeV
pole 1 [MeV] 1422 − 16i 1425− 11i 1422 − 22i 1423 − 29i
pole 2 [MeV] 1375 − 72i (R) 1321 (B) 1349 − 54i (R) 1325 (V)
aπΣ [fm] 0.934 −2.30 1.44 5.50
re [fm] 5.02 5.89 3.96 0.458
aK̄N [fm] (input) −1.70 + 0.68i −1.70 + 0.68i −1.70 + 0.68i −1.70 + 0.68i

have considered two kinds of models with different ways to solve the Lippmann-
Schwinger equation. They are constrained by the K̄N scattering length, in order
to see how these inputs constrain the πΣ threshold behavior and the Λ(1405) pole
positions. The results are summarized in Table I.

First of all, we find that the K̄N scattering length constrains the position of
the pole near the K̄N threshold, which we call the (higher) Λ(1405) pole, well
around 1420 − 20i MeV in all of our models. Thus, the value of the K̄N scattering
length with I = 0 can be one of the important quantities to fix the pole position
of Λ(1405) which strongly couples to the K̄N channel. On the other hand, the πΣ
scattering length and effective range are obtained with very different values. This
is a consequence of different predictions of the lower pole positions. This means
that the K̄N scattering length alone cannot constrain the scattering amplitude at
far below threshold. In contrast, the πΣ scattering length and effective range are
sensitive to the lower pole position, which will give important constraints on the
subthreshold extrapolation of the K̄N amplitude. In models A1 and B E-dep we use
essentially the same interaction kernel but take different off-shell dependence. The
results are qualitatively the same but there are quantitative differences in the πΣ
threshold parameters. Thus, we find that the πΣ threshold quantities can be useful
also to constrain the off-shell dependence of the interaction kernel.

In the model A2 and the model B with energy independent potential, the πΣ
interaction is so strong that they give a bound state and a virtual state, respectively.
In both cases, the πΣ attraction is effectively enhanced by the cutoff parameter.
Though the presence of such a bound or virtual state is in contradiction with the
result of the more refined calculations with the chiral unitary approaches, which
take account of the K̄−p scattering data, it is important to clarify the position of
the lower Λ(1405) pole by experimental observation. This can be done by observing
the sign and order of magnitude of the πΣ scattering length. If the πΣ scattering
length in the I = 0 channel would have a negative value, there could be a bound
state of π and Σ with I = 0. If the scattering length is positive with as large a value
as 5 fm, there is a virtual state below and close to the πΣ threshold. This also shows
the relevance of the πΣ threshold behavior for the subthreshold extrapolation of the
K̄N amplitude.
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Determination of the scattering length
Extraction of hadron scattering length
- shift and width of atomic state (c.f. Kaonic hydrogen)
- extrapolation of low energy phase shift
- final state interaction from heavy particleʼs decay 

Determination of the a0-a2 Pion Scattering Length from K! ! !!!0!0 Decay

Nicola Cabibbo*
Physics Department, CERN, CH-1211 Geneva 23, Switzerland

(Received 20 May 2004; published 16 September 2004)

We present a new method for the determination of the !-! scattering length combination a0 " a2,
based on the study of the !0!0 spectrum in K! ! !0!0!! in the vicinity of the !!!" threshold. The
method requires a minimum of theoretical input, and is potentially very accurate.

DOI: 10.1103/PhysRevLett.93.121801 PACS numbers: 13.25.Es, 11.30.Rd, 13.75.Lb

Current algebra and partially conserved axial current
lead to a prediction for the threshold behavior of !-!
scattering [1,2]. The I # 0 and I # 2 S-wave scattering
lengths were predicted to be a0m!! # 0:159, a2m!! #
"0:045, a first approximation that can be improved upon
in the framework of chiral perturbation theory [3]. Recent
calculations [4,5], which combine ChPT with the disper-
sive approach by Roy [6,7], lead to

a0m!! # 0:220$ 0:005; (1)

a2m!! # "0:0444$ 0:0010; (2)

%a0 " a2&m!! # 0:265$ 0:004: (3)

The current discussion of this prediction [8–10] could
lead to minor modifications of Eqs. (1)–(3).

It was long recognized [11] that the angular distribu-
tions in K! ! !!!"e!" are sensitive to the !! phase
shifts, and can be used to obtain informations on the S-
wave scattering lengths [12,13]. The first results by the
Geneva-Saclay experiment [14], leading to a0m!! #
0:26$ 0:05, were recently improved by the E865
Collaboration at Brookhaven [15] that quotes a result:
a0m!! # 0:216$ 0:013%stat& $ 0:002%syst& $
0:002%theor&. Data on Ke4, with a large statistics, are
currently being analyzed by the NA48 Collaboration at
CERN.

The Ke4 decay yields values of the phase shift differ-
ence #0

0 " #1
1 as a function of the !! invariant mass M!!

in the range 2m!! <M!! <MK "m!! , but the best data
lies in the range >310 MeV. The extraction of a value for
a0 requires an extrapolation to the threshold region and a
substantial theoretical input, whence the interest in alter-
native methods which permit the determination of the
scattering lengths through measurements that are di-
rectly sensitive to !! scattering in the threshold region,
M!! ' 2m!! . An example of this is the measurement of
the !0!0 decay of the pionic atom !!!", the object of
the DIRAC experiment at CERN [16,17] that could yield
a value for the a0-a2 combination.

I present here an alternative method for determining
a0-a2, based on the !0!0 mass distribution in the K! !
!!!0!0 decay in the vicinity of the !!!" threshold.

The large data sample available from the NA48 experi-
ment at CERN, of the order of 108 events, could lead to a
determination of a0-a2 with a precision comparable or
higher than that foreseen in the DIRAC experiment. The
method is based on the fact that the K! ! !!!!!"

decay gives a contribution to the K! ! !!!0!0 ampli-
tude through the charge exchange reaction !!!" !
!0!0. This contribution is directly proportional to
a0-a2, and displays a characteristic behavior when the
!0!0 mass is in the vicinity of the !!!"threshold, where
it goes from dispersive and real to absorptive and
imaginary.

Let us write

M %K! ! !!!0!0& # M # M0 !M1; (4)

where M0 is the ‘‘unperturbed amplitude,’’ and M1 the
contribution of the diagram in Fig. 1, with the renormal-
ization condition

M 1 # 0 for s! # %q1 ! q2&2 # 4m2
!! : (5)

The ‘‘unperturbed’’ amplitude M0, and the correspond-
ing one M! for K! ! !!!!!", can be parametrized as
polynomials [18] in si # %k" qi&2. In both cases q3 is
chosen as the momentum of the ‘‘odd’’ pion, respectively
!! and !". A simple parametrization, which gives a
reasonable description of the experimental data, is given
by

M 0 # A0
av!1! g0%s3 " s0&=2m2

!!"; (6)

FIG. 1. The !! rescattering diagram.
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M! " A!
av!1! g!#s3 $ s0%=2m2

!!"; (7)

where s0 " #s1 ! s2 ! s3%=3. The g’s coincide with the
linear slope parameters defined in the Particle Data
Group (PDG) review [18]. The !I " 1=2 rule requires
A0
av and A!

av to have the same sign [19], with A!
av & 2A0

av,
in good agreement with the observed branching ratios. In
the following we will assume M0 and M! to be positive.

To evaluate the graph in Fig. 1 we can use a simplified
effective Lagrangian which reproduces the !! charge
exchange reaction near the !!!$ threshold,

L chx "
16!#a0 $ a2%m!!

3
#!!!$!0!0%: (8)

The diagram in Fig. 1 then results in

M 1 " $ 2#a0 $ a2%m!!

3
M!;thr#J! K%; (9)

where M!;thr is the value of M! at the !!!$threshold.
Using Eq. (7),

M!;thr " A!
av

!
1! g!#M2

K $ 9m2
!!%

12m2
!!

"
: (10)

We have divided the contribution of the graph into two
parts, J and K. The J contribution flips from dispersive to
absorptive at s!! " 4m2

!! ,

J " J$ " !~v:s!! < 4m2
!! ;

J " J! " $i!v:s!! > 4m2
!! ;

(11)

where

~v " !#4m2
!! $ s!!%=s!!"1=2;

v " !#s!! $ 4m2
!!%=s!!"1=2:

(12)

The K contribution is dispersive both above and below
the threshold, and has no singularity at s!! " 4m2

!! so
that it can be approximated by a polynomial in s!!. It
will be reabsorbed in the definition of the unperturbed
amplitude M0, setting K " 0 in Eq. (9).

Since M1 changes from real to imaginary at the
!!!$threshold, jMj2 will have a different expression
below and above the threshold:

jMj2 "
##M0%2 ! #M1%2 ! 2M0M1:below;

#M0%2 ! #iM1%2 :above;
(13)

and the differential decay rate for K! ! !!!0!0 with
respect to the !0!0 invariant mass M!! will display a
cusp. In Fig. 2 we show a plot of the differential decay
rate (in arbitrary units) before and after the rescattering
corrections, evaluated using A!

av " 2A0
av, the slope pa-

rameters g0; g! as given in the PDG listings, and the
value for a0-a2 from Eq. (3). The #4m2

!! $ s!!%1=2 behav-
ior below the !!!$ threshold arises from the interfer-
ence term in Eq. (13) and is a very characteristic feature.
It is encouraging to see that the deviation from the

uncorrected behavior is very prominent, so that it should
be possible to measure it accurately.

In order to extract the value of a0-a2 from the !0!0

spectrum, let us consider a development of jMj2 in
powers of " " #4m2

!! $ s!!%1=2=2m!! . Below the
!!!$ threshold the coefficients of " and of "2 are
uniquely determined in terms of the rate for K! !
!!!0!0 above this threshold, the K! ! !!!!!$ dif-
ferential rate, and the value of a0-a2. Since the maximum
value of " below threshold is &0:26, neglecting terms in
"3 and higher is equivalent to a &2% theoretical error in
the decay rate, corresponding to a &6% error on the value
of a0-a2. This is the central result of this Letter, and it is
worthwhile to discuss it in more detail.

Above the !!!$ threshold M1 is absorptive, so that
its value is directly determined by the physical ampli-
tudes for K! ! !!!!!$ and !!!$ ! !0!0. In
Eqs. (9) and (11) we have neglected the s!! dependence
of the charge exchange reaction and of the K! !
!!!!!$ amplitude, which can contribute terms of
O#"3% to M1. As noted before in the discussion of the
K term, even powers of " are absent from M1 because
they can be absorbed in the definition of M0. The value of
M1 below the threshold is the analytic continuation of
the value above the threshold, so that it correctly includes
the O#"% terms, with possible errors which are O#"3%.

Terms of O'"2 " #4m2
!! $ s!!%=4m2

!!( in the value of
jMj2, Eq. (13), derive from two sources: the first is in the
s!!dependence of M0—see, e.g., Eq. (6), keeping in
mind that s3 " #k$ q3%2 " #q1 ! q2%2 " s!!. Since
M0 is regular at the threshold, the coefficient of this

FIG. 2. The !0!0 invariant mass distribution with/without
the rescattering correction, in arbitrary units.
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isospin violation 
+ threshold cusp 
+ amplitude interference
--> extraction of aI=0 - aI=2

Cabibboʼs method for π-π scattering length
N. Cabibbo, Phys. Rev. Lett. 93, 121801 (2004)

aI=0 - aI=2

ππ scattering case

104 NA48/2 Collaboration / Physics Letters B 686 (2010) 101–108

Fig. 1. Reconstructed π±π0π0 invariant mass (M) distributions for data and MC
simulation. a) Experimental (solid circles) and simulated (histogram) distributions,
normalized to the number of data events. b) Ratio between the experimental and
simulated distributions before this normalization.

For every K± → π±π0π0 decay candidate in the event, both
the reconstructed π±π0π0 invariant mass (M) and the differ-
ence between the two Zπ0 coordinates (δZ ) were used. For each
K± → π±π0π0 decay candidate an estimator χ2 was defined as
χ2 = (δZ/RMSz(Z))2 + ((M − MPDG)/RMSm(Z))2, where the reso-
lutions RMSz and RMSm have been parameterized from the ex-
perimental data as a functions of Z . The combination with the
minimum χ2 was chosen as the reconstructed K± → π±π0π0 de-
cay after applying the final loose cut χ2 < 30.

The π±π0π0 invariant mass distribution is shown in Fig. 1.
Non-gaussian tails, mainly associated with π → µν decays in
K± → π±π0π0 events, are suppressed by the χ2 cut. There are
also small contributions from wrong photon pairings in the decay
of the two π0, and from non-gaussian tails of the LKr response
due to photonuclear reactions. All these effects are included in the
Monte Carlo simulation and are taken into account in the evalua-
tion of the systematic uncertainties (Section 7).

Radiative photons from K± → π±π0π0 decays produce a slight
shift of the measured kaon mass, and thus also contribute to the
tails of the χ2 distribution. Our simulation does not take into
account radiative photons, and we assume that the emission of
soft real γ leaves the decay kinematics essentially unchanged.
There is no limit to the presence of additional clusters in our
event selection from the data. We have checked that the replace-
ment of the χ2 cut with the cut δZ < 500 cm (with no cuts
on the measured π±π0π0 invariant mass) leads to a negligible
change of the s3 spectrum and of the fit results. So, within the
present statistical uncertainty our analysis includes all the radia-
tive K± → π±γπ0π0 decays.

There are no important physical background sources for the
K± → π±π0π0 decay mode. Accidental overlaps of two events
could produce some background, which, however, is expected to
have a flat distribution in the δZ , M plane, hence a flat χ2 distri-
bution. If one interprets the small differences observed in the tails
of the χ2 distributions of data and MC events as totally due to this

Fig. 2. a) Experimental distribution of the square of the π0π0 mass, M2
00, from

K± → π±π0π0 decay in the fit region. b) Relative deviation of the experimental
spectrum from the best fit result (Data− Fit)/Fit.

background rather than to the quality of the simulation, the acci-
dental background can be conservatively estimated to be < 0.2%.

A total of 30.4 × 106 K± → π±π0π0 decay candidates have
been selected for the present analysis. Fig. 2 a) shows the dis-
tribution of the square of the π0π0 invariant mass, M2

00, for
the final event sample. This distribution is displayed with a bin
width of 0.00015 (GeV/c2)2, with the 51st bin centered at M2

00 =
(2m+)2, where m+ is the charged pion mass (the M2

00 resolution
is 0.00031 (GeV/c2)2 at M2

00 = (2m+)2). For our fits we use the
bin interval 21–311 which contains the major part (> 98%) of se-
lected events. The sudden change of slope near M2

00 = (2m+)2 =
0.07792 (GeV/c2)2, first observed in this experiment [5] is clearly
visible.

4. Monte Carlo simulation

Samples of simulated K± → π±π0π0 events ∼ 10 times larger
than the data have been generated using a full detector simulation
based on the GEANT-3 package [18]. This Monte Carlo (MC) pro-
gram takes into account all known detector effects, including the
time-dependent efficiencies and resolutions of the detector com-
ponents.

The MC program also includes the simulation of the beam line.
The beam average position and momentum are tuned for each
period of few hours using fully reconstructed K± → π±π+π−

events, which provide precise information on the average beam an-
gles and positions. Furthermore, the requirement that the average
reconstructed π±π+π− invariant mass be equal to the nominal
K± mass for both K+ and K− fixes the absolute momentum scale
of the magnetic spectrometer.

The Monte Carlo simulation does not include the overlay of
two independent K± → π±π0π0 events or of a simulated K± →
π±π0π0 event with a randomly triggered one, so the timing cuts
described in Section 3 were not applied in the analysis of the sim-

NA48/2, J.R. Batley et al, Phys. Lett. B686, 101 (2010)
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Decay process and loop function
Decay diagrams for Λc --> π πl Σl process

Threshold cusp

Figure 1: Decay diagrams for the Λc → π(πΣ)l process. (a): direct decay, (b): decay through
(πΣ)h state. Filled blobs denote the weak process of Λc → ππΣ and the open blob represents the
scattering amplitude of (πΣ)h → (πΣ)l process.

system W , the loop function G(W ) is written in the spectral representation as

G(W ) =
1

2π

∫ ∞

Wth

dW ′ ρ(W ′)

W − W ′ + iε
+ (subtractions) (3)

where the threshold energy is Wth = Mh + mh and the phase space factor ρ(W ) is given by

ρ(W ) =2Mh
q(W )

4πW
(4)

with the three-momentum function

q(W ) =

√
[W 2 − (Mh − mh)2][W 2 − (Mh + mh)2]

2W
. (5)

The real part of the loop function G(W ) depends on the subtractions, but the imaginary part can
be determined only by the phase space function

Im G(W ) = − Mh

4πW
q(W )Θ(W − Wth) (6)

with the step function Θ(x). This means that the imaginary part of the amplitude suddenly
appears at threshold.

If there are only two diagrams shown in Fig. 1, we can decompose the Λc → π(πΣ)l amplitude
into two parts:

M(W ) =M0(W ) + iM1(W )q(W ) for W > Wth (7)

with M0(W ) and M1(W ) being real functions of W which is analytic at the threshold Wth
1. The

amplitude (7) satisfies the condition (6), because the (πΣ)h loop is the only source of the imaginary
part in this process. Physically, the amplitude of the direct process (a) and the real part of the
indirect process (b) are included in M0, and the amplitude corresponding to the imaginary part of
the indirect process (b) is included in iM1q(W ). The function q(W ) can be analytically continued
to W < Wth where it becomes pure imaginary. For later convenience, we define the dimensionless
quantity

δ ≡
√

[W 2 − (Mh − mh)2][(Mh + mh)2 − W 2]

2mhW
=

iq(W )

mh
(8)

1Considering the other contributions, M0 and M1 would be complex amplitudes. Indeed, we will see that
the M1 amplitude has small imaginary part due to the final state interaction. However, since we discuss the
nonanalyticity of W around the threshold Wth, the following argument should hold as far as the imaginary part is
small, Re M0 $ Im M0 and Re M1 $ Im M1.

3

Spectral representation of the loop function
G(W ) =

1

2π

� ∞

Wth

dW � ρ(W �)

W −W � + i�
+ (subtractions) ρ(W ) =2Mh

q(W )

4πW

ρ: phase space, q: three-momentum

Imaginary part of the loop function (on-shell part):
Im G(W ) =− ρ(W )

2
Θ(W −Wth)

amplitude (a) : real
amplitude (b) : real (W < Wth), complex (W > Wth)

scattering length
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Threshold cusp in the spectrum
Real and imaginary part of the amplitude:

--> threshold cusp
It is purely kinematical effect. General phenomena.
M1 amplitude: proportional to the scattering length

Threshold cusp

δ ~ velocity, vanish at threshold

The πl Σl invariant mass spectrum

W

|M
|2

|M|2 =

�
(M0)2 + (M̃1mh)2|δ|2 for W > Wth

(M0)2 + 2M0M̃1mhδ + (M̃1mh)2δ2 for W < Wth

- Spectrum is continuous (δ vanishes at threshold)
- Derivative of the spectrum is discontinuous

d|M|2

dW

����
W→Wth−0

−
d|M|2

dW

����
W→Wth+0

∝ −
2M0M̃1mhMh

Mh +mh

1

δ
+O(δ)

M(W ) =M0(W ) + M̃1(W )mhδ
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Expansion of the decay spectrum --> scattering length
Determination of πΣ scattering length

Example of the spectrum

weak process

spectrum

Mh(0)
0 ,M (0)

0
|M|

2 =

�
A+ C �|δ|2 +O(|δ|4) for W > Wth

A+Bδ + Cδ2 +O(δ3) for W < Wth

|ah→l| =
|B|

2mh

√
A|Mh(0)

0 |
,

ah→l

|ah→l|
=

M(0)
0

|M(0)
0 |

· Mh(0)
0

|Mh(0)
0 |

· B

|B|
A,B,C

6
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W
 [a

rb
itr

ar
y 

un
it]

1350134013301320

W [MeV]

(a) a-+ mode
 a = +0.25 fm (Resonance)
 a = 0.00 fm (ChPT)
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(b) a-+ mode
 a = +1.68 fm (Virtual)
 a = -0.92 fm (Bound)
 a = 0.00 fm
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Isospin violation in πΣ channels
Determination of πΣ scattering length

Σ+(~uus) < Σ0(~uds) < Σ-(~dds)
--> complicated spectrum
To utilize threshold cusp, appreciable mass difference 
between (πΣ)h and (πΣ)l is necessary.

π+Σ− → π−Σ+, π+Σ− → π0Σ0, π+Σ0 → π0Σ+,

Q=0 Q=+1

0 0

- +

+ -

+ 0

0 +

Q=-1

- 0
0 -

1325

1330

1335

1320

Th
re

sh
ol

d 
[M

eV
]

possible decay modes
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Three decay channels
Determination of πΣ scattering length

A lot of Λc (Belle, Babar, LHC, ...) --> feasible?

Structure around the cusp in (πΣ)l + spectrum in (πΣ)h
--> extraction of the scattering length

where aI is the scattering length in isospin I channel5. Note however that these relation is exact
only in the isospin limit. Although we have three equations, they are not linearly independent
and we have a relation

a−+ − a00 =a0+ (39)

Therefore, in order to determine all three aIs, we need one additional input, such as chiral per-
turbation theory of the lattice QCD determination [20].

Let us look at the decay mode of Λc which leads to these rescattering amplitudes, and check
the branching ratios. Since the charge of the Λc is Q = +1, the possible decay modes are

a−+ :Λc → π+(π+Σ−) → π+(π−Σ+) (40)

a00 :Λc → π+(π+Σ−) → π+(π0Σ0) (41)

a0+ :Λc → π0(π+Σ0) → π0(π0Σ+) (42)

For later convenience, we refer to these modes as the extracted scattering lengths, i.e., Λc →
π+(π+Σ−) → π+(π−Σ+) is called mode a−+. The experimental data [19] of the branching ratios
Γi/Γ for these channels are summarized in Table 1. The mass spectrum is extracted from the
Λc → π(πΣ)l mode, while the Λc → π(πΣ)h mode will help the parametrization of the Mh(0)

amplitude. In most channels, decay modes are experimentally observed with the branching ratio
of the order of several %. If the precise measurement of the πΣ spectrum around the threshold
is performed, it would be feasible to extract the scattering length by the method explained in
Section 2.3, especially for the a−+ and a00 scattering lengths.

Table 1: Decay branching ratios Γi/Γ from PDG [19].

mode Λc → π(πΣ)h Λc → π(πΣ)l

a−+ 1.7 ± 0.5 % 3.6 ± 1.0 %
a00 1.7 ± 0.5 % 1.8 ± 0.8 %
a0+ 1.8 ± 0.8 % not known

3.2 Possible contamination

In this section we consider the possible contamination process of the argument above. First, the
rescattering of the other combination of the final states will occur, as shown in Fig. 3. In the
process (a) the pions are rescattered, while in the process (b), the Σ is rescattered by the “wrong”
pion which is not used to form the mass spectrum.

In order to estimate the effect from these contaminations, we check the kinematics of the decay.
In Fig. 4, we show the Dalitz plot of the Λc → π1π2Σ decay (Left: M2

π1π2
vs M2

π2Σ. Right: M2
π1Σ

vs M2
π2Σ). Since we are looking at the π2Σ threshold energy region, the relevant kinematic region

is the left edge of the Dalitz plot in these figures. For reference, we put vertical dashed lines at
the energy (MΣ + mπ + 20 MeV)2.

5In principle, a1 can be complex, since the πΛ channel lies at lower energy in the I = 1 channel. However, the
transition πΣ(I = 1) → πΛ vanishes at the leading order in chiral perturbation theory. In the following we assume
the imaginary part is negligible.

8

possible decay modes

a−+ = 1
3a

0 − 1
2a

1 + 1
6a

2 + · · · ,
a00 = 1

3a
0 − 1

3a
2 + · · · ,

a0+ =− 1
2a

1 + 1
2a

2 + · · · ,

a−+ − a00 =a0+ + · · ·
Three unknown scattering lengths, two constraints

I=2 scattering length: lattice QCD (Y. Ikeda et al., 17pSG12)
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Summary

πΣ scattering length is important for 
low energy KN-πΣ amplitude.                              
--> K nuclei and Λ(1405) physics

Threshold cusp in Λc --> ππΣ decay is             
related with the πΣ scattering length.

3 isospin states vs. 2 decay modes: 
Lattice QCD can help to complete.

πΣ scattering length from Λc decay 

Summary

Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki,
Prog. Theor. Phys. 125, 1205 (2011)
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