DN interaction and DNN bound state

2011, Sep. 1st

Tetsuo Hyodo

Tokyo Institute of Technology

with C.W. Xiao, M. Bayar, E. Oset, A. Dote, M. Oka

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

 \smile DN bound picture of $\Lambda_c(2595)$

DN interaction and DN potential

Summary + future plan

Introduction

Conventions for heavy mesons

Convention of quantum number of quarks

strange	charm	bottom
S = -1	C = +1	B = -1

Heavy-light mesons: bar for negative flavor-ness (q~u,d)

with <mark>q</mark>	$\overline{\mathbf{K}}$ (s $\overline{\mathbf{q}}$)	D (cq)	$\overline{\mathbf{B}}$ (b $\overline{\mathbf{q}}$)
with q	K (s q)	$\overline{\mathbf{D}}$ ($\overline{\mathbf{c}}$ q)	B (bq)

DN <--> KN : non-exotic light quark annihilation

D
N <--> KN : exotic Θ+, Yasui-Sudoh

Introduction

Why DN and DNN?

Comparison with KN system in I=0 channel

- large mass splitting between DN and $\pi\Sigma_c$
- negative parity Λ_c^* , analogously with $\Lambda(1405)$
- small phase space --> narrow width of Λ_c^*

 Λ^* : a $\overline{K}N$ bound state in the πΣ continuum --> \overline{K} nuclei Λ_c^* : a DN bound state in the πΣ_c continuum --> D nuclei?

DN bound picture for $\Lambda c(2595)$

Validity of the DN bound state picture

Can Λ_c^* (with strong binding) be a DN bound state?

D (1867 MeV) is heavier than K (496 MeV)
 Kinetic energy is suppressed.
 If the KN system develops a quasi-bound state Λ(1405),
 with the same interaction, DN bounds more strongly.

- vector meson exchange picture leads to the stronger DN interaction than $\overline{K}N$

 $\frac{V_D}{V_K} = \frac{m_D}{m_K} \sim 3.8$ (next slide)

DN system should generate a strongly bound state: Λ_c^* .

DN bound picture for $\Lambda c(2595)$

Vector meson exchange for DN

DN (KN) interaction in vector meson exchange

Interaction is proportional to the meson mass at threshold.

$$\frac{V_D}{V_K} = \frac{m_D}{m_K} \sim 3.8$$

DN interaction is about four times stronger than $\overline{K}N$

DN bound picture for $\Lambda c(2595)$

Application to DNN system

We construct the DN effective potential in the DN bound picture for Λ_c^* , and apply the potential to the DNN system

Pro

- Potential is strongly attractive.
 --> easy to produce a bound state in nuclei
- Imaginary part of the DN potential is smaller than KN.
 --> good feature for the variational three-body calculation

Contra

- DN binding energy may be too large.
 --> potential picture valid?
- Experimental information is poorer than $\overline{K}N$ --> only the mass of Λ_c^* is known

DN interaction and DN potential

DN local potential

Coupled-channel DN scattering amplitude

T. Mizutani, A. Ramos, Phys. Rev. C74, 065201 (2006)

Equivalent local potential

T. Hyodo, W. Weise, Phys. Rev. C77, 035204 (2008)

$$U(r, E) = \frac{1}{2\tilde{\omega}} \frac{M_N}{\sqrt{s}} V^{\text{eff}}(\sqrt{s}) \frac{1}{\pi^{3/2}b^3} e^{-r^2/b^2}$$
$$= U(r = 0, E)e^{-r^2/b^2} \qquad \text{C.f. } \mathbf{K}$$

Summary + future plan

We study the DN interaction and DNN system

Segarding Λ_c* as a DN quasi-bound state, we construct a DN potential.

D is heavy; we expect stronger binding with nucleon(nuclei) than K case.

From the coupled-channel amplitude, equivalent DN potential is constructed.

Potential has strong energy dependence.

Summary + future plan

Expected structure of DNN

Binding energy of the DN system is 200 MeV. Do we have DNN with 400 MeV binding?

- No, because of the NN repulsion at short distance and strong energy dependence of the DN potential strength.

KNN: K-migration picture

T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007)

Interesting structure?