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- coupled channels (P+Q)
- bound state in Q channel EQ < 0
- above P threshold EP > 0
- unstable by transition
- (CDD pole contribution)

P

Q
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- single channel (P)
- bound by potential barrier 
- energy E > 0
- unstable by tunneling
- (dynamically generated state)

r
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Resonances
1) Potential resonance

Introduction -- resonance
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2) Feshbach resonance

tunneling

transition
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Feshbach resonance in atomic physics
In alkali-metal atoms, (P, Q) are different spin configurations
--> magnetic field B modifies the threshold energy difference

Introduction -- resonance

In channel P, energy of resonance is changed by B.

Re f
Im f

scattering amplitude in P channel

Scattering length of P is changed by the magnetic field
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Scattering length
Scattering length of P as a function of magnetic field B

Introduction -- resonance

a(B) = abg

�
1− ∆B

B − B0

�

Interaction strength is adjustable by the magnetic field
(Hidden) assumption:
the lower energy P channel is weakly interacting (abg ~ r0).

What happens if |abg| >> r0 ?
This is not always the case, e.g., 133Cs, 85Rb, 6Li,...

BB0

abg

a(B)

P interaction

bound state in Q

B = B0 : unitary limit
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Feshbach resonance theory: projection formalisom
Reduction of two-channel problem into a single channel

Feshbach resonance

P: open channel, lower energy.
Q: closed channel, higher energy.

H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958); 19, 287 (1962).

(full) Greenʼs operator in Q channel --> |ψQ>

|ΨQ � = 1

E+ −HQQ
HQP |ΨP �, E

+ = E + iδ

original P interaction + coupling effect to channel Q

H |Ψ � = E|Ψ �, H =

�
HPP HPQ

HPQ HQQ

�
, |Ψ � =

�
|ΨP �
|ΨQ �

�

Eliminating |ψQ>, we obtain effective Hamiltonian in P

E|ΨP � =
�
HPP +HPQ

1

E+ −HQQ
HQP

�
|ΨP �

≡ Heff|ΨP �
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T-matrix for effective single channel interaction
Structure of the effective interaction

Feshbach resonance

Heff = H
0
PP + VPP +HPQ

1

E+ −HQQ
HQP ≡ H

0
PP + VI + VII

t-matrix: Two-potential theorem 
(c.f. DWBA for nuclear reaction)

t = tI + �Ψ−
P |VII |ΨP �

= �χP |VPP |Ψ+
P �+ �Ψ−

P |HPQ
1

E+ −HQQ
HQP |ΨP �

-         : free P state
-         : full P state with VPP
-         : full P state with Veff

|χP �

|Ψ+
P �

|ΨP �

|Ψ±
P � = |χP �+ 1

E± −HPP
VPP |χP �, HPP = H

0
PP + VPP

|ΨP � = |Ψ+
P �+ 1

E+ −HPP
HPQ

1

E+ −HQQ
HQP |ΨP �
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Single-pole dominance
Pick up one bound state (relevant for P threshold) from the 
expansion of Greenʼs operator of Q channel

Feshbach resonance

t-matrix for single-pole dominance

t =�χP |VPP |Ψ+
P �+ �Ψ−

P |HPQ|φb ��φb |HQP |ΨP �
E − �

Q
b

=�χP |VPP |Ψ+
P �+ |�φb |HQP |Ψ+

P �|2

E − �
Q
b −A(E)

bare pole

dressed pole

coupling to P channel modifies the bare mass (self-energy)
A(E) =�φb |HQP

1

E+ −HPP
HPQ|φb � = ∆res(E)− i

2
Γ(E)

1

E+ −HQQ
=

�

i

|φi ��φi |
E − �

Q
i

+

� |φ(�) ��φ(�) |
E+ − �

d� → |φb ��φb |
E − �

Q
b

mass shift   width
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S-matrix
S-matrix (E=k2)

Feshbach resonance

A(E) =�φb |HQP
1

E+ −HPP
HPQ|φb � = ∆res(E)− i

2
Γ(E)

so the S-matrix is given by

S(k) = exp[−2ikabg]

�
1− 2iCk

E − �Qb −∆res + iCk

�

single P channel S-matrix

Result of the single-resonance approximation
�Qb ∝ B ⇒ a(B) = abg

�
1− ∆B

B −B0

�

S(E) = SP (E)

�
1− 2πi

|�φb |HQP |Ψ+
P �|2

E − �
Q
b −A(E)

�

Near threshold (E ~ 0)
∆res(E) ∼ const., Γ(E) = 2π|�φb |HQP |Ψ+

P �|2 ∼ 2Ck, SP (k) ∼ exp[−2ikabg]
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Open channel singularities

Bound state/virtual state/resonances: pole of S-matrix

Open channel resonance

resonance (II)

bound 
state (I)

thr. reim

virtual
state (II)

For a while, we consider single P channel.

pole close to the threshold
--> large scattering length
--> strong energy dependence
--> affect to the Feshbach resonance?
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Significance of virtual state in open channel
Previous assumption: P channel has smooth amplitude
  --> scattering length governs the low energy behavior

Open channel resonance

SP (k) = exp[−2ikabg]

→ SP
bg(k)S

P
res(k) = exp[−2ikaPbg]S

P
res(k)

If a pole exists near threshold, then

For a virtual state, it is explicitly written as
SP (k) = exp[−2ikaPbg]

iκvs − k

iκvs + k

SP!k" = e!2ikabg
P i!vs ! k
i!vs + k

, !20"

where the background factor exp#!2ikabg
P $ summarizes the

effect of all the nonresonant poles of the SP matrix.
The scattering phase "!k" is related to the SP matrix as

SP!k"=exp#2i"!k"$ and is evaluated as

"!k" = ! kabg
P + arctan% k

!vs
& . !21"

The background part is related to the phase of g!k" and is
linear in k in the low-energy limit [46]. The resonant part is
related to the pole at k=!i!vs and causes a “bump” in the
scattering phase at low energies. Moreover, if the virtual-
state pole gets closer to threshold !!vs→0", the scattering
length abg=abg

P !1/!vs will become more and more negative.
To show that this virtual state has to be taken into account

explicitly, Fig. 7 shows the scattering phase for 85Rb in the
'f ,mf(= '2,!2( P channel, without coupling to the Q chan-
nels. The black dots represent the numerical results, which
are obtained by solving the Schrödinger equation using the
proper physical and state-of-the-art rubidium potentials. The
solid line is obtained from the virtual-state expression, and
the dashed line is obtained from the usual contact potential
approximation "!k"=!arctan#kabg$ [35]. Let us stress again
that Fig. 7 shows the scattering phase for the P channel only,
and the coupling to the Q channel has been excluded from
this calculation. For this particular channel, abg=!443a0
[14]. The virtual state contributes to the scattering length as
!1/!vs=!562a0, and abg

P =+119a0 is now of the order of the
potential range r0. More details about the numerical calcula-
tion can be found in Sec. VI.

Comparing the virtual-state expression for "!k" with the
numerical results, the agreement is excellent. If we compare
the numerical results with the contact potential expression, it
is immediately seen that this expression already starts to de-
viate significantly at a few microkelvin. This indicates that
the scattering length parameter only does not fully encapsu-
late the energy dependence of the scattering physics, and the
P-channel resonance should be taken into account explicitly.

B. Mittag-Leffle series

The S matrix, T matrix, and the resolvent (or Green’s)
operator GPP!E")#E!HPP$!1 have their poles in common
[47]. This suggests it is possible to expand the resolvent in a
Mittag-Leffler series [44], where the resolvent is written as a
sum over the different pole contributions. The corresponding
residues are related to the bound and resonance states, which
are eigensolutions of HPP. The scattering and transition ma-
trix can then be written as a sum over the pole contributions
as well.
Eigensolutions associated with poles of the scattering ma-

trix were first introduced by Gamow in his theoretical de-
scription of # decay [48]. In the case of s-wave scattering,
the Gamow function $n!r"= *r '$n( associated with the pole
kn of the scattering matrix is defined as the solution to the
radial Schrödinger equation that satisfies the boundary con-
ditions

+$n!r"'r=0 = 0,
d
dr$n!r"'r=R = ikn$n!r"'r=R.

!22"

The radius R has to be chosen such that R%R0; i.e., it is
applied in the asymptotically free !V=0" region of the inter-
action potential.
The Gamow states behave asymptotically as $n!r"

&exp#iknr$. For the bound-state poles kn= i!n, with !n a posi-
tive constant, the Gamow states are just the (properly nor-
malized) bound-state wave functions. However, for the poles
with Im!kn"'0 the Gamow states exponentially diverge.
Due to this exponential divergence, the Gamow states do not
form an orthonormal basis for the P subspace. Defining a
dual set of Gamow states as $n

D)$n
*, the Gamow states do

form a biorthogonal set in the sense that *$n
D '$n!(="nn!.

Here "nn! is the Kronecker delta, and the inner product is
defined by means of analytic continuation in k of the proper
bound-state eigensolutions to the resonance poles in the
lower half of the complex k plane [49,50]. The normalization
condition takes the form

*$n
D'$n( = ,

0

R

$n
2!r"dr +

i
2kn

$n
2!R" = 1. !23"

Note that, as before, R has to be chosen such that R%R0, in
which case the normalization condition does not actually de-
pend on the precise choice of R.
The Gamow state '$n( is an eigenstate of HPP and has an

eigenvalue En. The dual state '$n
D( is an eigenstate of HPP

†

with the eigenvalue En
*. This can be written in Dirac notation

as

FIG. 7. Scattering phase "!k" for 85Rb in the 'f ,mf(= '2,!2( spin
channel. The black dots represent the numerical results. The solid
line is obtained from Eq. (21). The dashed line is obtained from the
contact potential approximation "!k"=!arctan#kabg$. The scattering
length of 85Rb in this channel is abg=!443a0, in agreement with
coupled-channel calculations. The background scattering length is
abg
P =+119a0, and the virtual state is located at kvs=!i!vs=!1.78

(10!3i#1/a0$, which corresponds to the term !1/!vs=!562a0 in
the expression for abg.

MARCELIS et al. PHYSICAL REVIEW A 70, 012701 (2004)

012701-8

Example for 85Rb (P-channel only)

virtual state

abg

``Scattering length parameter only 
does not fully encapsulate the energy 
dependence of the scattering physics.”

potential resonance,
not Feshbach
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Mittag-Leffle series

Expansion of Greenʼs operator in P channel:
  Mittag-Leffle series

Open channel resonance

1

E −HPP
=

∞�

n=1

|Ωn ��ΩD
n |

2kn(k − kn)

kn: pole position, arbitrary complex number

Gamow vector 
and its dual

Pole in (full) Greenʼs operator: common with T-matrix

- One virtual state
1

E −HPP
→ |Ωvs ��ΩD

vs |
2kvs(k − kvs)

, kvs = −iκvs

- One virtual state + one bound state
1

E −HPP
→ |Ωvs ��ΩD

vs |
2kvs(k − kvs)

+
|φbs ��φbs |
2kbs(k − kbs)

, kvs = −iκvs, kbs = iκbs
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Feshbach resonance with P-channel virtual state
Self-energy function with one virtual state:

Interplay

Numerator: no energy dependence
A(E) =

−iAvs

2κvs(k + iκvs)

A(E) =
�φb |HQP |Ωvs ��ΩD

vs |HPQ|φb �
2kvs(k − kvs)

= ∆res(E)− i

2
Γ(E)

a-B relation becomes more complicated 
a(B) �= abg

�
1− ∆B

B − B0

�

For           , single-resonance approximation is recoveredk � κvs

Mass modification in the presence of a virtual state
∆res(E) =

−Avs/2

k2 + κ2
vs

= − Avs

2κ2
vs

�
1− k2

κ2
vs

+ . . .

�

Γ(E) =
Avsk

κvs(k2 + κ2
vs)

=
Avsk

κ3
vs

�
1− k2

κ2
vs

+ . . .

�
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Application to physical example
Mass of the Feshbach resonance of 85Rb

Interplay
the two parameters Avs and Abs from a fit of Eq. (34) to two
data points.
We now insert these parameters into the expressions for

the energy shift !res!E" to describe the energy of the dressed
(quasi)bound Feshbach state. The result is shown in Fig. 10,
where the black dots indicate the coupled-channel results and

the solid line is obtained from our model. In Fig. 11 we zoom
in closer to the P-channel threshold.
The unperturbed (or bare) bound state in the Q-channel

subspace is dressed by the coupling to the P-channel sub-
space. This induces an avoided crossing with the highest
P-channel bound state. The avoided crossing is broad in the
sense that, even though the unperturbed P-channel bound
state is located at roughly "bound/kB#!10 mK, close to the
P-channel threshold the dressed state still has not converged
to the bare Q-channel bound state.
The P-channel virtual state is not located at the physical

energy sheet, and there is no avoided crossing of the usual
kind between the dressed Q-channel (quasi)bound state and
the virtual state. However, the virtual state is located close to
the collision threshold and induces a strong threshold effect.
This threshold effect dominates the behavior of the molecu-
lar binding energy near the collision threshold and has to be
taken into account explicitly. In our model we take the rel-
evant P-channel bound and/or virtual states into account ana-
lytically. From these figures it is immediately seen that our
model agrees perfectly with full coupled-channel calcula-
tions for a very large energy domain. The binding energy of
the dressed molecular state that has been measured in Refs.
[13,14] is described analytically with high precision.

VII. OTHER APPROACHES

In this section, we compare our model with some other
approaches commonly used in the description of Feshbach
resonances. A model which is conveniently used in many-
body theories is the contact potential (or zero-range poten-
tial). In this approach the real interaction potentials are re-
placed by # functions or pseudopotentials, proportional to the
s-wave scattering length a. In the vicinity of a Feshbach
resonance the dispersive formula, Eq. (1), is used. The scat-
tering matrix takes the form [44]

S!k" =
1 ! ika!B"
1 + ika!B"

. !37"

The molecular binding energy is determined by the pole of
S!k" and is given as "bind=!$2 / $2%a2!B"%. In Fig. 12 we

FIG. 9. Energy width of the dressed quasibound Feshbach state
for 85Rb in the &2,!2' hyperfine channel. The dotted line shows the
energy width according to Eq. (30), where only the virtual state,
with &vs=2.54'10!3 K1/2 is taken into account, and Avs=1.94
'10!8 K2. The solid line shows the energy width according to Eq.
(34), where the highest bound state of the P channel is included as
well, with &bs=0.103 K1/2. In this case, Avs=1.92'10!8 K2 and
Abs=1.26'10!5 K2.

FIG. 10. (Color online) Energy of the dressed (quasi)bound
Feshbach state. The black dots indicate the coupled-channel data.
The thick solid line indicates the energy according to our model.
The thin solid line is the energy of the unperturbed Q-channel
bound state, which around threshold is given by the linear expres-
sion "b

Q!B"=!%mag!B! B̄0", with !%mag=!1.75'10!4 K /G=
!3.64 MHz/G and B̄0=160.1 G.

FIG. 11. (Color online) Same as in Fig. 10, but now for energies
closer to the P-channel threshold.

FESHBACH RESONANCES WITH LARGE BACKGROUND… PHYSICAL REVIEW A 70, 012701 (2004)

012701-11

red
: single-resonance app.

Dotted
: full coupled-channel 
result with realistic 
interaction

Solid
: model with 1 virtual 
and 1 bound state 

�b −∆res(E), �b ∝ B



15

Summary

Feshbach resonance: a bound state 
embedded in a continuum

Projection method: effective single-
channel interaction

Large abg: open channel singularity 

Open-channel singularity: modifies the 
linear B dep. of Feshbach resonance

We study the Feshbach resonance with near 
threshold singularity in open channel.

Summary and implication for hadron physics

B. Marcelis, et al., Phys. Rev. A 70, 012701 (2004)
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Summary

Λ(1405) in KN-πΣ amplitude?

Characteristic feature?
Response to open-channel resonance?

In hadron physics:

Summary and implication for hadron physics
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T. Hyodo, D. Jido, arXiv:1104.4474, to appear in Prog. Part. Nucl. Phys.

Feshbach

open-channel 


