Meson-baryon interactions

and baryon resonances

Tetsuo Hyodo

Tokyo Institute of Technology

Contents

$\Lambda(1405)$ in meson-baryon scattering
T. Hyodo, D. Jido, arXiv:1104.4474, submitted to Prog. Part. Nucl. Phys.

- Chiral SU(3) dynamics
- Pole structure of $\Lambda(1405)$

Toward realistic meson-baryon interaction

- Constraint by accurate $\bar{K} N$ data
Y. Ikeda, T. Hyodo, W. Weise, in preparation
- Information of $\boldsymbol{\Pi \Sigma}$ channel
Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki,
arXiv: 1101.5190 [nucl-th], to appear in Prog. Theor. Phys.,
T. Hyodo, M. Oka, arXiv:1105.5494 [nucl-th]

Summary
rt. Nucl. Phys.

\qquad
\square

Chiral symmetry breaking in hadron physics

Chiral symmetry: QCD with massless quarks
Consequence of chiral symmetry breaking in hadron physics

- appearance of the Nambu-Goldstone (NG) boson $m_{\pi} \sim 140 \mathrm{MeV}$
- dynamical generation of hadron masses $M_{p} \sim 1 \mathrm{GeV} \sim 3 M_{q}, \quad M_{q} \sim 300 \mathrm{MeV}$ v.s. $3-7 \mathrm{MeV}$
- constraints on the NG-boson--hadron interaction low energy theorems <-- current algebra systematic low energy (m,p/4nfr) expansion: ChPT

Chiral symmetry and its breaking

$$
S U(3)_{R} \otimes S U(3)_{L} \rightarrow S U(3)_{V}
$$

Underlying QCD $\Longrightarrow=\Rightarrow$ observed hadron phenomena
$\Lambda(1405)$ in meson-baryon scattering

s-wave low energy interaction in ChPT

Leading order term for the meson-baryon scattering

s-wave contribution: Weinberg-Tomozawa (WT) term
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

$$
\begin{aligned}
V_{i j}= & -\frac{C_{i j}}{4 f^{2}}\left(\omega_{i}+\omega_{j}\right) \\
C_{i j}= & \sum_{\alpha}\left[6-C_{2}(\alpha)\right]\left(\left.\begin{array}{cc}
8 & 8 \\
I_{\bar{i}}, Y_{\overline{\bar{i}}} & I_{i}, Y_{i}
\end{array} \right\rvert\, \begin{array}{c}
\alpha \\
I, Y
\end{array}\right)\left(\begin{array}{cc||c}
8 & 8 \\
I_{\bar{j}}, Y_{\bar{j}} & I_{j}, Y_{j} & \alpha \\
I, Y
\end{array}\right) \\
& Y=Y_{\bar{i}}+Y_{i}=Y_{\bar{j}}+Y_{j}, \quad I=I_{\bar{i}}+I_{i}=I_{\bar{j}}+I_{j},
\end{aligned}
$$

- Flavor $\operatorname{SU}(3)$ symmetry --> sign and strength
- Derivative coupling --> energy dependence
- Systematic improvement by higher order terms (later)

If the interaction is strong, resummation is mandatory.
$\Lambda(1405)$ in meson-baryon scattering

Scattering amplitude and unitarity

Unitarity of S-matrix: Optical theorem

$$
\operatorname{Im}\left[T^{-1}(s)\right]=\frac{\rho(s)}{2}<\text { phase space of two-body state }
$$

General amplitude by dispersion relation

$$
T^{-1}(\sqrt{s})=\sum_{i} \frac{R_{i}}{\sqrt{s}-W_{i}}+\tilde{a}\left(s_{0}\right) i^{\prime}+\frac{s-s_{0}}{2 \pi} \int_{s^{+}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}
$$

$\mathbf{R}_{\mathrm{i}}, \mathrm{W}_{\mathrm{i}}$, a: to be determined by chiral interaction
Identify dispersion integral $=$ loop function \mathbf{G}, the rest $=\mathrm{V}^{-1}$

$$
T(\sqrt{s})=\frac{1}{V^{-1}(\sqrt{s})-G(\sqrt{s} ; a)}
$$

Scattering amplitude

The function \mathbf{V} is determined by the matching with ChPT

$$
T^{(1)}=V^{(1)}, \quad T^{(2)}=V^{(2)}, \quad T^{(3)}=V^{(3)}-V^{(1)} G V^{(1)},
$$

Amplitude T: consistent with chiral symmetry + unitarity
$\Lambda(1405)$ in meson-baryon scattering

Chiral unitary approach

Meson-baryon scattering amplitude

- Interaction <-- chiral symmetry
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Amplitude <-- unitarity in coupled channels
R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)
N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It successfully reproduces the scattering observables as well as the dynamically generated resonances.
$\Lambda(1405)$ in meson-baryon scattering

The Λ (1405) resonance

$$
\Lambda(1405): J^{P}=1 / 2^{-}, I=0
$$

mass: $1406.5 \pm 4.0 \mathrm{MeV}$, width : $50 \pm 2 \mathrm{MeV}$ decay mode: $\Lambda(1405) \rightarrow(\pi \Sigma)_{I=0} 100 \%$
"naive" quark model
: p-wave ~1600 MeV?
N. Isgur, G. Karl, PRD18, 4187 (1978)

Coupled channel multi-scattering

R.H. Dalitz, T.C. Wong,
G. Rajasekaran, PR153, 1617 (1967)
$\overline{\mathrm{K}} \mathrm{N}$ interaction below threshold
T. Hyodo, W. Weise, PRC 77, 035204 (2008)
$\rightarrow->\bar{K} N$ potential, kaonic nuclei
A. Dote, T. Hyodo, W. Weise, NPA804, 197 (2008); PRC 79, 014003 (2009)

$\Lambda(1405)$ in meson-baryon scattering

A simple model (1 parameter) v.s. experimental data

Total cross section of K-p scattering

Branching ratio

	γ	$\mathbf{R}_{\mathbf{c}}$	$\mathbf{R}_{\mathbf{n}}$
\exp.	2.36	0.664	0.189
theo.	1.80	0.624	0.225

$\pi \Sigma$ spectrum

T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, PRC68, 018201 (2003); PTP 112, 73 (2004)

Good agreement with data above, at, and below K \bar{K} threshold more quantitatively --> fine tuning, higher order terms,...

Pole structure in the complex energy plane

Resonance state \sim pole of the scattering amplitude
D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003)

$$
\begin{aligned}
T_{i j}(\sqrt{s}) & \sim \frac{g_{i} g_{j}}{\sqrt{s}-M_{R}+i \Gamma_{R} / 2} \\
& \sim \vdots \vdots!\ddots_{0}^{\prime}
\end{aligned}
$$

Two poles for one

--> different $\boldsymbol{\pi \Sigma}$ spectra?
--> Superposition of two states ?
resonance (bump structure)

What is the origin of this structure?
T. Hyodo, D. Jido, arXiv:1104.4474
$\Lambda(1405)$ in meson-baryon scattering

Origin of the two-pole structure

Leading order chiral interaction for $\overline{\mathrm{K}} \mathrm{N}-\boldsymbol{\Pi} \Sigma$ channel

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

$$
V_{i j}=-C_{i j} \frac{\omega_{i}+\omega_{j}}{4 f^{2}}
$$

at threshold

$$
\begin{aligned}
& \omega_{i} \sim m_{i}, \quad 3.3 m_{\pi} \sim m_{K} \\
& \Rightarrow V_{\bar{K} N} \sim 2.5 V_{\pi \Sigma}
\end{aligned}
$$

Very strong attraction in KN (higher energy) --> bound state Strong attraction in $\boldsymbol{\Pi \Sigma}$ (lower energy) --> resonance Model dependence? Effects from higher order terms?

Experimental constraints for $\mathrm{S}=-\mathbf{1}$ MB scattering

K-p total cross sections (bubble chamber, large errors)
$\overline{\mathrm{K}} \mathrm{N}$ threshold observables

- threshold branching ratios (old but accurate)
- K-p scattering length <-- SIDDHARTA exp.

$\pi \Sigma$ mass spectra
- new data is becoming available (LEPS, CLAS, HADES,...)
- normalization, reaction dependence,... <-- to be predicted? $\pi \Sigma$ threshold observables (so far no data)

Toward realistic meson-baryon interaction

Constraints from KN data

- K-p total cross sections

$$
K^{-} p \rightarrow\left(K^{-} p, \bar{K}^{0} n, \pi^{0} \Lambda, \pi^{0} \Sigma^{0}, \pi^{+} \Sigma^{-}, \pi^{-} \Sigma^{+}\right)
$$

- Threshold branching ratios

$$
\begin{aligned}
& \gamma=\frac{\Gamma\left(K^{-} p \rightarrow \pi^{+} \Sigma^{-}\right)}{\Gamma\left(K^{-} p \rightarrow \pi^{-} \Sigma^{+}\right)}=2.36 \pm 0.04 \\
& R_{c}=\frac{\Gamma\left(K^{-} p \rightarrow \pi^{+} \Sigma^{-}, \pi^{-} \Sigma^{+}\right)}{\Gamma\left(K^{-} p \rightarrow \text { all inelastic channels }\right)}=0.664 \pm 0.011 \\
& R_{n}=\frac{\Gamma\left(K^{-} p \rightarrow \pi^{0} \Lambda\right)}{\Gamma\left(K^{-} p \rightarrow \text { neutral states }\right)}=0.189 \pm 0.015
\end{aligned}
$$

Shift $\Delta \mathrm{E}[\mathrm{eV}]$
R.J. Nowak, et al., Nucl. Phys. B139, 61 (1978); D.N. Tovee, et al., ibid, B33, 493 (1971)

- Shift and width of 1 s level of kaonic hydrogen (SIDDHARTA)

$$
\Delta E=-283 \pm 36 \pm 6 \mathrm{eV}, \quad \Gamma=541 \pm 89 \pm 22 \mathrm{eV}
$$

Bazzi, et al., arXiv:1105.3090 [nucl-ex]

$$
\Delta E-\frac{i}{2} \Gamma=-2 \alpha^{3} \mu_{c}^{2} a_{K^{-} p}\left[1-2 \alpha \mu_{c}(\ln \alpha-1) a_{K^{-} p}\right]<-- \text { scattering length }
$$

U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Toward realistic meson-baryon interaction

Construction of the realistic amplitude

Systematic X2 fitting with SIDDHARTA data

Y. Ikeda, T. Hyodo, W. Weise, in preparation

Interaction kernel: NLO ChPT
B. Borasoy, R. Nissler, W. Weise, Eur. Phys. J. A25, 79-96 (2005);
B. Borasoy, U.G. Meissner, R. Nissler, Phys. Rev. C74, 055201 (2006)

Parameters: 6 cutoffs (+ 7 low energy constants in NLO)

Toward realistic meson-baryon interaction

Result by NLO model

Observables	Theory	Experiment
$\Delta E(\mathrm{eV})$	306	283 ± 42
$\Gamma(\mathrm{eV})$	591	541 ± 111
γ	2.36	2.36 ± 0.04
R_{c}	0.659	0.664 ± 0.011
R_{n}	0.192	0.189 ± 0.015
$a_{K^{-} p}(\mathrm{fm})$	$-0.81+i 0.87$	
Poles of the $\Lambda(1405)(\mathrm{MeV})$	$1424.2-i 26.3,1380.7-i 81.3$	

Good description of data ($\mathrm{x} 2 / \mathrm{dof} \sim 1$)

Toward realistic meson-baryon interaction

Summary of results

Results from three models

	WT	WTB	NLO
X2/dof	1.12	1.15	0.957

Shift and width

Error analysis is now underway
Y. Ikeda, T. Hyodo, W. Weise, in preparation

Toward realistic meson-baryon interaction

$\pi \Sigma$ threshold behavior

Effect of the $\boldsymbol{\pi \Sigma}$ threshold data for $\bar{K} N-\Pi \Sigma$ amplitude

Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, arXiv: 1101.5190 [nucl-th], to appear in Prog. Theor. Phys.

Extrapolations with a given $\overline{\mathrm{K}} \mathrm{N}(\mathrm{I}=0)$ scattering length --> uncertainty in subthreshold

Model	A1	A2	B E-dep	B E-indep
parameter $(\pi \Sigma)$	$d_{\pi \Sigma}=-1.67$	$d_{\pi \Sigma}=-2.85$	$\Lambda_{\pi \Sigma}=1005 \mathrm{MeV}$	$\Lambda_{\pi \Sigma}=1465 \mathrm{MeV}$
parameter $(\bar{K} N)$	$d_{\bar{K} N}=-1.79$	$d_{\bar{K} N}=-2.05$	$\Lambda_{\bar{K} N}=1188 \mathrm{MeV}$	$\Lambda_{\bar{K} N}=1086 \mathrm{MeV}$
pole $1[\mathrm{MeV}]$	$1422-16 i$	$1425-11 i$	$1422-22 i$	$1423-29 i$
pole $2[\mathrm{MeV}]$	$1375-72 i(\mathrm{R})$	$1321(\mathrm{~B})$	$1349-54 i(\mathrm{R})$	$1325(\mathrm{~V})$
$a_{\pi \Sigma}[\mathrm{fm}]$	0.934	-2.30	1.44	5.50
$r_{e}[\mathrm{fm}]$	5.02	5.89	3.96	0.458
$a_{\bar{K} N}[\mathrm{fm}]$ (input)	$-1.70+0.68 i$	$-1.70+0.68 i$	$-1.70+0.68 i$	$-1.70+0.68 i$

subthreshold behavior

<-- $\boldsymbol{\pi} \boldsymbol{\Sigma}$ scattering length, effective range

Toward realistic meson-baryon interaction

Determination of the $\boldsymbol{\pi} \boldsymbol{\Sigma}$ scattering length

$\boldsymbol{\pi} \boldsymbol{\pi}$ scattering length from $K-->\pi$ п п decay
N. Cabibbo, Phys. Rev. Lett. 93, 121801 (2004);

NA48/2, J.R. Batley, et al., Phys. Lett. B686, 101 (2010)
Analogy: $\boldsymbol{\Pi \Sigma}$ scattering lengths from $\wedge c-->\pi \boldsymbol{\pi} \boldsymbol{\Sigma}$ decays
T. Hyodo, M. Oka, arXiv:1105.5494 [nucl-th]
isospin violation

+ threshold cusp
+ amplitude interference

Expansion of the spectrum around cusp --> scattering length

Summary 1

We study the $\bar{K} N-\Pi \Sigma$ interaction and $\Lambda(1405)$

CO
CO

T. Hyodo, D. Jido, arXiv:1104.4474, submitted to Prog. Part. Nucl. Phys.
 end $\Lambda(1405)$
entry and unitarity

\qquad
\qquad
\qquad

n

Summary
五
Summary

\qquad2-

CO

Abstract

(4) $$
0
$$

CO

 \section*{
 \section*{\section*{<-- attractive $\bar{K} N$ and $\pi \Sigma$ interactions

 \section*{
 \section*{\section*{<-- attractive $\bar{K} N$ and $\pi \Sigma$ interactions

 \section*{
 \section*{\section*{<-- attractive $\bar{K} N$ and $\pi \Sigma$ interactions

 ```T\Sigma interactions```

 ```
T\Sigma interactions

``` \\ \\ \\ }}}

\begin{abstract}
en
 \(\square\)

\end{abstract}
s.


CO


\section*{Summary 2}

Recent developments to construct a realistic meson-baryon interaction

\section*{New \(\bar{K} N\) threshold data by SIDDAHRTA}
- systematic \(X^{2}\) analysis with NLO terms
Y. Ikeda, T. Hyodo, W. Weise, in preparation

Threshold information of \(\pi \Sigma\) channel
- importance of \(\Pi \Sigma\) threshold behavior
- scattering length from ^c decay
T. Hyodo, M. Oka, arXiv:1105.5494 [nucl-th]

Summary

\author{
Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, arXiv: 1101.5190 [nucl-th], to appear in Prog. Theor. Phys. \\ \(\qquad\) \\ ```
            -5>8
``` \\ 
}

\section*{Summary}

 \(=\)

\(\qquad\) . -
\(\square\)
 \(\square\)
```

