A(1405) in chiral dynamics and related topics

Tetsuo Hyodo

Tokyo Institute of Technology

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Introduction

Physics of the $\Lambda(1405)$

M

$$\Lambda(1405): J^P = 1/2^-, I = 0$$

mass : 1406.5 ± 4.0 MeV, width : 50 ± 2 MeV decay mode: $\Lambda(1405) \rightarrow (\pi\Sigma)_{I=0}$ 100%

"naive" quark model : p-wave ~1600 MeV?

N. Isgur, G. Karl, PRD18, 4187 (1978)

Coupled channel multi-scattering

R.H. Dalitz, T.C. Wong, G. Rajasekaran, PR153, 1617 (1967)

(PDG)

 KN interaction below threshold

 T. Hyodo, W. Weise, PRC 77, 035204 (2008)

 --> KN potential, kaonic nuclei

 A. Dote, T. Hyodo, W. Weise,

 NPA804, 197 (2008); PRC 79, 014003 (2009)

Contents

Introduction

- Λ(1405) in chiral SU(3) dynamics
 - T. Hyodo, D. Jido, arXiv:1104.4474, to appear in Prog. Part. Nucl. Phys.
 - Theoretical framework
 - Pole structure of Λ(1405)
 - Meson-baryon nature of Λ(1405)
- **Recent developments + future perspective**
 - Toward a realistic $\overline{K}N-\pi\Sigma$ interaction
 - Hadron structure in heavy ion collisions

Chiral symmetry breaking in hadron physics

- **Chiral symmetry: QCD with massless quarks**
- **Consequence of chiral symmetry breaking in hadron physics**
 - appearance of the Nambu-Goldstone (NG) boson $m_{\pi} \sim 140 \text{ MeV}$
 - dynamical generation of hadron masses $M_p \sim 1 \text{ GeV} \sim 3M_q, \quad M_q \sim 300 \text{ MeV} \quad v.s. \quad 3-7 \text{ MeV}$
 - constraints on the NG-boson--hadron interaction low energy theorems <-- current algebra systematic low energy (m,p/4πf_π) expansion: ChPT

Chiral symmetry and its breaking

 $SU(3)_R \otimes SU(3)_L \to SU(3)_V$

Underlying QCD <==> observed hadron phenomena

s-wave low energy interaction

Low energy NG boson (Ad) + target hadron (T) scattering

$$\alpha \left[\begin{array}{c} \operatorname{Ad}(q) \\ T(p) \end{array} \right] = \frac{1}{f^2} \frac{p \cdot q}{2M_T} \langle \mathbf{F}_T \cdot \mathbf{F}_{\operatorname{Ad}} \rangle_{\alpha} + \mathcal{O}\left(\left(\frac{m}{M_T} \right)^2 \right) \right]$$

Projection onto s-wave: Weinberg-Tomozawa (WT) term

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

$$V_{ij} = -\frac{C_{ij}}{4f^2} (\omega_i + \omega_j) \quad \text{energy dependence (derivative coupling)}$$

$$\frac{decay \text{ constant of } \pi \text{ (gv=1)}}{decay \text{ constant of } \pi \text{ (gv=1)}}$$

$$C_{ij} = \sum_{\alpha} C_{\alpha,T} \begin{pmatrix} 8 & T \\ I_{M_i}, Y_{M_i} & I_{T_i}, Y_{T_i} \end{pmatrix} \begin{pmatrix} 8 & T \\ I_{M_j}, Y_{M_j} & I_{T_j}, Y_{T_j} \end{pmatrix} \begin{pmatrix} \alpha \\ I_{M_j}, Y_{M_j} & I_{T_j}, Y_{T_j} \end{pmatrix} (C_{\alpha,T} = \langle 2F_T \cdot F_{\text{Ad}} \rangle_{\alpha} = C_2(T) - C_2(\alpha) + 3$$

Group theoretical structure and flavor SU(3) symmetry determines the sign and the strength of the interaction Systematic improvement by ChPT

Scattering amplitude and unitarity

Unitarity of S-matrix: Optical theorem

Im $[T^{-1}(s)] = \frac{\rho(s)}{2}$ phase space of two-body state

General amplitude by dispersion relation

$$T^{-1}(\sqrt{s}) = \sum_{i} \frac{R_i}{\sqrt{s} - W_i} + \tilde{a}(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)}$$

R_i, W_i, a: to be determined by chiral interaction

Identify dispersion integral = loop function G, the rest = V⁻¹

$$T(\sqrt{s}) = \frac{1}{V^{-1}(\sqrt{s}) - G(\sqrt{s};a)}$$

Scattering amplitude

The function V is determined by the matching with ChPT $T^{(1)} = V^{(1)}, \quad T^{(2)} = V^{(2)}, \quad T^{(3)} = V^{(3)} - V^{(1)}GV^{(1)}, \quad \dots$

Amplitude T: consistent with chiral symmetry + unitarity

Chiral unitary approach

Meson-baryon scattering amplitude

- Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

- Amplitude <-- unitarity in coupled channels

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),

- E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
- J.A. Oller, U.G. Meissner, Phys. Lett. B500, 263 (2001),
- M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully, also in S=0 sector, meson-meson scattering sectors, systems including heavy quarks, ...

A simple model (1 parameter) v.s. experimental data

Total cross section of K-p scattering

Branching ratio

R_n

0.189

0.225

1420

1440

T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, PRC68, 018201 (2003); PTP 112, 73 (2004)

Good agreement with data above, at, and below KN threshold more quantitatively --> fine tuning, higher order terms,...

Pole structure of $\Lambda(1405)$

Pole structure in the complex energy plane

Resonance state ~ pole of the scattering amplitude

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003); <u>T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)</u>

What is the origin of this structure?

Pole structure of $\Lambda(1405)$

Origin of the two-pole structure

Leading order chiral interaction for $\overline{K}N-\pi\Sigma$ channel

T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

Very strong attraction in $\overline{K}N$ (higher energy) --> bound state Strong attraction in $\pi\Sigma$ (lower energy) --> resonance

Two poles also emerge with NLO contributions.

3-quark state: constituent quark model with I=1 5-quark state: constituent quark model with I=0 hadronic molecule: driven by hadronic interaction

All the components should mix with each other.

==> Theoretical investigation of the dominant structure

Dynamical state and CDD pole

Resonances in two-body scattering

- Knowledge of interaction (potential)
- Experimental data (cross section, phase shift,...)

(a) dynamical state: molecule, quasi-bound, ...

+ + ...

... in the present case : meson-baryon molecule (b) CDD pole: elementary, independent, ...

L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

... in the present case : 3-quark state or 5-quark state Resonances in chiral dynamics -> (a) dynamical?

CDD pole contribution in chiral unitary approach

Amplitude in chiral unitary model

- Known CDD pole contribution : those in V

The loop function G can contain the CDD pole contribution.

We propose "natural renormalization scheme" to exclude **CDD pole contribution in G** (subtraction constant).

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008).

Nc scaling in the model

- Nc : number of color in QCD Hadron effective theory / quark structure
- The Nc behavior is known from the general argument. <-- introducing Nc dependence in the model, analyze the resonance properties with respect to Nc

J.R. Pelaez, Phys. Rev. Lett. 92, 102001 (2004)

Nc scaling of (excited) qq...q baryon

 $M_R \sim \mathcal{O}(N_c), \quad \Gamma_R \sim \mathcal{O}(1)$

Result of chiral dynamics $\Gamma_R \neq \mathcal{O}(1)$

--> non-qqq structure of the $\Lambda(1405)$

<u>T. Hyodo, D. Jido, L. Roca, Phys. Rev. D77, 056010 (2008);</u> <u>L. Roca, T. Hyodo, D. Jido, Nucl. Phys. A809, 65-87 (2008).</u>

Electromagnetic properties

Attaching photon to resonance --> em properties : rms, form factors,...

Evaluated mean squared radii :

 $\sqrt{\langle x^2 \rangle} \sim 1.69~{\rm fm}$

Λ(1405) has spatially large size. c.f. nucleon: ~0.88 [fm]
--> support the meson-baryon (or 5-quark) picture

Computation at finite Q² --> form factor F(Q²), density distribution ρ(r)

<u>T. Sekihara, T. Hyodo, D. Jido, Phys. Lett. B669, 133-138 (2008);</u> <u>T. Sekihara, T. Hyodo, D. Jido, Phys. Rev. C 83, 055202 (2011).</u>

Dynamical or CDD? --> dominance of the MB component

Analysis of Nc scaling --> non-qqq sqructure

Electromagnetic properties --> large spatial size

The most plausible scenario is the hadronic molecule (how can we distinguish MB from 5q? --> later)

Summary 1

Summary 1

We study the $\overline{K}N$ - $\pi\Sigma$ system and $\Lambda(1405)$ based on chiral SU(3) symmetry and unitarity

- Chiral low energy theorem constrains the NG boson dynamics.
- Two poles for Λ(1405)
 <-- attractive KN and πΣ interactions</p>
- Structure of Λ(1405) <-- meson-baryon molecule

T. Hyodo, D. Jido, arXiv:1104.4474, to appear in Prog. Part. Nucl. Phys.

R

Experimental constraints for S=-1 MB scattering

K-p total cross sections (bubble chamber, large errors)

Precise data at **K**N threshold

- threshold branching ratios (old but accurate)
- K-p scattering length <-- SIDDHARTA exp.

πΣ mass spectra

- new data is becoming available (LEPS, CLAS, HADES,...)
- not normalized <-- to be predicted?</p>

πΣ threshold behavior (so far no data)

Constraints from KN data

R.J. Nowak et al., Nucl. Phys. B139, 61 (1978); D.N. Tovee et al., ibid, B33, 493 (1971)

- Shift and width of 1s level of kaonic hydrogen (SIDDHARTA)

 $\Delta E = -283 \pm 36 \pm 6 \text{ eV}, \quad \Gamma = 541 \pm 89 \pm 22 \text{ eV}$

Bazzi, et al., arXiv:1105.3090 [nucl-ex]

$$\Delta E - \frac{i}{2}\Gamma = -2\alpha^3 \mu_c^2 a_{K^- p} [1 - 2\alpha \mu_c (\ln \alpha - 1) a_{K^- p}]$$
 <-- scattering length

U.-G. Meissner, U. Raha, A. Rusetsky, Eur. Phys. J. C35, 349 (2004)

Construction of the realistic amplitude

Systematic chi2 fitting with SIDDHARTA data

Y. Ikeda, T. Hyodo, W. Weise, in preparation

Interaction kernel: NLO ChPT

Parameters: 6 cutoffs + 7 low energy constants Error analysis --> sensitivity on the K-p scattering length

$\pi\Sigma$ threshold behavior

Effect of the $\pi\Sigma$ threshold data for $\overline{K}N-\pi\Sigma$ amplitude

<u>Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, arXiv:1101.5190 [nucl-th], to appear in Prog. Theor. Phys.</u>

Extrapolations with a given $\overline{K}N(I=0)$ scattering length --> uncertainty in subthreshold

Model	A1	A2	B E-dep	B E-indep
parameter $(\pi \Sigma)$	$d_{\pi\Sigma} = -1.67$	$d_{\pi\Sigma} = -2.85$	$\Lambda_{\pi\Sigma} = 1005 \text{ MeV}$	$\Lambda_{\pi\Sigma} = 1465 \text{ MeV}$
parameter $(\bar{K}N)$	$d_{\bar{K}N} = -1.79$	$d_{\bar{K}N} = -2.05$	$\Lambda_{\bar{K}N} = 1188 \text{ MeV}$	$\Lambda_{\bar{K}N} = 1086 \text{ MeV}$
pole 1 [MeV]	1422 - 16i	1425 - 11i	1422 - 22i	1423 - 29i
pole 2 $[MeV]$	1375 - 72i (R)	1321 (B)	1349 - 54i (R)	1325 (V)
$a_{\pi\Sigma}$ [fm]	0.934	-2.30	1.44	5.50
$r_e \; [\mathrm{fm}]$	5.02	5.89	3.96	0.458
$a_{\bar{K}N}$ [fm] (input)	-1.70 + 0.68i	-1.70 + 0.68i	-1.70 + 0.68i	-1.70 + 0.68i

subthreshold behavior

<-- πΣ scattering length, effective range

3-quark state: constituent quark model with I=1 5-quark state: constituent quark model with I=0 hadronic molecule: driven by hadronic interaction

All the components should mix with each other.

==> Experimental investigation of the dominant structure

Hadron structure in heavy ion collisions

Hadron structure in experiments

Hadron production yield in heavy ion collisions

PRL 106, 212001 (2011)

PHYSICAL REVIEW LETTERS

week ending 27 MAY 2011

Identifying Multiquark Hadrons from Heavy Ion Collisions

Sungtae Cho,¹ Takenori Furumoto,^{2,3} Tetsuo Hyodo,⁴ Daisuke Jido,² Che Ming Ko,⁵ Su Houng Lee,^{1,2} Marina Nielsen,⁶ Akira Ohnishi,² Takayasu Sekihara,^{2,7} Shigehiro Yasui,⁸ and Koichi Yazaki^{2,3}

(ExHIC Collaboration)

statistical model

- thermal equilibrium
- well reproduce the (normal) hadron yield

coalescence model

- overlap of density matrix of constituents
- inner structure

Summary 2

Summary 2

Recent developments of study of Λ **(1405)**

- For more quantitative discussion,
 - New KN threshold data
 - & systematic chi2 analysis with NLO

Y. Ikeda, T. Hyodo, W. Weise, in preparation

- threshold information of πΣ channel

<u>Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, arXiv:1101.5190 [nucl-th], to appear in Prog. Theor. Phys.</u>

For verification of internal structure,
 production yield in heavy ion collisions
 <u>S. Cho, et al. [ExHIC col.], Phys. Rev. Lett. 106, 212001 (2011)</u>