Compositeness of bound states in chiral dynamics

Tetsuo Hyodo^a,

Tokyo Institute of Technology^a

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Introduction

Structure of hadron resonances

Example) baryon excited state

What are 3q state, 5q state, MB state, ...?

Clear definition of the structure is called for.

Contents

Contents

Introduction Definition of compositeness

Nonrelativistic quantum mechanics

S. Weinberg, Phys. Rev. 137, B672 (1965)

Yukawa field theory

D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

Application to chiral dynamics

Compositeness of bound states

<u>T. Hyodo, D. Jido, A. Hosaka, AIP Conf. Proc. 1322, 374 (2010);</u> <u>T. Hyodo, D. Jido, A. Hosaka, in preparation</u>

Summary

Weinberg's compositeness and deuteron

Z: probability of finding deuteron in a bare elementary state

S. Weinberg, Phys. Rev. 137, B672 (1965)

model independent relation for weakly bound state

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right]R + \mathcal{O}(m_\pi^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right]R + \mathcal{O}(m_\pi^{-1})$$

a_s: scattering length r_e: effective range <-- Experiments R: deuteron radius (binding energy)

 $a_s = +5.41 \text{ [fm]}, \quad r_e = +1.75 \text{ [fm]}, \quad R \equiv (2\mu B)^{-1/2} = 4.31 \text{ [fm]}$

 $\Rightarrow Z \lesssim 0.2$ --> deuteron is almost composite!

Derivation in nonrelativistic quantum mechanics

The formula is derived in two steps:

Step 1 (Sec. II): Z --> p-n-d coupling constant g

$$g^2 = \frac{2\sqrt{B(1-Z)}}{\pi\rho} \qquad \rho = 4\pi\sqrt{2\mu^3}$$

Step 2 (Sec. III): coupling constant g --> a_s, r_e

$$a_s = 2R\left[1 + \frac{2\sqrt{B}}{\pi\rho g^2}\right]$$
 $r_e = R\left[1 - \frac{2\sqrt{B}}{\pi\rho g^2}\right]$

Assumption: B is sufficiently smaller than the typical energy scale of the NN interaction

$$p \sim m_{\pi}, \quad B \ll m_{\pi}^2/2\mu \quad \Leftrightarrow \quad R^2 \gg m_{\pi}^2$$

--> uncertainty for order R quantity: $m_{\pi^{-1}}$

Definition of the compositeness 1-Z

Hamiltonian of two-body system: free + interaction V

 $\mathcal{H} = \mathcal{H}_0 + V$

Complete set for free Hamiltonian: bare IB₀ > + continuum

$$1 = |B_0\rangle\langle B_0| + \int d\boldsymbol{k} |\boldsymbol{k}\rangle\langle \boldsymbol{k}|$$

$$\mathcal{H}_0 | B_0 \rangle = E_0 | B_0 \rangle, \quad \mathcal{H}_0 | \mathbf{k} \rangle = E(\mathbf{k}) | \mathbf{k} \rangle$$

Physical bound state IB> : eigenstate of full Hamiltonian

$$(\mathcal{H}_0 + V) | B \rangle = -B | B \rangle$$

B: binding energy

Define Z as the overlap of B and B₀ : probability of finding the physical bound state in the bare state IB>

 $Z \equiv |\langle B_0 | B \rangle|^2$

1 - Z : Compositeness of the bound state

Model-independent but approximated method

With the Schrödinger equation, we obtain

$$-Z = \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle : B = \bigvee \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle : B = \bigvee \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle : B = \bigvee \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle : B = \bigvee \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle : B = \bigvee \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle : B = \bigvee \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle : B = \bigvee \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | B \rangle = \bigcup \\ \sum \int d\mathbf{k} \frac{|\langle \mathbf{k} |$$

 $= 4\pi\sqrt{2\mu^3} \int_0^\infty dE \frac{\sqrt{E}|G_W(E)|^2}{(E+B)^2} \qquad \langle \mathbf{k} | V | B \rangle \equiv G_W[E(\mathbf{k})] \quad \text{for s-wave}$

- **Approximation:** For small binding energy B<<1, the vertex $G_W(E)$ can be regarded as a constant: $G_W(E) \sim g_W$
- Then the integration can be done analytically, leading to

 $1 - Z = 2\pi^2 \sqrt{2\mu^3} \frac{g_W^2}{\sqrt{B}}$

Compositeness <-- coupling g and binding energy B

S. Weinberg, Phys. Rev. 137 B672 B678 (1965)

- Model-independent: no information of V
- Approximated: valid only for small B

Derivation in quantum field theory

Field theory with Yukawa coupling (ψ, ϕ, B_0)

D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

$$\mathcal{L}_{0} = \bar{\psi}(i\partial \!\!\!/ - M)\psi + \frac{1}{2}(\partial_{\mu}\phi\partial^{\mu}\phi - m^{2}\phi^{2}) + \bar{B}_{0}(i\partial \!\!\!/ - M_{B_{0}})B_{0}$$
$$\mathcal{L}_{\text{int}} = g_{0}\bar{\psi}\phi B_{0} + (\text{h.c.})$$

Physical bound state B at total energy W=MB

Free (full) propagators of B₀ (B) field (positive energy part)

$$\Delta_0(W) = \frac{1}{W - M_{B_0}}, \quad \Delta(W) = \frac{Z}{W - M_B}$$

Z: residue of the full propagator

Dyson equation: relation between full and free propagators

Derivation in quantum field theory

Solution of Dyson equation

$$\Rightarrow \Delta(W) = \frac{1}{W - M_{B_0} - g_0^2 G(W)}$$

G(W) diverges: renormalization parameter ``a"

$$\Lambda(W) = \frac{1}{W - g_0^2 G(W; a)}$$

Renormalization condition, pole at W=M_B : $M_B = g_0^2 G(M_B; a)$

The field renormalization constant: residue of the propagator

$$Z = \lim_{W \to M_B} \frac{W - M_B}{W - g_0^2 G(W; a)} = \frac{1}{1 - g_0^2 G'(M_B)}$$

Vertex renormalization $g^2 = g_0^2 Z$

Compositeness in Yukawa theory

 $1 - Z = -g^2 G'(M_B)$

Compositeness: summary

We have defined the compositeness of the bound state 1-Z.

Method 1: nonrelativistic quantum mechanics

 $1 - Z_{NR} = g^2 \frac{M |\lambda^{1/2} (M_B^2, M^2, m^2)|}{16\pi M_B^2 (M + m - M_B)} \quad \text{for } M_B \to M + m$

model independent, but valid only for weak binding

Method 2: field theory with Yukawa coupling

 $1 - Z = -g^2 G'(M_B)$

exact (no approximation), but Lagrangian dependent

Application?

For a bound state in model calculations or experiments, compositeness can be evaluated by the mass of the bound state `` M_B " and the coupling constant ``g".

Application to chiral dynamics

Chiral dynamics: overview

Description of S = -1, $\overline{K}N$ s-wave scattering: $\Lambda(1405)$ in I=0

- Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

- Amplitude <-- unitarity in coupled channels

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),

E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),

J.A. Oller, U.G. Meissner, Phys. Lett. B500, 263 (2001),

M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully in various hadron scatterings.

A review: T. Hyodo, D. Jido, to appear in Prog. Part. Nucl. Phys. (2011)

Application to chiral unitary approach

Natural renormalization condition

Single-channel scattering of meson m and baryon M.

$$T(W) = \frac{1}{1 - V(W)G(W;a)}V(W)$$

Interaction V: energy-independent and energy-dependent

$$V(W) = \begin{cases} V^{(\text{const})} = Cm & \text{constant interaction} \\ V^{(\text{WT})}(W) = C(W - M) & \text{WT interaction} \end{cases}$$

Bound state condition: pole at W=MB

 $1 - V(M_B)G(M_B; a) = 0$

Coupling constant: residue of the pole

$$g^{2} = \lim_{W \to M_{B}} (W - M_{B})T(W) = \begin{cases} -[G'(M_{B})]^{-1} \\ -\left[G'(M_{B}) + \frac{G(M_{B};a)}{M_{B} - M}\right]^{-1} \end{cases}$$

constant interaction WT interaction

We determine mass and coupling of the bound state

Application to chiral unitary approach

Compositeness of bound states

Compositeness in Yukawa theory

$$1 - Z = -g^2 G'(M_B) = \begin{cases} 1 & \text{constant interaction} \\ \left[1 + \frac{G(M_B; a)}{(M_B - M)G'(M_B)}\right]^{-1} & \text{WT interaction} \end{cases}$$

- constant interaction --> purely composite bound state
- WT interaction --> mixture of composite and elementary
- Purely composite bound state for WT interaction:
 - $G'(M_B) = -\infty$ or $G(M_B; a) = 0$

 $M_B = M + m$ or $C \to -\infty$

- 1) zero energy bound state
- 2) infinitely strong two-body attraction

Relation with natural renormalization scheme?

Application to chiral unitary approach

Consistency check of the natural renormalization scheme

Natural renormalization condition

<-- to exclude elementary contribution from the loop function

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

 $G(W = M; a_{\text{natural}}) = 0$

Summary

Summary 1

Compositeness of the bound state

Summary

Summary 2

Application to chiral unitary approach

Bound state in chiral dynamics

Energy independent interaction --> purely composite bound state

Energy-dependent chiral interaction --> mixture of composite and elementary

Natural scheme corresponds to Z ~ 0 --> composite particle is generated T. Hyodo, D. Jido, A. Hosaka, AIP Conf. Proc. 1322, 374 (2010);

T. Hyodo, D. Jido, A. Hosaka, in preparation