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Introduction

What are 3q state, 5q state, MB state, ...?

Clear definition of the structure is called for.
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Weinberg’s compositeness and deuteron
Definition of compositeness

N
N|deuteron� = or

<-- Experiments

Z: probability of finding deuteron in a bare elementary state

Z = 0 Z = 1

∉ NN model space
~ elementary particle

-->  deuteron is almost composite!
as = +5.41 [fm], re = +1.75 [fm], R ≡ (2µB)−1/2 = 4.31 [fm]

⇒ Z � 0.2

model independent relation for weakly bound state

as: scattering length
re: effective range
R: deuteron radius (binding energy)

as =
�
2(1− Z)
2− Z

�
R +O(m−1

π ), re =
�
−Z

1− Z

�
R +O(m−1

π )

S. Weinberg, Phys. Rev. 137, B672 (1965)
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Derivation in nonrelativistic quantum mechanics
The formula is derived in two steps:

Step 1 (Sec. II): Z --> p-n-d coupling constant g

ρ = 4π
�

2µ3g2 =
2
√

B(1− Z)
πρ

Step 2 (Sec. III): coupling constant g --> as, re

as = 2R

�
1 +

2
√

B

πρg2

�
re = R

�
1− 2

√
B

πρg2

�

Assumption: B is sufficiently smaller than the typical energy 
scale of the NN interaction 

--> uncertainty for order R quantity: mπ-1

p ∼ mπ, B � m2
π/2µ ⇔ R2 � m2

π

Definition of compositeness



Define Z as the overlap of B and B0 
: probability of finding the physical
bound state in the bare state |B>

1 - Z : Compositeness of the bound state

Z ≡ |�B0 | B �|2
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Definition of the compositeness 1-Z
Hamiltonian of two-body system: free + interaction V

H = H0 + V

Complete set for free Hamiltonian: bare |B0 > + continuum
1 = | B0 ��B0 | +

�
dk| k ��k |

H0|B0 � = E0|B0 �, H0|k � = E(k)|k �

Physical bound state |B> : eigenstate of full Hamiltonian

B: binding energy
(H0 + V )|B � = −B|B �

B V

full

en
er

gy
B0

free

Definition of compositeness
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Model-independent but approximated method
With the Schrödinger equation, we obtain

1
(E(p) + B)2

g(p)B = −3

p

�k |V | B � : B

�
k

V

= 4π
�

2µ3

� ∞

0
dE

√
E|GW (E)|2

(E + B)2
�k |V | B � ≡ GW [E(k)] for s-wave

Approximation: For small binding energy B<<1, the vertex 
GW(E) can be regarded as a constant: GW (E) ∼ gW

1 − Z =
�

dk
|�k |V | B �|2

[E(k) + B]2

- Model-independent: no information of V
- Approximated: valid only for small B

S. Weinberg, Phys. Rev. 137 B672-B678 (1965)
Compositeness <-- coupling g and binding energy B

Then the integration can be done analytically, leading to
1− Z = 2π2

�
2µ3

g2
W√
B

Definition of compositeness
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Field theory with Yukawa coupling (ψ,φ,B0)

1
(E(p) + B)2

g(p)B = −3

p

D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

Derivation in quantum field theory

L0 = ψ̄(i/∂ −M)ψ +
1

2
(∂µφ∂

µφ−m2φ2) + B̄0(i/∂ −MB0)B0

Lint = g0ψ̄φB0 + (h.c.)

Free (full) propagators of B0 (B) field (positive energy part)
∆0(W ) =

1

W −MB0

, ∆(W ) =
Z

W −MB

Physical bound state B at total energy W=MB

Z: residue of the full propagator

Definition of compositeness

∆(W ) = ∆0(W ) +∆0(W )g0G(W )g0∆(W )

Dyson equation: relation between full and free propagators

G(W ) = i

�
d4q

(2π)4
2M

(P − q)2 −M2 + i�

1

q2 −m2 + i�

= +
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Solution of Dyson equation

1
(E(p) + B)2

g(p)B = −3

p

Definition of compositeness

Derivation in quantum field theory

⇒ ∆(W ) =
1

W −MB0 − g20G(W )

Z = lim
W→MB

W −MB

W − g20G(W ; a)
=

1

1− g20G
�(MB)

The field renormalization constant: residue of the propagator

G(W) diverges: renormalization parameter ``a”

Renormalization condition, pole at W=MB : MB = g20G(MB; a)

∆(W ) =
1

W − g20G(W ; a)

Vertex renormalization g2 = g20Z

1− Z = −g2G�(MB)

Compositeness in Yukawa theory
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1
(E(p) + B)2

g(p)B = −3

p

Definition of compositeness

Compositeness: summary
We have defined the compositeness of the bound state 1-Z.

Application?
For a bound state in model calculations or experiments, 
compositeness can be evaluated by the mass of the bound 
state ``MB” and the coupling constant ``g”.

Method 1: nonrelativistic quantum mechanics

1− ZNR = g2
M |λ1/2(M2

B,M
2,m2)|

16πM2
B(M +m−MB)

for MB → M +m

model independent, but valid only for weak binding

1− Z = −g2G�(MB)

Method 2: field theory with Yukawa coupling

exact (no approximation), but Lagrangian dependent 
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Description of S = -1, KN s-wave scattering: Λ(1405) in I=0
Chiral dynamics: overview

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Interaction <-- chiral symmetry

- Amplitude <-- unitarity in coupled channels

Application to chiral dynamics

T

= +
T

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), .... many others

It works successfully in various hadron scatterings.

chiral cutoff
T =

1
1− V G

V

A review: T. Hyodo, D. Jido, to appear in Prog. Part. Nucl. Phys. (2011)
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Natural renormalization condition
Single-channel scattering of meson m and baryon M.

Application to chiral unitary approach

T (W ) =
1

1− V (W )G(W ; a)
V (W )

Interaction V: energy-independent and energy-dependent

V (W ) =

�
V (const) = Cm constant interaction

V (WT)(W ) = C(W −M) WT interaction

Bound state condition: pole at W=MB

1− V (MB)G(MB ; a) = 0

Coupling constant: residue of the pole

g2 = lim
W→MB

(W −MB)T (W ) =






−[G�(MB)]−1 constant interaction

−
�
G�(MB) +

G(MB ; a)

MB −M

�−1

WT interaction

We determine mass and coupling of the bound state
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Compositeness of bound states
Compositeness in Yukawa theory

Application to chiral unitary approach

- constant interaction --> purely composite bound state
- WT interaction --> mixture of composite and elementary

- Purely composite bound state for WT interaction:
G�(MB) = −∞ or G(MB; a) = 0

MB = M +m or C → −∞

1) zero energy bound state 
2) infinitely strong two-body attraction

1− Z = −g2G�(MB) =






1 constant interaction�
1 +

G(MB; a)

(MB −M)G�(MB)

�−1

WT interaction

Relation with natural renormalization scheme?
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Natural renormalization condition
<-- to exclude elementary contribution from the loop function

14

Consistency check of the natural renormalization scheme

natural scheme --> Z ~ 0                 large deviation --> Z ~ 1

1) a = anatural, vary B                   2) B = 5 MeV, vary a

Application to chiral unitary approach
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 Exact
 small B

a = anatural

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

G(W = M ; anatural) = 0
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Summary 1

Field renormalization                          
constant Z: compositeness

Model independent formula

Exact formula in field theory

Both agrees at small binding

Compositeness of the bound state

Z = 0 Z = 1

Summary

S. Weinberg, Phys. Rev. 137 B672 (1965)

D. Lurie and A. J. Macfarlane, Phys. Rev. 136, B816 (1963)

1− ZNR = g2
M |λ1/2(M2

B,M
2,m2)|

16πM2
B(M +m−MB)

for MB → M +m

1− Z = −g2G�(MB)
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Bound state in chiral dynamics

Natural scheme corresponds to Z ~ 0
--> composite particle is generated

Summary

Application to chiral unitary approach
Summary 2

Energy independent interaction
--> purely composite bound state

T. Hyodo, D. Jido, A. Hosaka, AIP Conf. Proc. 1322, 374 (2010); 
T. Hyodo, D. Jido, A. Hosaka, in preparation

Energy-dependent chiral interaction
--> mixture of composite and elementary


