Compositeness of baryon resonances in chiral dynamics

Tetsuo Hyodo^a,

Daisuke Jido^b, and Atsushi Hosaka^c

Tokyo Institute of TechnologyaYITP, KyotobRCNP, Osakacsupported by Global Center of Excellence Program2011, Jan. 27th

Introduction

Structure of hadron resonances

Example) baryon excited state

Excited states = resonances in hadron scattering

Exotic structure near threshold? c.f. ¹²C Hoyle state

Study of the internal structure

How to investigate the internal structure?

- Comparison of model calculation with experiments (mass, width, decay properties, etc.)
 - : Any model can describe data with appropriate corrections
 - : Model-dependent result

- Extrapolation to the ideal world, change the environment (large Nc, symmetry restoration, etc.)
 - : Structure may change during the extrapolation
 - : Qualitative discussion only

--> model-independent and quantitative study?

Contents

Introduction **Chiral SU(3) dynamics Origin of resonances in chiral dynamics** Natural renormalization condition T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008) **Compositeness of bound states** Field renormalization constant Z T. Hyodo, D. Jido, A. Hosaka, arXiv:1009.5754 [nucl-th]; in preparation Summary

s-wave low energy interaction

Low energy NG boson (Ad) + target hadron (T) scattering

$$\alpha \begin{bmatrix} \operatorname{Ad}(q) \\ T(p) \end{bmatrix} = \frac{1}{f^2} \frac{p \cdot q}{2M_T} \langle \mathbf{F}_T \cdot \mathbf{F}_{\operatorname{Ad}} \rangle_{\alpha} + \mathcal{O}\left(\left(\frac{m}{M_T}\right)^2\right)$$

Projection onto s-wave: Weinberg-Tomozawa (WT) term

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

$$V_{ij} = -\frac{C_{ij}}{4f_{-}^{2}} \underbrace{(\omega_{i} + \omega_{j})}_{\text{decay constant of } \pi \text{ (gv=1)}}$$

$$\frac{\text{decay constant of } \pi \text{ (gv=1)}}{I_{M_{i}}, Y_{M_{i}} \quad I_{T_{i}}, Y_{T_{i}}} \begin{bmatrix} \alpha \\ I, Y \end{bmatrix} \begin{pmatrix} 8 & T \\ I_{M_{j}}, Y_{M_{j}} \quad I_{T_{j}}, Y_{T_{j}} \end{bmatrix} \begin{bmatrix} \alpha \\ I, Y \end{bmatrix}$$

$$C_{\alpha,T} = \langle 2F_{T} \cdot F_{\text{Ad}} \rangle_{\alpha} = C_{2}(T) - C_{2}(\alpha) + 3$$

Group theoretical structure and flavor SU(3) symmetry determines the sign and the strength of the interaction Low energy theorem: leading order term in ChPT

Scattering amplitude and unitarity

Unitarity of S-matrix: Optical theorem

Im $[T^{-1}(s)] = \frac{\rho(s)}{2}$ phase space of two-body state

General amplitude by dispersion relation

$$T^{-1}(\sqrt{s}) = \sum_{i} \frac{R_i}{\sqrt{s} - W_i} + \tilde{a}(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)}$$

R_i, W_i, a: to be determined by chiral interaction

Identify dispersion integral = loop function G, the rest = V⁻¹

$$T(\sqrt{s}) = \frac{1}{V^{-1}(\sqrt{s}) - G(\sqrt{s};a)}$$

Scattering amplitude

V? chiral expansion of T, (conceptual) matching with ChPT $T^{(1)} = V^{(1)}, T^{(2)} = V^{(2)}, T^{(3)} = V^{(3)} - V^{(1)}GV^{(1)}, \dots$

Amplitude T: consistent with chiral symmetry + unitarity

Chiral unitary approach

Meson-baryon scattering amplitude

- Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

- Amplitude <-- unitarity in coupled channels

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),

E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),

J.A. Oller, U.G. Meissner, Phys. Lett. B500, 263 (2001),

M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully, also in S=0 sector, meson-meson scattering sectors, systems including heavy quarks, ...

Hadron excited states

Resonances are "dynamically generated"

light	$J^P = 1/2^-$	$\Lambda(1405)$ $\Lambda(1670)$	$\Sigma(1670)$
baryon		$N(1535) \ \Xi(1620)$	$\Xi(1690)$
	$J^P = 3/2^-$	$\Lambda(1520)$ $\Xi(1820)$	$\Sigma(1670)$
heavy		$\Lambda_c(2880) \ \Lambda_c(2593)$	$D_s(2317)$
light	$J^P = 1^+$	$b_1(1235) \ h_1(1170)$	$h_1(1380) \ a_1(1260)$
meson		$f_1(1285) \ K_1(1270)$	$K_1(1440)$
	$J^P = 0^+$	$\sigma(600)$ $\kappa(900)$	$f_0(980) a_0(980)$

No states with exotic quantum number

- No attraction in exotic channel

<u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006);</u> Phys. Rev. D75, 034002 (2007)

--> Structure of these resonances?

Classification of resonances

- **Resonances in two-body scattering**
 - Knowledge of interaction (potential)
 - Experimental data (cross section, ...)

Dynamical state: composite particle, two-body molecule, ...

+ ...

+

CDD pole: elementary particle, preformed state, ...

L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

~ pole term in V

e.g.) J/Ψ in e⁺e⁻, ...

Origin of resonances in chiral dynamics (Known) CDD poles in chiral unitary approach Explicit resonance field in V (interaction): Δ(1232), Σ(1385),...

U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000) D. Jido, E. Oset, A. Ramos, Phys. Rev. C66, 055203 (2002)

Contracted resonance propagator in higher order V

G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B321, 311 (1989) V. Bernard, N. Kaiser, U.G. Meissner, Nucl. Phys. A615, 483 (1997)

J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D59, 074001 (1999)

Is that all? subtraction constant?

CDD pole in subtraction constant?

Phenomenological (standard) scheme --> V is given, "a" is determined by data

"a" represents the effect which is not included in V. CDD pole contribution in G?

Natural renormalization scheme --> fix "a" first, then determine V

to exclude CDD pole contribution from G, based on theoretical argument.

Natural renormalization condition

Conditions for the subtraction constant

1) Loop function G should be negative below threshold. <--> no states below threshold

$$G(\sqrt{s}) \sim \sum_{n} \frac{|\langle \dots \rangle|^2}{\sqrt{s} - E_n} \le 0 \text{ for } \sqrt{s} \le E_0 \quad \text{--> upper limit for "a"}$$

2) T matches with the chiral interaction V at low energy.

 $T(\mu_m; a) = V(\mu_m)$ for $M_T \le \mu_m \le M_T + m$ --> lower limit for "a"

- To satisfy 1) and 2), "a" is uniquely determined as
 - $G(\sqrt{s} = M_T) = 0 \quad \Leftrightarrow \quad T(M_T) = V(M_T)$
 - subtraction constant: $a_{natural}$

We regard this condition as the exclusion of the CDD pole contribution from G.

Pole in the effective interaction: single channel

Leading order V: Weinberg-Tomozawa term

$$V_{\rm WT} = -\frac{C}{2f^2}(\sqrt{s} - M_T) \qquad G(\sqrt{s}; a) = \frac{2M_T}{(4\pi)^2} \Big\{ a + \dots \Big\}$$

$$T^{-1} = V_{\text{WT}}^{-1} - G(a_{\text{pheno}}) = V_{\text{natural}}^{-1} - G(a_{\text{natural}})$$
† ChPT † data fit † given

Effective interaction in natural scheme

$$V_{\text{natural}} = -\frac{C}{2f^2}(\sqrt{s} - M_T) + \frac{C}{2f^2}\frac{(\sqrt{s} - M_T)^2}{\sqrt{s} - M_{\text{eff}}}$$
 pole!
a seed of resonance?

$$M_{\text{eff}} = M_T - \frac{16\pi^2 f^2}{CM_T \Delta a}, \quad \Delta a = a_{\text{pheno}} - a_{\text{natural}}$$

There is always a pole for $a_{\text{pheno}} \neq a_{\text{natural}}$

- small deviation <=> pole at irrelevant energy scale
- large deviation <=> pole at relevant energy scale

Pole in the effective interaction

Pole in the effective interaction (M_{eff}) : pure CDD pole

 $T^{-1} = V_{\rm WT}^{-1} - G(a_{\rm pheno}) = V_{\rm natural}^{-1} - G(a_{\rm natural})$

 For $\Lambda(1405)$: $z_{eff}^{\Lambda^*} \sim 7.9 \text{ GeV}$ irrelevant!

 For $\Lambda(1535)$: $z_{eff}^{N^*} = 1693 \pm 37i \text{ MeV}$ relevant?

Difference of interactions $\Delta V \equiv V_{\text{natural}} - V_{\text{WT}}$

==> Important CDD pole contribution in N(1535) Next question: quantitative measure for compositeness?

Structure of the deuteron

Deuteron: elementary or NN bound state?

S. Weinberg, Phys. Rev. 137 B672-B678 (1965)

$$|\text{deuteron}\rangle = \bigvee_{Z=0}^{N} \text{ or } \bigvee_{Z=1}^{Q} \text{ KN model space} \leftarrow \text{elementary particle}$$

model independent result for a weakly bound state:

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right]R + \mathcal{O}(m_\pi^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right]R + \mathcal{O}(m_\pi^{-1})$$

a_s: scattering length r_e: effective range <-- Experiments R: deuteron radius (binding energy)

 $a_s = +5.41 \text{ [fm]}, \quad r_e = +1.75 \text{ [fm]}, \quad R \equiv (2\mu B)^{-1/2} = 4.31 \text{ [fm]}$

 $\Rightarrow Z \lesssim 0.2$ --> deuteron is almost composite!

Definition of the compositeness 1-Z

Hamiltonian of two-body system: free + interaction V

 $\mathcal{H} = \mathcal{H}_0 + V$

Complete set for free Hamiltonian: bare IB₀ > + continuum

$$1 = |B_0\rangle\langle B_0| + \int d\boldsymbol{k} |\boldsymbol{k}\rangle\langle \boldsymbol{k}|$$

$$\mathcal{H}_0|B_0\rangle = E_0|B_0\rangle, \quad \mathcal{H}_0|\mathbf{k}\rangle = E(\mathbf{k})|\mathbf{k}\rangle$$

Physical bound state IB> : eigenstate of full Hamiltonian

 $(\mathcal{H}_0 + V) | B \rangle = -B | B \rangle$

B: binding energy

Define Z as the overlap of B and B₀ : probability of finding the physical bound state in the bare state IB>

 $Z \equiv |\langle B_0 | B \rangle|^2$

They are assumed

to be elementary

Z = 0

1 - Z : Compositeness of the bound state

Z = 1

Model-independent but approximated method

With the Schrödinger equation, we obtain

$$1 - Z = \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2} \left\langle \mathbf{k} | V | B \rangle : B = V \left\langle \mathbf{k} | V | B \rangle \right\rangle k$$

 $= 4\pi\sqrt{2\mu^3} \int_0^\infty dE \frac{\sqrt{E}|G_W(E)|^2}{(E+B)^2} \qquad \langle \mathbf{k} | V | B \rangle \equiv G_W[E(\mathbf{k})] \quad \text{for s-wave}$

- **Approximation:** For small binding energy B<<1, the vertex $G_W(E)$ can be regarded as a constant: $G_W(E) \sim g_W$
- Then the integration can be done analytically, leading to

 $1 - Z = 2\pi^2 \sqrt{2\mu^3} \frac{g_W^2}{\sqrt{B}}$

Compositeness <-- coupling g and binding energy B

S. Weinberg, Phys. Rev. 137 B672 B678 (1965)

- Model-independent: no information of V
- Approximated: valid only for small B

Exact but model-dependent method

Formal solution of the Lippmann-Schwinger equation

$$T(E) = V + V \frac{1}{E - \mathcal{H}} V$$

Insert complete set for full Hamiltonian (Low's equation)

$$1 = |B\rangle\langle B| + \int d\mathbf{k} |\mathbf{k}, \text{in}\rangle\langle \mathbf{k}, \text{in}| \qquad V|\mathbf{k}, \text{in}\rangle = T|\mathbf{k}\rangle$$

$$t(E) = v(E) + \frac{|G_W(E)|^2}{E+B} + 4\pi\sqrt{2\mu^3} \int_0^\infty dE' \frac{\sqrt{E'}|t(E)|^2}{E-E'+i\epsilon} \qquad \text{(for s-wave)}$$

--> integrand of the formula for 1-Z !

Exact expression of the compositeness 1-Z

$$- Z = 4\pi\sqrt{2\mu^3} \int_0^\infty dE \frac{\sqrt{E}|G_W(E)|^2}{(E+B)^2}$$
$$= 4\pi\sqrt{2\mu^3} \int_0^\infty dE \frac{\sqrt{E}}{E+B} \left[t(E) - v(E) - 4\pi\sqrt{2\mu^3} \int_0^\infty dE' \frac{\sqrt{E'}|t(E')|^2}{E-E'+i\epsilon} \right]$$

T. Hyodo, D. Jido, A. Hosaka, arXiv:1009.5754 [nucl-th]; in preparation

Short summary

We have defined the compositeness of the bound state 1-Z.

$$1 - Z = 1 - |\langle B_0 | B \rangle|^2 = \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | B \rangle|^2}{[E(\mathbf{k}) + B]^2}$$

Method 1: model independent but approximated

$$1 - Z = 2\pi^2 \sqrt{2\mu^3} \frac{g_W^2}{\sqrt{B}}$$

Method 2: exact (valid for any B) but model dependent

$$1 - Z = 4\pi\sqrt{2\mu^3} \int_0^\infty dE \frac{\sqrt{E}}{E+B} \left[t(E) - v(E) - 4\pi\sqrt{2\mu^3} \int_0^\infty dE' \frac{\sqrt{E'}|t(E')|^2}{E-E'+i\epsilon} \right]$$

- Model dependent: interaction V has to be specified (c.f. potential + wave function --> observable)
- Imaginary part vanishes by the optical theorem
- RHS can be calculated by model (chiral unitary approach)
- Completeness of the full Hamiltonian <--> energy dep.?

Single-channel chiral unitary approach

To apply the argument on Z, we study the bound state with mass M_B in the single channel chiral unitary approach.

- particle masses: M and m, bound state MB
- Weinberg-Tomozawa interaction
- parameters: coupling strength C/2f², subtraction "a"

Natural renormalization scheme formulae

$$T^{-1} = V_{\rm WT}^{-1} - G(a_{\rm pheno}) = V_{\rm natural}^{-1} - G(a_{\rm natural})$$

$$V_{\text{natural}} = -\frac{C}{2f^2}(\sqrt{s} - M_T) + \frac{C}{2f^2}\frac{(\sqrt{s} - M_T)^2}{\sqrt{s} - M_{\text{eff}}}$$

$$M_{\text{eff}} = M_T - \frac{16\pi^2 f^2}{CM_T \Delta a}, \quad \Delta a = a_{\text{pheno}} - a_{\text{natural}}$$

If a_{natural} corresponds to the purely composite case, then M_{eff} for a_{pheno} corresponds to the bare mass M_{B0} <-- to be checked in the followings

Single-channel chiral unitary approach

We use the model-independent formula

$$1 - Z = 2\pi^2 \sqrt{2\mu^3} \frac{g_W^2}{\sqrt{B}}$$

We need to calculate the coupling g and binding energy B

- condition for the bound state: $M_B = M + m - B$

$$1 - \frac{C}{2f^2}(M_B - M)G(M_B; a) = 0$$

--> parameter of the system: (M_B , a) or (M_B , $M_{eff} = M_{B0}$)

- coupling constant: residue of the pole at MB

 $[g(M_B;a)]^2 = \lim_{W \to M_B} (W - M_B)T(W) = -\frac{M_B - M}{G(M_B;a) + (M_B - M)G'(M_B)}$

- normalization of the amplitude (a kinematical factor)

$$1 - Z = \frac{M|\bar{q}(M_B)|}{8\pi M_B(M + m - M_B)} [g(M_B; a)]^2 \quad \text{(for small B = M + m - M_B)}$$

Numerical analysis

Compositeness of the bound state in chiral unitary approach

1) B dependence with $M_{B0} \rightarrow \infty$ (a = a_{natural})

- M_{B0} -> ∞ : Z ~ 0

- Z = 0 at B = 0

- large B behavior is not justified by the approximation

Numerical analysis

Compositeness of the bound state in chiral unitary approach

2) M_{B0} dependence with B = 10 MeV

- M_{B0} -> M_B : Z -> 1
- Mass difference of M_{B0} and M_B : self-energy of bare state --> large if the composite component is large

Summary

Summary

Structure of resonances/bound states

Natural renormalization scheme exclude CDD pole contribution from the loop function to generate purely molecule resonance

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Field renormalization constant Z: quantitative measure of compositeness

Natural scheme corresponds to Z ~ 0 --> generated bound state: composite T. Hyodo, D. Jido, A. Hosaka, arXiv:1009.5754 [nucl-th]