Compositeness of bound states and

resonances in chiral dynamics

Tetsuo Hyodo ${ }^{\text {a }}$,

Tokyo Institute of Technologya

Introduction

Structure of hadron resonances

Example) baryon excited state

multiquark

c.f.) A. Ohnishi's Talk (Fri. 10, pm); ExHIC col., arXiv:1011.0852 [nucl-th]

Excited states

= resonances in hadron scattering
Exotic structure near threshold?
c.f. ${ }^{12} \mathrm{C}$ Hoyle state

Study of the internal structure

How to investigate the internal structure?

- Comparison of model calculation with experiments (mass, width, decay properties, etc.)
: Any model can describe data with appropriate corrections
: Model-dependent result
- Extrapolation to the ideal world, change the environment (large Nc, symmetry restoration, etc.)
: Structure may change during the extrapolation
: Qualitative discussion only
--> model-independent and quantitative study?
c.f.) T. Sekihara's Talk (Fri. 10, am); T. Sekihara, T. Hyodo, D. Jido, in preparation

Origin of resonances in chiral dynamics

- Natural renormalization condition

Chiral SU(3) dynamics for baryon resonances

 835

Compositeness of bound states

- Field renormalization constant Z

Summary
 mary

ty

T. Hyodo, D. Jido, A. Hosaka, arXiv:1009.5754 [nucl-th]; in preparation

\qquad
\qquad
\qquad

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)
\qquad

Compositeness of bound states

Chiral SU(3) dynamics for baryon resonances

s-wave low energy interaction

Low energy NG boson (Ad) + target hadron (T) scattering

Projection onto s-wave: Weinberg-Tomozawa (WT) term
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
$V_{i j}=-\frac{C_{i j}}{4 \cdot f_{i}}\left(\omega_{i}+\omega_{j}\right)!$ energy dependence (derivative coupling)
decay constant of $\Pi \quad\left(g_{v}=1\right)$

$$
\begin{aligned}
& C_{i j}=\sum_{\alpha} C_{\alpha, T}\left(\begin{array}{cc|c}
8 & T & \alpha \\
I_{M_{i}}, Y_{M_{i}} & I_{T_{i}}, Y_{T_{i}} & I_{, Y}
\end{array}\right)\left(\begin{array}{cc|c}
8 & T & \alpha \\
I_{M_{j}}, Y_{M_{j}} & I_{T_{j}}, Y_{T_{j}} & \\
I, Y
\end{array}\right) \\
& C_{\alpha, T}=\left\langle 2 \boldsymbol{F}_{T} \cdot \boldsymbol{F}_{\mathrm{Ad}}\right\rangle_{\alpha}=C_{2}(T)-C_{2}(\alpha)+3
\end{aligned}
$$

Group theoretical structure and flavor $\mathrm{SU}(3)$ symmetry determines the sign and the strength of the interaction
Low energy theorem: leading order term in ChPT

Chiral SU(3) dynamics for baryon resonances

Scattering amplitude and unitarity

Unitarity of S-matrix: Optical theorem

$$
\operatorname{Im}\left[T^{-1}(s)\right]=\frac{!\rho(s)}{2} \text { phase space of two-body state }
$$

General amplitude by dispersion relation

$$
T^{-1}(\sqrt{s})=\sum_{i} \frac{R_{i}}{\sqrt{s}-W_{i}}+\tilde{a}\left(s_{0}\right) i^{1} \frac{s-s_{0}}{2 \pi} \int_{s^{+}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}
$$

$\mathbf{R}_{\mathrm{i}}, \mathrm{W}_{\mathrm{i}}$, a: to be determined by chiral interaction
Identify dispersion integral $=$ loop function \mathbf{G}, the rest $=\mathrm{V}^{-1}$

$$
T(\sqrt{s})=\frac{1}{V^{-1}(\sqrt{s})-G(\sqrt{s} ; a)}
$$

Scattering amplitude
V? chiral expansion of \mathbf{T}, (conceptual) matching with ChPT $T^{(1)}=V^{(1)}, \quad T^{(2)}=V^{(2)}, \quad T^{(3)}=V^{(3)}-V^{(1)} G V^{(1)}, \quad \cdots$

Amplitude T: consistent with chiral symmetry + unitarity

Chiral SU(3) dynamics for baryon resonances

Chiral unitary approach

Meson-baryon scattering amplitude

- Interaction <-- chiral symmetry
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Amplitude <-- unitarity in coupled channels
R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

$$
T=\frac{1}{1-V G} V \rightarrow \underset{\text { chiral }}{\rightarrow} \rightarrow \underset{\substack{ \\\text { cutoff }}}{\substack{\rightarrow}}
$$

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully, also in $\mathrm{S}=0$ sector, meson-meson scattering sectors, systems including heavy quarks, ...

Chiral SU(3) dynamics for baryon resonances

Hadron excited states

Resonances are "dynamically generated"

light baryon	$\begin{aligned} & J^{P}=1 / 2^{-} \\ & J^{P}=3 / 2^{-} \end{aligned}$	$\begin{aligned} & \hline \Lambda(1405) \\ & N(1535) \\ & \Lambda(1520) \end{aligned}$	$\begin{aligned} & \hline \Lambda(1670) \\ & \Xi(1620) \\ & \Xi(1820) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \Sigma(1670) \\ \Xi(1690) \\ \Sigma(1670) \end{gathered}$	
heavy		$\Lambda_{c}(288)$	$\Lambda_{c}(2593)$		$D_{s}(2317)$
light meson	$J^{P}=1^{+}$	$b_{1}(1235)$	$h_{1}(1170)$	$h_{1}(1380)$	$a_{1}(1260)$
		$f_{1}(1285)$	$K_{1}(1270)$	$K_{1}(1440)$	
	$J^{-P^{-----}}=0^{+}$	$\bar{\sigma}(600)$	$\kappa(900)$	$\overline{f_{0}}(\underline{9} \overline{8} 0)$	$a_{0}(\overline{9} \overline{8} \overline{0})$

No states with exotic quantum number

- No attraction in exotic channel
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006);

Phys. Rev. D75, 034002 (2007)
--> Structure of these resonances?

Origin of resonances in chiral dynamics

Classification of resonances

Resonances in two-body scattering

- Dynamical state: composite particle, two-body molecule, ...

e.g.) Deuteron in NN, positronium in $\mathrm{e}^{+} \mathrm{e}^{-}$, ...
- CDD pole: elementary particle, preformed state, ...
L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

~ pole term in V
e.g.) J / Ψ in $\mathrm{e}^{+} \mathrm{e}^{-}$, ...

Asymptotic fields: hadrons (no quark structure). Hadrons are "elementary" in this study.

Origin of resonances in chiral dynamics

CDD pole in subtraction constant?

Phenomenological (standard) scheme
$-->V$ is given, "a" is determined by data

$$
\begin{aligned}
T=\frac{1}{\left(V^{(1)}\right)^{-1}-G(a)} & \text { leading order } \\
T=\frac{1}{\left(V^{(1)}+V^{(2)}\right)^{-1}-G\left(a^{\prime}\right)} & \text { next to leading order } \\
\uparrow \text { pole } & \vdots \ddots
\end{aligned}
$$

" a " represents the effect which is not included in V . CDD pole contribution in G ?

Natural renormalization scheme --> fix "a" first, then determine V to exclude CDD pole contribution from G, based on theoretical argument.

Natural renormalization condition

Conditions for the subtraction constant

1) Loop function G should be negative below threshold. <--> no states below threshold
$G(\sqrt{s}) \sim \sum_{n} \frac{|\langle\ldots\rangle|^{2}}{\sqrt{s}-E_{n}} \leq 0$ for $\sqrt{s} \leq E_{0} \quad-->$ upper limit for "a"
2) \mathbf{T} matches with the chiral interaction \mathbf{V} at low energy.

$$
T\left(\mu_{m} ; a\right)=V\left(\mu_{m}\right) \text { for } \quad M_{T} \leq \mu_{m} \leq M_{T}+m \text {--> lower limit for "a" }
$$

To satisfy 1) and 2), "a" is uniquely determined as

$$
G\left(\sqrt{s}=M_{T}\right)=0 \quad \Leftrightarrow \quad T\left(M_{T}\right)=V\left(M_{T}\right)
$$

- subtraction constant: $a_{\text {natural }}$

We regard this condition as the exclusion of the CDD pole contribution from G.

Origin of resonances in chiral dynamics

Pole in the effective interaction: single channel

Leading order V: Weinberg-Tomozawa term

$$
\begin{aligned}
V_{\mathrm{WT}}= & -\frac{C}{2 f^{2}}\left(\sqrt{s}-M_{T}\right) \quad G(\sqrt{s} ; a)=\frac{2 M_{T}}{(4 \pi)^{2}}\{a+\ldots \\
T^{-1}= & V_{\mathrm{WT}}^{-1}-G\left(a_{\text {phenom }}\right)=V_{\text {natural }}^{-1}-G\left(a_{\text {natural }}\right) \\
& \uparrow \text { ChIT } \uparrow \text { data fit } \quad \uparrow \text { given }
\end{aligned}
$$

Effective interaction in natural scheme

$$
\begin{gathered}
V_{\text {natural }}=-\frac{C}{2 f^{2}}\left(\sqrt{s}-M_{T}\right)+\frac{C}{2 f^{2}} \frac{\left(\sqrt{s}-M_{T}\right)^{2}}{\sqrt{s}-M_{\text {eff }}} \\
M_{\text {eff }}=M_{T}-\frac{16 \pi^{2} f^{2}}{C M_{T} \Delta a}, \quad \Delta a=a_{\text {pheno }}-a_{\text {natural }} \\
\text { a seed of resonance? }
\end{gathered}
$$

There is always a pole for $a_{\text {pheno }} \neq a_{\text {natural }}$

- small deviation <=> pole at irrelevant energy scale
- large deviation <=> pole at relevant energy scale

Pole in the effective interaction

Pole in the effective interaction ($M_{\text {eff }}$) : pure CDD pole

$$
T^{-1}=V_{\mathrm{WT}}^{-1}-G\left(a_{\text {pheno }}\right)=V_{\text {natural }}^{-1}-G\left(a_{\text {natural }}\right)
$$

For $\boldsymbol{\Lambda}(1405): z_{\mathrm{eff}}^{\Lambda^{*}} \sim 7.9 \mathrm{GeV} \quad$ irrelevant!
For $\mathbf{N}(1535): z_{\mathrm{eff}}^{N^{*}}=1693 \pm 37 i \mathrm{MeV}$ relevant?
Difference of interactions $\Delta V \equiv V_{\text {natural }}-V_{\mathrm{WT}}$

$==>$ Important CDD pole contribution in N(1535)
Next question: quantitative measure for compositeness?

Compositeness and field renormalization constant

Spectra of free Hamiltonian and full Hamiltonian

$$
\mathcal{H}=\mathcal{H}_{0}+V
$$

$\mid B_{0}>$: bare state (CDD pole)
IB> : physical state.

Field renormalization constant Z

: overlap of bare state $\left|B_{0}\right\rangle$ and physical state $|B\rangle$

$$
Z \equiv\left|\left\langle B_{0} \mid B\right\rangle\right|^{2}
$$

1-Z : Compositeness of the bound state

Expression for the compositeness

With the Schrödinger equation, we obtain

$$
\begin{aligned}
1-Z & =\int d \boldsymbol{k} \frac{|\langle\boldsymbol{k}| V| B\rangle\left.\right|^{2}}{[E(\boldsymbol{k})+B]^{2}} \quad\langle\boldsymbol{k}| V|B\rangle: \quad B \Longrightarrow \boldsymbol{k} \\
& =4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E \frac{\sqrt{E}}{E+B}\left[t(E)-v(E)-4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E^{\prime} \frac{\sqrt{E^{\prime}}\left|t\left(E^{\prime}\right)\right|^{2}}{E-E^{\prime}+i \epsilon}\right]
\end{aligned}
$$

T. Hyodo, D. Jido, A. Hosaka, arXiv: 1009.5754 [nucl-th]

Approximation: For small binding energy $\mathrm{B} \ll 1$, the vertex $<k \mid$ VIB $>$ can be regarded as a constant: $\langle\boldsymbol{k}| V|B\rangle \sim g_{W}$

Then the integration can be done analytically, leading to

$$
1-Z=2 \pi^{2} \sqrt{2 \mu^{3}} \frac{g_{V}^{2}}{\sqrt{B}}
$$

Compositeness <-- coupling g and binding energy B
S. Weinberg, Phys. Rev. 137 B672-B678 (1965)

- Model-independent: no information of V

Compositeness of bound states

Single-channel chiral unitary approach

To apply the argument on Z, we study the bound state with mass M_{B} in the single channel chiral unitary approach.

- particle masses: \mathbf{M} and m, bound state M_{B}
- Weinberg-Tomozawa interaction
- parameters: subtraction "a" and M_{B} (or coupling)

We use the model-independent formula

$$
1-Z=2 \pi^{2} \sqrt{2 \mu^{3}} \frac{g_{W}^{2}}{\sqrt{B}}
$$

- coupling constant: residue of the pole at M_{B}

$$
\left[g\left(M_{B} ; a\right)\right]^{2}=\lim _{W \rightarrow M_{B}}\left(W-M_{B}\right) T(W)=-\frac{M_{B}-M}{G\left(M_{B} ; a\right)+\left(M_{B}-M\right) G^{\prime}\left(M_{B}\right)}
$$

- normalization of the amplitude (a kinematical factor)

$$
1-Z=\frac{M\left|\bar{q}\left(M_{B}\right)\right|}{8 \pi M_{B}\left(M+m-M_{B}\right)}\left[g\left(M_{B} ; a\right)\right]^{2} \quad \text { (for small } \mathbf{B}=\mathbf{M}+\mathbf{m}-\mathbf{M}_{\mathbf{B}} \text {) }
$$

Numerical analysis

Compositeness of the bound state in chiral unitary approach

1) B dependence with $a=a_{\text {natural }}$

- Z ~ 0: composite particle in natural renormalization
- large B behavior is not justified by the approximation

Numerical analysis

Compositeness of the bound state in chiral unitary approach
2) $\Delta \mathrm{a}\left(=a-a_{\text {natural }}\right)$ dependence with $B=10 \mathrm{MeV}$

- deviation from the natural value: bare state contribution
- large deviation: large bare state contribution

Summary
 \qquad

Summary
ind states

$$
(3)
$$

$$
4
$$

Structure of resonances/bound states
Natural renormalization scheme exclude CDD pole contribution from
the loop function to generate purely exclude CDD pole contribution from
the loop function to generate purely molecule resonance
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Field renormalization constant Z : quantitative measure of compositeness

Natural scheme corresponds to Z ~ 0 --> generated bound state: composite T. Hyodo, D. Jido, A. Hosaka, arXiv: 1009.5754 [nucl-th]

O. 3 8
\square
 (1) .

:

\qquad

 8
 .

-

 4- ness

$$
1
$$

(2)

Summary

Summary

Summary

\because

Future plan

extend to the coupled-channel problem
This may be straightforward, but technically complicated.
extend to resonances Define Z in relativistic field theory
(comparison with Yukawa theory) Define \mathbf{Z} in relativistic field theory
(comparison with Yukawa theory) The composite condition seems to be $\mathrm{G}\left(\mathrm{M}_{\mathrm{B}}\right)=0$
c.f. natural scheme $G(M)=0$

To apply to hadron resonances, we should ...

-

 chem $G(M)=0$

 R

-

新\qquad

[^0] e (1 \square

[^0]: T. Hyodo, D. Jido, A. Hosaka, in preparation

