Toward a realistic \overline{KN} - $\pi\Sigma$ interaction

Tetsuo Hyodo

Tokyo Institute of Technology

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

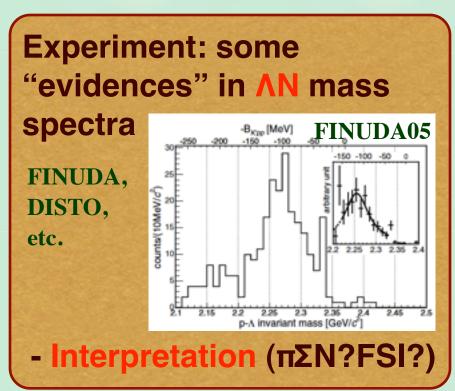
Λ*N interaction in chiral SU(3) dynamics

- K
 K

 K

 Formation of (deeply) bound kaonic nuclei?

Y. Akaishi, T. Yamazaki, Phys. Rev. C65, 044005 (2002)


- Structure of the Λ(1405), kaon condensation, ...

The simplest **K**-nucleus: **K**NN three-body system

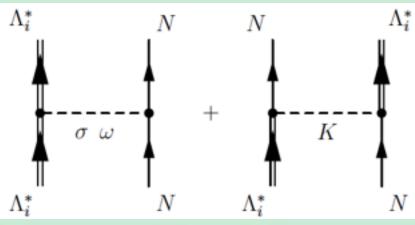
Theory: rigorous few-body calculations with realistic interactions

Yamazaki-Akaishi, Shevchenko et al., Ikeda-Sato, Doté et al., ...

 System bounds
 Quantitative difference: uncertainties in KN int. at far below threshold

Λ(1405) mass v.s. dibaryon(KNN) mass

- in the Λ*N potential model
- in the three-body KNN-πΣN calculation


- Threshold information of πΣ scattering
- Determination of πΣ scattering length

Λ(1405) mass v.s. dibaryon(KNN) mass

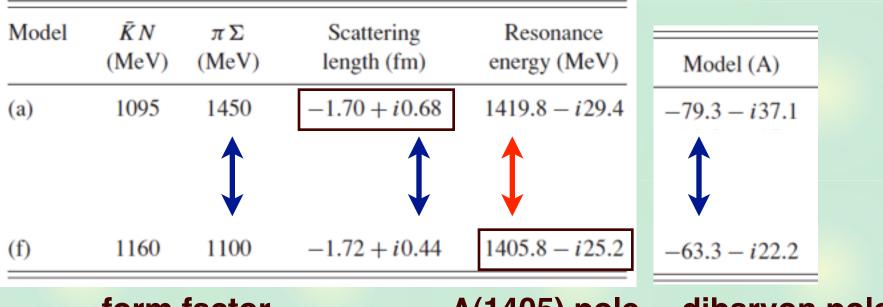
A*N potential model

Λ^*N potential --> Λ^*N bound state

T. Uchino, T. Hyodo and M. Oka, in preparation

Λ* ~ KN quasi-bound state ==> important K exchange

If the Λ^* is a shallowly bound KN system, then


- The size of the Λ^* increases. Off-shellness of the exchanged K decreases.
- --> enhances K exchange
- Λ^*N potential model: shallow Λ^* leads to deep Λ^*N

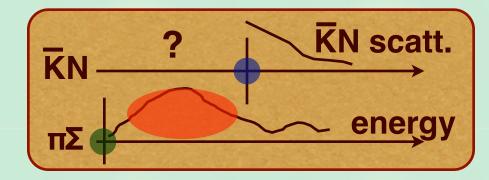
Λ(1405) mass v.s. dibaryon(KNN) mass

Three-body Faddeev calculation

A result of three-body coupled-channel calculation

Y. Ikeda and T. Sato, Phys. Rev. C76, 035203 (2007)

form factor $\Lambda(1405)$ pole dibaryon pole


(a): shallow Λ^* , deep dibaryon, strong $\pi\Sigma$ interaction (f): deep Λ^* , shallow dibaryon, weak $\pi\Sigma$ interaction

No simple correspondence in Λ^* mass and dibaryon mass. Strength of the $\pi\Sigma$ interaction is important for ``deep" state? $_5$

What kind of $\pi\Sigma$ information?

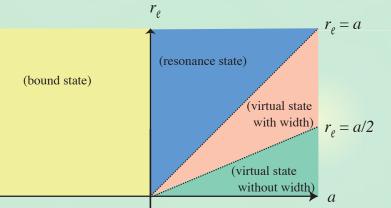
Precise data at KN threshold

- threshold branching ratio
- K-p (possibly with K-n) scattering length <-- SIDDHARTA

More constraints in πΣ channel

- Precise data of πΣ spectrum exp.) CLAS, LEPS, HADES,... theory) reaction study for each experiment
- Any information at πΣ threshold scattering length, effective range,...

Threshold behavior of $\pi\Sigma$ scattering

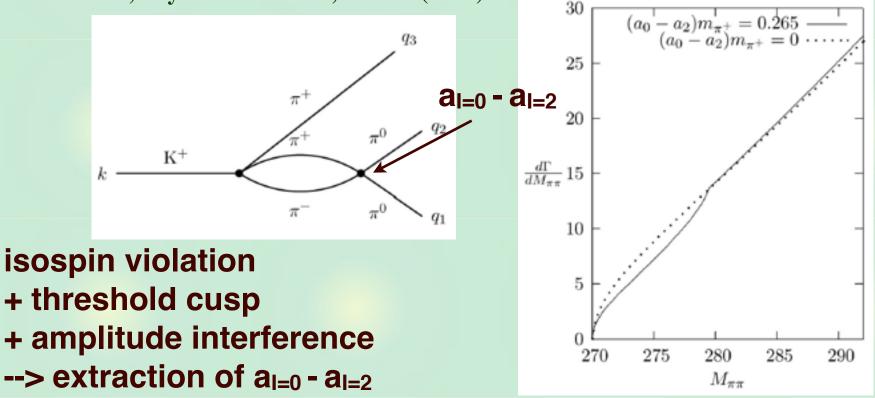

πΣ threshold information and $\overline{K}N$ -**πΣ** amplitude

Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, in preparation

Fix the $\overline{K}N(I=0)$ scattering length --> various solutions for the sub-threshold amplitude

Model	A1a	A1b	B1 E-dep	B1 E-indep
parameter $(\pi \Sigma)$	$d_{\pi \Sigma} = -1.67$	$d_{\pi \Sigma} = -2.85$	$\Lambda_{\pi\Sigma} = 1005 \text{ MeV}$	$\Lambda_{\pi\Sigma} = 1465 \text{ MeV}$
parameter $(\bar{K}N)$	$d_{\bar{K}N} = -1.79$	$d_{\bar{K}N} = -2.05$	$\Lambda_{\bar{K}N} = 1188 \text{ MeV}$	$\Lambda_{\bar{K}N} = 1086 \text{ MeV}$
pole 1 [MeV]	1422 - 16i	1425 - 11i	1422 - 22i	1423 - 29i
pole 2 [MeV]	1375 – 72i (R)	1321 (B)	1349 - 54i (R)	1325 (V)
$a_{\pi\Sigma}$ [fm]	0.934	-2.30	1.44	5.50
r_e [fm]	5.02	5.89	3.96	0.458
$a_{\bar{K}N}$ [fm] (input)	-1.70 + 0.68i	-1.70 + 0.68i	-1.70 + 0.68i	-1.70 + 0.68i

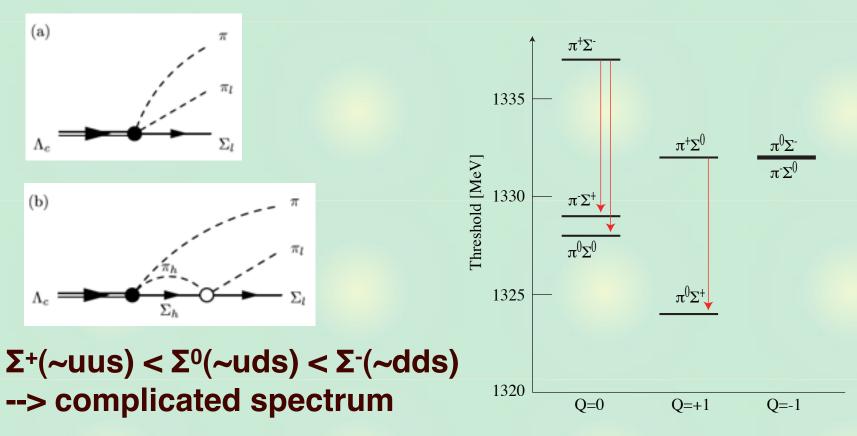
- πΣ scattering length + effective range --> nature of the pole (resonance, virtual, or bound)


Determination of the scattering length

Extraction of hadron scattering length

- shift and width of atomic state (c.f. Kaonic hydrogen)
- extrapolation of low energy phase shift
- final state interaction from heavy particle's decay

Cabibbo's method for π-π scattering length


N. Cabibbo, Phys. Rev. Lett. 93, 121801 (2004)

Determination of \pi\Sigma scattering length

Similar approach to $\pi\Sigma$ spectrum in $\Lambda_c \rightarrow \pi$ ($\pi\Sigma$)

T. Hyodo, M. Oka, work in progress

To utilize threshold cusp, appreciable mass difference between $(\pi\Sigma)_h$ and $(\pi\Sigma)_l$ is necessary.

 $\pi^+\Sigma^- \to \pi^-\Sigma^+, \quad \pi^+\Sigma^- \to \pi^0\Sigma^0, \quad \pi^+\Sigma^0 \to \pi^0\Sigma^+,$

Determination of \pi\Sigma scattering length

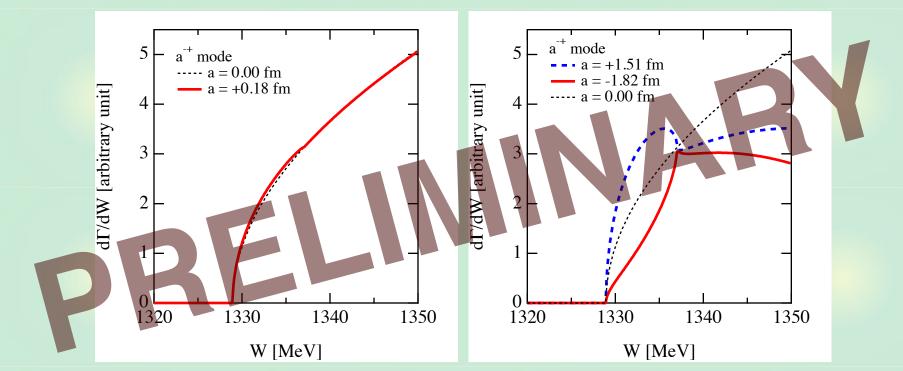
Three decay channels

$$\langle \pi^{-}\Sigma^{+} | T | \pi^{+}\Sigma^{-} \rangle |_{\text{threshold}} = \frac{1}{3}a^{0} - \frac{1}{2}a^{1} + \frac{1}{6}a^{2} \equiv a^{-1} \\ \langle \pi^{0}\Sigma^{0} | T | \pi^{+}\Sigma^{-} \rangle |_{\text{threshold}} = \frac{1}{3}a^{0} - \frac{1}{3}a^{2} \equiv a^{00} \\ \langle \pi^{0}\Sigma^{+} | T | \pi^{+}\Sigma^{0} \rangle |_{\text{threshold}} = -\frac{1}{2}a^{1} + \frac{1}{2}a^{2} \equiv a^{0+} \\ \frac{\text{mode}}{a^{-+}} \frac{\Lambda_{c} \to \pi(\pi\Sigma)_{h}}{1.7 \pm 0.5 \%} \frac{\Lambda_{c} \to \pi(\pi\Sigma)_{l}}{3.6 \pm 1.0 \%} \\ \frac{a^{0}}{a^{0+}} \frac{1.7 \pm 0.5 \%}{1.8 \pm 0.8 \%} \frac{1.8 \pm 0.8 \%}{\text{not known}}$$

A lot of Λ_c in B decay (Belle, Babar) --> feasible?

Structure around the cusp in $(\pi\Sigma)_{I}$ + spectrum in $(\pi\Sigma)_{h}$ --> extraction of the scattering length

Three unknown scattering lengths, two constraints


$$a^{-+} - a^{00} = a^{0+}$$

I=2 scattering length: lattice QCD --> Y. Ikeda's talk

Determination of \pi\Sigma scattering length

Expansion of the decay spectrum --> scattering length

$$|\mathcal{M}|^{2} = \begin{cases} A + B|\delta| + C|\delta|^{2} + \mathcal{O}(|\delta|^{3}) & \text{for } W > W_{th} \\ A' + B'\delta + C'\delta^{2} + \mathcal{O}(\delta^{3}) & \text{for } W < W_{th} \end{cases}$$
$$|a| = \frac{|B'|}{2m_{h}\sqrt{A}|M_{0}^{h(0)}|}, \quad \frac{a}{|a|} = \frac{M_{0}^{(0)}}{|M_{0}^{(0)}|} \cdot \frac{M_{0}^{h(0)}}{|M_{0}^{h(0)}|} \cdot \frac{B'}{|B'|}$$

11

Summary

Summary

We emphasize the importance of the $\pi\Sigma$ interaction for the $\overline{K}N$ - $\pi\Sigma$ physics

 \checkmark No simple connection between $\Lambda(1405)$ mass and strange dibaryon mass. **πΣ threshold data is important for the** amplitude in the ``deep" region. Y. Ikeda, T. Hyodo, D. Jido, H. Kamano, T. Sato, K. Yazaki, in preparation **πΣ** scattering length can be extracted from the Ac decay. Lattice QCD will help to complete the constraints. T. Hyodo, M. Oka, in preparation;

Y. Ikeda, HAL QCD collaboration, in preparation.