Compositeness of bound states and

resonances in chiral unitary approach

Tetsuo Hyodo ${ }^{\text {a }}$,

Tokyo Institute of Technologya

Introduction

Structure of hadron resonances

Example) baryon excited state

multiquark

Quark model

Excited states

= resonances in hadron scattering
Exotic structure near threshold?
c.f. ${ }^{12} \mathrm{C}$ Hoyle state

Introduction

Study of the internal structure

How to investigate the internal structure?

- Comparison of model calculation with experiments (mass, width, decay properties, etc.)
: Any model can describe data with appropriate corrections
: Model-dependent result
- Extrapolation to the ideal world, change the environment (large Nc, symmetry restoration, etc.)
: Structure may change during the extrapolation
: Qualitative discussion only
--> model-independent and quantitative study?

Contents

Introduction

Chiral SU(3) dynamics
Origin of resonances in chiral dynamics

- Natural renormalization condition
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Compositeness of bound states

T. Hyodo, D. Jido, A. Hosaka, arXiv:1009.5754 [nucl-th]; in preparation
\qquad
Natural renormalization condition

- Field renormalization constant Z

Chiral SU(3) dynamics

s-wave low energy interaction

Low energy NG boson (Ad) + target hadron (T) scattering

Projection onto s-wave: Weinberg-Tomozawa (WT) term
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

decay constant of $\Pi \quad\left(g_{v}=1\right)$

$$
\begin{aligned}
& C_{i j}=\sum_{\alpha} C_{\alpha, T}\left(\begin{array}{cc|c}
8 & T & \alpha \\
I_{M_{i}}, Y_{M_{i}} & I_{T_{i}}, Y_{T_{i}} & I, Y
\end{array}\right)\left(\begin{array}{cc|c}
8 & T & \alpha \\
I_{M_{j}}, Y_{M_{j}} & I_{T_{j}}, Y_{T_{j}} & \\
I, Y
\end{array}\right) \\
& C_{\alpha, T}=\left\langle 2 \boldsymbol{F}_{T} \cdot \boldsymbol{F}_{\mathrm{Ad}}\right\rangle_{\alpha}=C_{2}(T)-C_{2}(\alpha)+3
\end{aligned}
$$

Group theoretical structure and flavor $\mathrm{SU}(3)$ symmetry determines the sign and the strength of the interaction
Low energy theorem: leading order term in ChPT

Chiral SU(3) dynamics

Scattering amplitude and unitarity

Unitarity of S-matrix: Optical theorem

$$
\operatorname{Im}\left[T^{-1}(s)\right]=\frac{\rho(s)}{2} \text { phase space of two-body state }
$$

General amplitude by dispersion relation

$$
T^{-1}(\sqrt{s})=\sum_{i} \frac{R_{i}}{\sqrt{s}-W_{i}}+\tilde{a}\left(s_{0}\right) i^{\prime}+\frac{s-s_{0}}{2 \pi} \int_{s^{+}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}
$$

$\mathrm{R}_{\mathrm{i}}, \mathrm{W}_{\mathrm{i}}$, a: to be determined by chiral interaction
Identify dispersion integral $=$ loop function \mathbf{G}, the rest $=\mathrm{V}^{-1}$

$$
T(\sqrt{s})=\frac{1}{V^{-1}(\sqrt{s})-G(\sqrt{s} ; a)}
$$

Scattering amplitude
V? chiral expansion of \mathbf{T}, (conceptual) matching with ChPT $T^{(1)}=V^{(1)}, \quad T^{(2)}=V^{(2)}, \quad T^{(3)}=V^{(3)}-V^{(1)} G V^{(1)}, \quad \cdots$

Amplitude T: consistent with chiral symmetry + unitarity

Chiral SU(3) dynamics

Chiral unitary approach

Meson-baryon scattering amplitude

- Interaction <-- chiral symmetry
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Amplitude <-- unitarity in coupled channels
R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

$$
T=\frac{1}{1-V G} V \rightarrow \underset{\text { chiral }}{\rightarrow} \rightarrow \underset{\substack{ \\\text { cutoff }}}{\substack{\rightarrow}}
$$

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully, also in $\mathrm{S}=0$ sector, meson-meson scattering sectors, systems including heavy quarks, ...

Chiral SU(3) dynamics

Hadron excited states

Resonances are "dynamically generated"

light baryon	$J^{P}=1 / 2^{-}$	$\Lambda(1405)$	$\Lambda(1670)$	$\Sigma(1670)$	
		$J^{P}=3 / 2^{-}$	$\Lambda(1535)$	$\Xi(1620)$	$\Xi(1690)$
		$\Xi(1820)$	$\Sigma(1670)$		
heavy		$\Lambda_{c}(2880)$	$\Lambda_{c}(2593)$	$D_{s}(2317)$	
light	$J^{P}=1^{+}$	$b_{1}(1235)$	$h_{1}(1170)$	$h_{1}(1380)$	$a_{1}(1260)$
meson		$f_{1}(1285)$	$K_{1}(1270)$	$K_{1}(1440)$	
----	$J^{P}=0^{+}$	$\sigma(600)$	$\kappa(900)$	$f_{0}(980)$	$a_{0}(980)$

No states with exotic quantum number

- No attraction in exotic channel
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006);

Phys. Rev. D75, 034002 (2007)
--> Structure of these resonances?

Classification of resonances

Resonances in two-body scattering

- Knowledge of interaction (potential)
- Experimental data (cross section, ...)

Dynamical state: composite particle, two-body molecule, ...

e.g.) Deuteron in NN, positronium in $\mathrm{e}^{+} \mathrm{e}^{-}, \ldots$

CDD pole: elementary particle, preformed state, ...
L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

\sim pole term in V
e.g.) J / Ψ in $\mathrm{e}^{+} \mathrm{e}^{-}$, ...

Origin of resonances in chiral dynamics

(Known) CDD poles in chiral unitary approach

Explicit resonance field in V (interaction): $\Delta(1232), \Sigma(1385), \ldots$

U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000)
D. Jido, E. Oset, A. Ramos, Phys. Rev. C66, 055203 (2002)

Contracted resonance propagator in higher order V

G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B321, 311 (1989)
V. Bernard, N. Kaiser, U.G. Meissner, Nucl. Phys. A615, 483 (1997)
J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D59, 074001 (1999)
f
$+$

Origin of resonances in chiral dynamics

CDD pole in subtraction constant?

Phenomenological (standard) scheme
$-->V$ is given, "a" is determined by data

$$
\begin{aligned}
T=\frac{1}{\left(V^{(1)}\right)^{-1}-G(a)} & \text { leading order } \\
T=\frac{1}{\left(V^{(1)}+V^{(2)}\right)^{-1}-G\left(a^{\prime}\right)} & \text { next to leading order } \\
\uparrow \text { pole } & \vdots \ddots
\end{aligned}
$$

" a " represents the effect which is not included in V . CDD pole contribution in G ?

Natural renormalization scheme --> fix "a" first, then determine V to exclude CDD pole contribution from G, based on theoretical argument.

Natural renormalization condition

Conditions for the subtraction constant

1) Loop function G should be negative below threshold. <--> no states below threshold
$G(\sqrt{s}) \sim \sum_{n} \frac{|\langle\ldots\rangle|^{2}}{\sqrt{s}-E_{n}} \leq 0$ for $\sqrt{s} \leq E_{0} \quad-->$ upper limit for "a"
2) \mathbf{T} matches with the chiral interaction \mathbf{V} at low energy.

$$
T\left(\mu_{m} ; a\right)=V\left(\mu_{m}\right) \text { for } \quad M_{T} \leq \mu_{m} \leq M_{T}+m \text {--> lower limit for "a" }
$$

To satisfy 1) and 2), "a" is uniquely determined as

$$
G\left(\sqrt{s}=M_{T}\right)=0 \quad \Leftrightarrow \quad T\left(M_{T}\right)=V\left(M_{T}\right)
$$

- subtraction constant: $a_{\text {natural }}$

We regard this condition as the exclusion of the CDD pole contribution from G.

Origin of resonances in chiral dynamics

Pole in the effective interaction: single channel

Leading order V: Weinberg-Tomozawa term

$$
\begin{aligned}
V_{\mathrm{WT}}= & -\frac{C}{2 f^{2}}\left(\sqrt{s}-M_{T}\right) \quad G(\sqrt{s} ; a)=\frac{2 M_{T}}{(4 \pi)^{2}}\{a+\ldots \\
T^{-1}= & V_{\mathrm{WT}}^{-1}-G\left(a_{\text {phenom }}\right)=V_{\text {natural }}^{-1}-G\left(a_{\text {natural }}\right) \\
& \uparrow \text { ChIT } \uparrow \text { data fit } \quad \uparrow \text { given }
\end{aligned}
$$

Effective interaction in natural scheme

$$
\begin{gathered}
V_{\text {natural }}=-\frac{C}{2 f^{2}}\left(\sqrt{s}-M_{T}\right)+\frac{C}{2 f^{2}} \frac{\left(\sqrt{s}-M_{T}\right)^{2}}{\sqrt{s}-M_{\text {eff }}} \\
M_{\text {eff }}=M_{T}-\frac{16 \pi^{2} f^{2}}{C M_{T} \Delta a}, \quad \Delta a=a_{\text {pheno }}-a_{\text {natural }} \\
\text { a seed of resonance? }
\end{gathered}
$$

There is always a pole for $a_{\text {pheno }} \neq a_{\text {natural }}$

- small deviation <=> pole at irrelevant energy scale
- large deviation <=> pole at relevant energy scale

Pole in the effective interaction

Pole in the effective interaction ($M_{\text {eff }}$) : pure CDD pole

$$
T^{-1}=V_{\mathrm{WT}}^{-1}-G\left(a_{\text {pheno }}\right)=V_{\text {natural }}^{-1}-G\left(a_{\text {natural }}\right)
$$

For $\boldsymbol{\Lambda}(1405): z_{\mathrm{eff}}^{\Lambda^{*}} \sim 7.9 \mathrm{GeV} \quad$ irrelevant!
For $\mathbf{N}(1535): z_{\mathrm{eff}}^{N^{*}}=1693 \pm 37 i \mathrm{MeV}$ relevant?
Difference of interactions $\Delta V \equiv V_{\text {natural }}-V_{\mathrm{WT}}$

$==>$ Important CDD pole contribution in N(1535)
Next question: quantitative measure for compositeness?

Structure of the deuteron

Deuteron: elementary or NN bound state?
S. Weinberg, Phys. Rev. 137 B672-B678 (1965)

model independent result for a weakly bound state:

$$
a_{s}=\left[\frac{2(1-Z)}{2-Z}\right] \sqrt{R}+\mathcal{O}\left(m_{\pi}^{-1}\right), \quad r_{e}=\left[\frac{-Z}{1-Z}\right] \Omega+\mathcal{O}\left(m_{\pi}^{-1}\right)
$$

a_{s} : scattering length
r_{e} : effective range
<-- Experiments
R: deuteron radius (binding energy)

$$
\begin{aligned}
& a_{s}=+5.41[\mathrm{fm}], \quad r_{e}=+1.75[\mathrm{fm}], \quad R \equiv(2 \mu B)^{-1 / 2}=4.31[\mathrm{fm}] \\
& \Rightarrow Z \lesssim 0.2 \quad
\end{aligned} \quad-->\text { deuteron is almost composite! }
$$

Definition of the compositeness 1-Z

Hamiltonian of two-body system: free + interaction \mathbf{V}

$$
\mathcal{H}=\mathcal{H}_{0}+V
$$

Complete set for free Hamiltonian: bare $\left.\mathbf{I B}_{0}\right\rangle+$ continuum

$$
\begin{aligned}
& 1=\left|B_{0}\right\rangle\left\langle B_{0}\right|+\int d \boldsymbol{k}|\boldsymbol{k}\rangle\langle\boldsymbol{k}| \\
& \mathcal{H}_{0}\left|B_{0}\right\rangle=E_{0}\left|B_{0}\right\rangle, \quad \mathcal{H}_{0}|\boldsymbol{k}\rangle=E(\boldsymbol{k})|\boldsymbol{k}\rangle
\end{aligned}
$$

Physical bound state IB> : eigenstate of full Hamiltonian

$$
\left(\mathcal{H}_{0}+V\right)|B\rangle=-B|B\rangle
$$

B : binding energy
Define Z as the overlap of B and B_{0} : probability of finding the physical bound state in the bare state IB>

$$
Z \equiv\left|\left\langle B_{0} \mid B\right\rangle\right|^{2}
$$

They are assumed to be elementary

1-Z:Compositeness of the bound state

Compositeness of bound states

Model-independent but approximated method

With the Schrödinger equation, we obtain

$$
\begin{aligned}
1-Z & =\int d \boldsymbol{k} \frac{|\langle\boldsymbol{k}| V| B\rangle\left.\right|^{2}}{[E(\boldsymbol{k})+B]^{2}} \quad\langle\boldsymbol{k}| V|B\rangle: \quad B \Longrightarrow \boldsymbol{k} \\
& =4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E \frac{\sqrt{E}\left|G_{W}(E)\right|^{2}}{(E+B)^{2}} \quad\langle\boldsymbol{k}| V|B\rangle \equiv G_{W}[E(\boldsymbol{k})] \text { for s-wave }
\end{aligned}
$$

Approximation: For small binding energy $\mathrm{B} \ll 1$, the vertex $\mathrm{G}_{\mathrm{w}}(\mathrm{E})$ can be regarded as a constant: $G_{W}(E) \sim g_{W}$

Then the integration can be done analytically, leading to

$$
1-Z=2 \pi^{2} \sqrt{2 \mu^{3}} \frac{g_{W}^{2}}{\sqrt{B}}
$$

Compositeness <-- coupling gand binding energy B
S. Weinberg, Phys. Rev. 137 B672-B678 (1965)

- Model-independent: no information of V
- Approximated: valid only for small B

Exact but model-dependent method

Formal solution of the Lippmann-Schwinger equation

$$
T(E)=V+V \frac{1}{E-\mathcal{H}} V
$$

Insert complete set for full Hamiltonian (Low's equation)

$$
\begin{aligned}
& \left.\left.1=|B\rangle\langle B|+\int_{v} d \boldsymbol{k} \mid \boldsymbol{k}, \text { in }\right\rangle\langle\boldsymbol{k}, \text { in }| \quad V \mid \boldsymbol{k}, \text { in }\right\rangle=T|\boldsymbol{k}\rangle \\
& t(E)=v(E)+\frac{\left\lvert\, \frac{\left|G_{W}(E)\right|^{2}}{E+B}\right.}{\frac{\mid-->\text { integrand of the formula for } 1-\mathrm{Z}!}{}+4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E^{\prime} \frac{\sqrt{E^{\prime}}|t(E)|^{2}}{E-E^{\prime}+i \epsilon} \quad \text { (for s-wave) }}
\end{aligned}
$$

Exact expression of the compositeness $1-Z$

$$
\begin{aligned}
1-Z & =4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E \frac{\sqrt{E}\left|G_{W}(E)\right|^{2}}{(E+B)^{2}} \\
& =4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E \frac{\sqrt{E}}{E+B}\left[t(E)-v(E)-4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E^{\prime} \frac{\sqrt{E^{\prime}}\left|t\left(E^{\prime}\right)\right|^{2}}{E-E^{\prime}+i \epsilon}\right]
\end{aligned}
$$

T. Hyodo, D. Jido, A. Hosaka, arXiv:1009.5754 [nucl-th]; in preparation

Short summary

We have defined the compositeness of the bound state 1-Z.

$$
1-Z=1-\left|\left\langle B_{0} \mid B\right\rangle\right|^{2}=\int d \boldsymbol{k} \frac{|\langle\boldsymbol{k}| V| B\rangle\left.\right|^{2}}{[E(\boldsymbol{k})+B]^{2}}
$$

Method 1: model independent but approximated

$$
1-Z=2 \pi^{2} \sqrt{2 \mu^{3}} \frac{g_{W}^{2}}{\sqrt{B}}
$$

Method 2: exact (valid for any B) but model dependent

$$
1-Z=4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E \frac{\sqrt{E}}{E+B}\left[t(E)-v(E)-4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E^{\prime} \frac{\left.\sqrt{E^{\prime}} t\left(t E^{\prime}\right)\right|^{2}}{E-E^{\prime}+i \epsilon}\right]
$$

- Model dependent: interaction V has to be specified (c.f. potential + wave function --> observable)
- Imaginary part vanishes by the optical theorem
- RHS can be calculated by model (chiral unitary approach)
- Completeness of the full Hamiltonian <--> energy dep.?

Compositeness of bound states

Single-channel chiral unitary approach

To apply the argument on Z, we study the bound state with mass M_{B} in the single channel chiral unitary approach.

- particle masses: \mathbf{M} and m, bound state M_{B}
- Weinberg-Tomozawa interaction
- parameters: coupling strength $\mathbf{C / 2 f ²}$, subtraction "a"

Natural renormalization scheme formulae

$$
\begin{gathered}
T^{-1}=V_{\mathrm{WT}}^{-1}-G\left(a_{\text {pheno }}\right)=V_{\text {natural }}^{-1}-G\left(a_{\text {natural }}\right) \\
V_{\text {natural }}=-\frac{C}{2 f^{2}}\left(\sqrt{s}-M_{T}\right)+\frac{C}{2 f^{2}} \frac{\left(\sqrt{s}-M_{T}\right)^{2}}{\sqrt{s}-M_{\mathrm{eff}}} \\
M_{\mathrm{eff}}=M_{T}-\frac{16 \pi^{2} f^{2}}{C M_{T} \Delta a}, \quad \Delta a=a_{\text {pheno }}-a_{\text {natural }}
\end{gathered}
$$

If a natural corresponds to the purely composite case, then Meff for $a_{\text {pheno }}$ corresponds to the bare mass $\mathrm{M}_{\text {во }}$ <-- to be checked in the followings

Compositeness of bound states

Single-channel chiral unitary approach

We use the model-independent formula

$$
1-Z=2 \pi^{2} \sqrt{2 \mu^{3}} \frac{g_{W}^{2}}{\sqrt{B}}
$$

We need to calculate the coupling g and binding energy B

- condition for the bound state: $\mathbf{M}_{\mathbf{B}}=\mathbf{M}+\mathbf{m}$ - \mathbf{B}

$$
1-\frac{C}{2 f^{2}}\left(M_{B}-M\right) G\left(M_{B} ; a\right)=0
$$

--> parameter of the system: $\left(\mathrm{M}_{\mathrm{B}}, \mathrm{a}\right)$ or $\left(\mathrm{M}_{\mathrm{B}}, \mathrm{Meff}=\mathrm{M}_{\mathrm{B}}\right)$

- coupling constant: residue of the pole at M_{B}

$$
\left[g\left(M_{B} ; a\right)\right]^{2}=\lim _{W \rightarrow M_{B}}\left(W-M_{B}\right) T(W)=-\frac{M_{B}-M}{G\left(M_{B} ; a\right)+\left(M_{B}-M\right) G^{\prime}\left(M_{B}\right)}
$$

- normalization of the amplitude (a kinematical factor)

$$
1-Z=\frac{M\left|\bar{q}\left(M_{B}\right)\right|}{8 \pi M_{B}\left(M+m-M_{B}\right)}\left[g\left(M_{B} ; a\right)\right]^{2} \quad \text { (for small } \mathbf{B}=\mathbf{M}+\mathbf{m}-\mathbf{M}_{\mathbf{B}} \text {) }
$$

Numerical analysis

Compositeness of the bound state in chiral unitary approach

1) B dependence with $\mathrm{M}_{\mathrm{B} 0}->\infty$ ($\mathrm{a}=\mathbf{a}_{\text {natural }}$)

$-\mathrm{M}_{\mathrm{B}}->\infty: \mathbf{Z} \sim 0$
$-\mathrm{Z}=0$ at $\mathrm{B}=0$

- large B behavior is not justified by the approximation

Numerical analysis

Compositeness of the bound state in chiral unitary approach
2) $M_{B 0}$ dependence with $B=10 \mathrm{MeV}$

- $M_{B 0}->M_{B}: Z->1$
- Mass difference of M_{Bo} and M_{B} : self-energy of bare state --> large if the composite component is large r

Summary

Structure of resonances/bound states
Natural renormalization scheme
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Field renormalization constant Z : Field renormalization constant Z :
quantitative measure of compositeness
Natural scheme corresponds to Z ~ 0 --> generated bound state: composite
T. Hyodo, D. Jido, A. Hosaka, arXiv: 1009.5754 [nucl-th]

Summary

$\stackrel{1}{1}$部
ter
 2 I
8 - 2.2

4
0

ind states

$$
\square
$$

$$
-
$$

Summary

Future plan
 Future plan

extend to the coupled-channel problem This may be straightforward, but technically complicated.
extend to resonances
Define Z in relativistic field theory (comparison with Yukawa theory) The composite condition seems to be
c.f. natural scheme $G(M)=0$
T. Hyodo, D. Jido, A. Hosaka, in preparation

To apply hadron resonances, we should ...

- .

\qquad
Summary

we should ...

\qquad
 $-$

x

}

 0

$G\left(M_{B}\right)=0$

$G\left(M_{B}\right)=0$

\qquad
$-2-2-2+2$
$2+2$
T. Hyodo, D. Jido,

