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Structure of hadron resonances
Example) baryon excited state

Excited states 
= resonances in hadron scattering

Exotic structure near threshold?
c.f. 12C Hoyle state, X,Y,Z charmonia,...

E [MeV]

0

10

Ground state

Excited Hoyle state

Quark model

en
er

gy internal 
excitation

qq pair 
creation

M
B

hadronic 
molecule

multiquark

Introduction



Define Z as the overlap of B and B0 
: probability of finding the physical
bound state in the bare state |B>

1 - Z : Compositeness of the bound state

Z ≡ |�B0 | B �|2
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Definition of the compositeness 1-Z
Hamiltonian of two-body system: free + interaction V

Nonrelativistic field theory

H = H0 + V

Complete set for free Hamiltonian: bare |B0 > + continuum
1 = | B0 ��B0 | +

�
dk| k ��k |

H0|B0 � = E0|B0 �, H0|k � = E(k)|k �

Physical bound state |B> : eigenstate of full Hamiltonian

B: binding energy
(H0 + V )|B � = −B|B �

Z = 0 Z = 1

They are assumed 
to be elementary
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Model-independent but approximated method
With the Schrödinger equation, we obtain

1
(E(p) + B)2

g(p)B = −3

p

Nonrelativistic field theory

�k |V | B � : B

�
k

V

= 4π
�

2µ3

� ∞

0
dE

√
E|GW (E)|2

(E + B)2
�k |V | B � ≡ GW [E(k)] for s-wave

Approximation: For small binding energy B<<1, the vertex 
GW(E) can be regarded as a constant: GW (E) ∼ gW

- Model-independent: no information of V
- Approximated: valid only for small B

1 − Z =
�

dk
|�k |V | B �|2

[E(k) + B]2

S. Weinberg, Phys. Rev. 137 B672-B678 (1965)
Compositeness <-- coupling g and binding energy B

Then the integration can be done analytically, leading to
1− Z = 2π2

�
2µ3

g2
W√
B
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Exact but model-dependent method
Formal solution of the Lippmann-Schwinger equation

Nonrelativistic field theory

Exact expression of the compositeness 1-Z

T. Hyodo, D. Jido, A. Hosaka, in preparation

1− Z = 4π
�

2µ3

� ∞

0
dE

√
E|GW (E)|2

(E + B)2

= 4π
�

2µ3

� ∞

0
dE

√
E

E + B

�
t(E)− v(E)− 4π

�
2µ3

� ∞

0
dE�

√
E�|t(E�)|2

E − E� + i�

�

Insert complete set for full Hamiltonian (Lowʼs equation)
V | k, in � = T | k �1 = | B ��B | +

�
dk| k, in ��k, in |

(for s-wave)t(E) = v(E) +
|GW (E)|2

E + B
+ 4π

�
2µ3

� ∞

0
dE�

√
E�|t(E)|2

E − E� + i�

--> integrand of the formula for 1-Z !

T (E) = V + V
1

E −H
V
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Short summary
We have defined the compositeness of the bound state 1-Z.

Nonrelativistic field theory

Method 2: exact but model dependent

1− Z = 4π
�

2µ3

� ∞

0
dE

√
E

E + B

�
t(E)− v(E)− 4π

�
2µ3

� ∞

0
dE�

√
E�|t(E�)|2

E − E� + i�

�

- Exact: valid for any B
- Model dependent: interaction V has to be specified
  (c.f. potential + wave function --> observable)
- Imaginary part vanishes by the optical theorem
- RHS can be calculated by model (chiral unitary approach)

Method 1: model independent but approximated
1− Z = 2π2

�
2µ3

g2
W√
B

1 − Z = 1 − |�B0 | B �|2 =
�

dk
|�k |V | B �|2

[E(k) + B]2



Single-channel scattering amplitude: masses M and m
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Single-channel chiral unitary approach
Application to chiral unitary approach

T (W ) =
1

1− V (W )G(W ; a)
V (W )

Change of subtraction constant
<--> introduction of a pole term in the interaction

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

a→ a−∆a,

V (W )→ Ṽ (W ) = C(W −M)− C
(W −M)2

(W −Meff)
, Meff = M +

(4π)2

2MC∆a

V (W ) = C(W −M)

We should define the benchmark of the subtraction constant
--> Natural renormalization constant anatural

If anatural corresponds to purely composite case, 
then Meff corresponds to the mass of the bare state MB0
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Single-channel chiral unitary approach

We need to calculate the coupling g and binding energy B

Application to chiral unitary approach

We use the model-independent formula
1− Z = 2π2

�
2µ3

g2
W√
B

- coupling constant: residue of the pole at MB

[g(MB ; a)]2 = lim
W→MB

(W −MB)T (W ) = − MB −M

G(MB ; a) + (MB −M)G�(MB)

1− C(MB −M)G(MB ; a) = 0

- condition for the bound state: MB = M + m - B

--> system can be characterized by (MB, a) or (MB, MB0) 

(for small B = M + m - MB)

- normalization of the amplitude (just a kinematical factor)

1− Z =
M |λ1/2(M2

B ,M2,m2)|
16πM2

B(M + m−MB)
g2(MB ; a)



Compositeness of the bound state in chiral unitary approach
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Numerical analysis

- MB0 -> ∞ : Z ~ 0
- Z = 0 at B = 0
- large B behavior is not justified by the approximation

1) B dependence with MB0 -> ∞ (a = anatural)

Application to chiral unitary approach
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Compositeness of the bound state in chiral unitary approach
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Numerical analysis

2) MB0 dependence with B = 10 MeV

Application to chiral unitary approach

- MB0 -> MB : Z -> 1
- Mass difference of MB0 and MB : self-energy of bare state
   --> large if the composite component is large
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We derive the exact form of the 
compositeness of a bound state in terms 
of the scattering amplitude

We apply to the bound state in chiral 
unitary model to check the natural 
renormalization condition
MB0 -> ∞ (a=anatural) : Z ~ 0, composite
MB0 -> MB : Z ~ 1, elementary
: anatural is a good benchmark

T. Hyodo, D. Jido, A. Hosaka, in preparation

Summary

We study the compositeness of the particles
Summary


