Compositeness of bound states and

resonances in chiral unitary approach

Tetsuo Hyodo ${ }^{\text {a }}$,

Daisuke Jido ${ }^{\text {b }}$, and Atsushi Hosaka ${ }^{\text {c }}$
Tokyo Institute of Technology ${ }^{a} \quad$ YITP, Kyoto ${ }^{b} \quad$ RCNP, Osakac supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Introduction

Structure of hadron resonances

Example) baryon excited state

multiquark
qव̄ pair
creation

hadronic
molecule

Quark model

Excited states

= resonances in hadron scattering
Exotic structure near threshold?
c.f. ${ }^{12} \mathrm{C}$ Hoyle state, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ charmonia,...

Nonrelativistic field theory

Definition of the compositeness 1-Z

Hamiltonian of two-body system: free + interaction V

$$
\mathcal{H}=\mathcal{H}_{0}+V
$$

Complete set for free Hamiltonian: bare $\left.\mathbf{I B}_{0}\right\rangle+$ continuum

$$
\begin{aligned}
& 1=\left|B_{0}\right\rangle\left\langle B_{0}\right|+\int d \boldsymbol{k}|\boldsymbol{k}\rangle\langle\boldsymbol{k}| \\
& \mathcal{H}_{0}\left|B_{0}\right\rangle=E_{0}\left|B_{0}\right\rangle, \quad \mathcal{H}_{0}|\boldsymbol{k}\rangle=E(\boldsymbol{k})|\boldsymbol{k}\rangle
\end{aligned}
$$

Physical bound state IB> : eigenstate of full Hamiltonian

$$
\left(\mathcal{H}_{0}+V\right)|B\rangle=-B|B\rangle
$$

B : binding energy
Define Z as the overlap of B and B_{0} : probability of finding the physical bound state in the bare state IB>

$$
Z \equiv\left|\left\langle B_{0} \mid B\right\rangle\right|^{2}
$$ They are assumed

1-Z : Compositeness of the bound state

Model-independent but approximated method

With the Schrödinger equation, we obtain

$$
\begin{aligned}
1-Z & =\int d \boldsymbol{k} \frac{\left.|\boldsymbol{k}| V|B\rangle\right|^{2}}{[E(\boldsymbol{k})+B]^{2}} \quad\langle\boldsymbol{k}| V|B\rangle: B \Longrightarrow \boldsymbol{k} \\
& =4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E \frac{\sqrt{E}\left|G_{W}(E)\right|^{2}}{(E+B)^{2}} \quad\langle\boldsymbol{k}| V|B\rangle \equiv G_{W}[E(\boldsymbol{k})] \text { for s-wave }
\end{aligned}
$$

Approximation: For small binding energy $\mathrm{B} \ll 1$, the vertex $\mathrm{G}_{\mathrm{w}}(\mathrm{E})$ can be regarded as a constant: $G_{W}(E) \sim g_{W}$

Then the integration can be done analytically, leading to

$$
1-Z=2 \pi^{2} \sqrt{2 \mu^{3}} \frac{g_{W}^{2}}{\sqrt{B}}
$$

Compositeness <-- coupling g and binding energy B

$$
\text { S. Weinberg, Phys. Rev. } 137 \text { B672-B678 (1965) }
$$

- Model-independent: no information of V
- Approximated: valid only for small B

Nonrelativistic field theory

Exact but model-dependent method

Formal solution of the Lippmann-Schwinger equation

$$
T(E)=V+V \frac{1}{E-\mathcal{H}} V
$$

Insert complete set for full Hamiltonian (Low's equation)

$$
\begin{aligned}
& \left.\left.1=|B\rangle\langle B|+\int_{v} d \boldsymbol{k} \mid \boldsymbol{k}, \text { in }\right\rangle\langle\boldsymbol{k}, \text { in }| \quad V \mid \boldsymbol{k}, \text { in }\right\rangle=T|\boldsymbol{k}\rangle \\
& t(E)=v(E)+\frac{\left\lvert\, \frac{\left|G_{W}(E)\right|^{2}}{E+B}\right.}{\frac{|c| l \mid}{}}+4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E^{\prime} \frac{\sqrt{E^{\prime}}|t(E)|^{2}}{E-E^{\prime}+i \epsilon} \quad \text { (for s-wave) } \\
& \\
& \text {--> integrand of the formula for } 1-\mathbf{Z}!
\end{aligned}
$$

Exact expression of the compositeness $1-Z$

$$
\begin{aligned}
1-Z & =4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E \frac{\sqrt{E}\left|G_{W}(E)\right|^{2}}{(E+B)^{2}} \\
& =4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E \frac{\sqrt{E}}{E+B}\left[t(E)-v(E)-4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E^{\prime} \frac{\sqrt{E^{\prime}}\left|t\left(E^{\prime}\right)\right|^{2}}{E-E^{\prime}+i \epsilon}\right]
\end{aligned}
$$

T. Hyodo, D. Jido, A. Hosaka, in preparation

Nonrelativistic field theory

Short summary

We have defined the compositeness of the bound state 1-Z.

$$
1-Z=1-\left|\left\langle B_{0} \mid B\right\rangle\right|^{2}=\int d \boldsymbol{k} \frac{\left.|\boldsymbol{k}| V|B\rangle\right|^{2}}{[E(\boldsymbol{k})+B]^{2}}
$$

Method 1: model independent but approximated

$$
1-Z=2 \pi^{2} \sqrt{2 \mu^{3}} \frac{g_{W}^{2}}{\sqrt{B}}
$$

Method 2: exact but model dependent

$$
1-Z=4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E \frac{\sqrt{E}}{E+B}\left[t(E)-v(E)-4 \pi \sqrt{2 \mu^{3}} \int_{0}^{\infty} d E^{\prime} \frac{\sqrt{E^{\prime}}\left|t\left(E^{\prime}\right)\right|^{2}}{E-E^{\prime}+i \epsilon}\right]
$$

- Exact: valid for any B
- Model dependent: interaction V has to be specified (c.f. potential + wave function $-->$ observable)
- Imaginary part vanishes by the optical theorem
- RHS can be calculated by model (chiral unitary approach)

Application to chiral unitary approach

Single-channel chiral unitary approach

Single-channel scattering amplitude: masses M and m

$$
\begin{aligned}
& T(W)=\frac{1}{1-V(W) G(W ; a)} V(W) \\
& V(W)=C(W-M)
\end{aligned}
$$

Change of subtraction constant
<--> introduction of a pole term in the interaction
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

$$
\begin{aligned}
& a \rightarrow a-\Delta a \\
& V(W) \rightarrow \tilde{V}(W)=C(W-M)-C \frac{(W-M)^{2}}{\left(W-M_{\mathrm{eff}}\right)}, \quad M_{\mathrm{eff}}=M+\frac{(4 \pi)^{2}}{2 M C \Delta a}
\end{aligned}
$$

We should define the benchmark of the subtraction constant --> Natural renormalization constant $a_{\text {natural }}$

If $a_{\text {natural }}$ corresponds to purely composite case, then Meff corresponds to the mass of the bare state $\mathrm{M}_{\text {во }}$

Application to chiral unitary approach

Single-channel chiral unitary approach

We use the model-independent formula

$$
1-Z=2 \pi^{2} \sqrt{2 \mu^{3}} \frac{g_{W}^{2}}{\sqrt{B}}
$$

We need to calculate the coupling g and binding energy B

- condition for the bound state: $\mathbf{M}_{\mathrm{B}}=\mathbf{M}+\mathbf{m}$ - \mathbf{B}

$$
1-C\left(M_{B}-M\right) G\left(M_{B} ; a\right)=0
$$

--> system can be characterized by ($\mathrm{M}_{\mathrm{B}}, \mathrm{a}$) or ($\mathrm{M}_{\mathrm{B}}, \mathrm{M}_{\mathrm{BO}}$)

- coupling constant: residue of the pole at $\mathrm{M}_{\mathbf{B}}$

$$
\left[g\left(M_{B} ; a\right)\right]^{2}=\lim _{W \rightarrow M_{B}}\left(W-M_{B}\right) T(W)=-\frac{M_{B}-M}{G\left(M_{B} ; a\right)+\left(M_{B}-M\right) G^{\prime}\left(M_{B}\right)}
$$

- normalization of the amplitude (just a kinematical factor)

$$
1-Z=\frac{M\left|\lambda^{1 / 2}\left(M_{B}^{2}, M^{2}, m^{2}\right)\right|}{16 \pi M_{B}^{2}\left(M+m-M_{B}\right)} g^{2}\left(M_{B} ; a\right) \quad \text { (for small } \mathbf{B}=\mathbf{M}+\mathbf{m}-\mathbf{M}_{\mathbf{B}} \text {) }
$$

Application to chiral unitary approach

Numerical analysis

Compositeness of the bound state in chiral unitary approach

1) B dependence with $\mathrm{M}_{\mathrm{B} 0}->\infty$ ($\mathrm{a}=\mathbf{a}_{\text {natural }}$)

$-\mathrm{M}_{\mathrm{B}}->\infty: \mathbf{Z} \sim 0$
$-\mathrm{Z}=0$ at $\mathrm{B}=0$

- large B behavior is not justified by the approximation

Numerical analysis

Compositeness of the bound state in chiral unitary approach
2) $M_{B 0}$ dependence with $B=10 \mathrm{MeV}$

- $\mathrm{M}_{\mathrm{B} 0}$-> M_{B} : Z -> 1
- Mass difference of M_{B} and M_{B} : self-energy of bare state --> large if the composite component is large

We study the compositeness of the particles

We apply to the bound state in chiral unitary model to check the natural renormalization condition
$M_{B 0} \rightarrow \infty\left(\mathrm{a}=\mathrm{a}_{\text {natural }}\right): \mathbf{Z} \sim 0$, composite $M_{B 0} \rightarrow M_{B}: Z \sim 1$, elementary
: anatural is a good benchmark
T. Hyodo, D. Jido, A. Hosaka, in preparation

Summary

Summary

We derive the exact form of the compositeness of a bound state in terms of the scattering amplitude

\because

 $=$
(
里

)

8

\qquad
Summary

$\stackrel{N}{2}$ 3

