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~ 160 mesons~ 130 baryons

∼ 1
300

!

Constituent quark model systematically 
reproduces the spectra by qqq and qbar-q.

Exotic hadrons: exceptions to the qqq/qbar-q 
+ more than four quarks

Observed hadronic states (PDG2006)
All states come from QCD Lagrangian

Introduction

Hadron spectroscopy
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Structure of hadron resonances
Example) baryon excited state

Excited states 
= resonances in hadron scattering

Exotic structure near threshold?
c.f. 12C Hoyle state
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Study of the internal structure
Number of quarks and antiquarks are not conserved.

--> model-independent and quantitative distinction?

Introduction

How to investigate the internal structure?

� qqq | qqq qq̄ � �= 0

- Comparison of model calculation v.s. experiments
  (mass, width, decay properties, etc.)

- Extrapolation to the ideal world, change the environment
  (large Nc, symmetry restoration, etc.)

  : Any model can describe data with appropriate corrections
  : Model-dependent definition

  : Structure may change during the extrapolation
  : Qualitative discussion only

|B � = N3| qqq � + N5| qqq qq̄ � + N7| qqq qq̄ qq̄ � + . . .
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Weinbergʼs study of the deuteron structure
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・natural renormalization scheme
・Z as “compositeness”

・Field renormalization constant Z
・relation to couplings and observables

S. Weinberg, Phys. Rev. 137 B672-B678 (1965)

T. Hyodo, D. Jido, A. Hosaka, PRC78, 025203 (2008) + in preparation
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Main result: theorem
Weinbergʼs study of the deuteron structure

N
N|deuteron� = or

<-- Experiments

Z: probability of finding deuteron in a bare elementary state
Z = 0 Z = 1

∉ NN model space
~ elementary particle

-->  deuteron is almost composite!
as = +5.41 [fm], re = +1.75 [fm], R ≡ (2µB)−1/2 = 4.31 [fm]

⇒ Z � 0.2

For a bound state with small binding energy, the following 
equation should be satisfied model independently:

as: scattering length
re: effective range
R: deuteron radius (binding energy)

as =
�
2(1− Z)
2− Z

�
R +O(m−1

π ), re =
�
−Z

1− Z

�
R +O(m−1

π )
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Derivation of the theorem
The theorem is derived in two steps:

Weinbergʼs study of the deuteron structure

Step 1 (Sec. II): Z --> p-n-d coupling constant g

ρ = 4π
�

2µ3g2 =
2
√

B(1− Z)
πρ

Step 2 (Sec. III): coupling constant g --> as, re

as = 2R

�
1 +

2
√

B

πρg2

�
re = R

�
1− 2

√
B

πρg2

�

Assumption: B is sufficiently smaller than the typical energy 
scale of the NN interaction 

--> uncertainty for order R quantity: mπ-1

p ∼ mπ, B � m2
π/2µ ⇔ R2 � m2

π
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Definition of the probability Z
Hamiltonian of NN system: free + interaction V

en
er

gy

d0

free

d V

full

Weinbergʼs study of the deuteron structure

H = H0 + V

Complete set for free Hamiltonian: bare |d0 > + continuum

(original, d0: sum of discrete states, k: α)

1 = | d0 �� d0 | +
�

dk| k ��k |

H0| d0 � = E0| d0 �, H0|k � = E(k)|k �

Physical deuteron |d> : eigenstate of full Hamiltonian
(H0 + V )| d � = −B| d �

Z: overlap of d and d0 
(wavefunction renormalization factor)

Z ≡ |� d0 | d �|2

| d � =
√

Z| d0 �+
√

1− Z

�
dk| k �
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p-n-d coupling constant
After some algebra, we arrive at

1
(E(p) + B)2

g(p)B = −3

p

d

p

n

V k

Weinbergʼs study of the deuteron structure

1 − Z =
�

dk
|�k |V | d �|2

[E(k) + B]2
�k |V | d � = g(k) :

Typical energy scale E0: below E0, coupling is constant
 (NN scattering :                  )�k |V | d � = g(k) ∼ g for |E(k)| ≤ E0 E0 ≈ m2

π/2µ

Assumption: B � E0

⇒ 1− Z ∼ g2

�
dk

[E(k) + B]2

= g2ρ

� ∞

0

√
E dE

[E + B]2

ρ = 4π
�

2µ3

Integrate analytically

g2 =
2
√

B(1− Z)
πρ
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Scattering equations
The Lippmann-Schwinger equation

(Chew-Goldberger solution)

Weinbergʼs study of the deuteron structure

T (W ) = V + V
1

W −H0
T (W )

⇒ T (W ) = V + V
1

W −H
V

Complete set for full Hamiltonian (asymptotic completeness)
1 = | d �� d | +

�
dk| k, in ��k, in | V | k, in � = T | k �

Tk�k(W ) = Vk�k +
�k� |V | d �� d |V | k �

W + B
+

�
dk�� �k� |V | k��, in ��k��, in |V | k �

W − E(k��)

Setting                    , we obtain the Low equation

So far no approximations.

W = E(k) + i�

Tk�k = Vk�k +
�k� |V | d �� d |V | k �

E(k) + B
+

�
dk�� Tk�k��Tk��k

E(k) − E(k��) + i�
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Solution for the scattering equation
The same assumption: B << E0, external energy E << E0

Weinbergʼs study of the deuteron structure

�k� |V | d �� d |V | k �
E(k) + B

∼ g2

E(k) + B
∝ 1√

B
� Vk�k

We neglect the 1st term (information of V is lost!!).
Tk�k =

g2

E(k) + B
+

�
dk�� Tk�k��Tk��k

E(k)− E(k��) + i�

S-wave scattering (no angular dependence)

t(E) =
g2

E + B
+ ρ

� ∞

0
dE��

√
E��|t(E)|2

E − E�� + i�

Tk�k → t
�
E(k)

�
δk�k

The solution of the integral equation (well-known? We should 
solve t-1(E) using optical theorem and analyticity)

t(E) =
�
E + B

g2
+

πρ(B − E)
2
√

B
+ iπρ

√
E

�−1
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Amplitude, phase shift, and scattering length
The result of low-energy scattering amplitude

Weinbergʼs study of the deuteron structure

t(E) =
�
E + B

g2
+

πρ(B − E)
2
√

B
+ iπρ

√
E

�−1

S-wave phase shift
e2iδ(E) = 1− 2iπρ

√
Et(E)

cot δ = − 1
πρ
√

E

�
E + B

g2
+

πρ(B − E)
2
√

B

�

Scattering length as, effective range re

k cot δ = − 1
as

+ re
k2

2
, E =

k2

2µ
, R =

1√
2µB

We obtain the final result (no expansion needed)

as = 2R

�
1 +

2
√

B

πρg2

�
re = R

�
1− 2

√
B

πρg2

�



For a bound state with small binding energy, the following 
equation should be satisfied model independently:
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Main result: theorem

N
N|deuteron� = or

Z: probability of finding deuteron in a bare elementary state
Z = 0 Z = 1

- coupling constant <--> Z

- scattering length, effective range <--> Z

Weinbergʼs study of the deuteron structure

g2 =
2
√

B(1− Z)
πρ

as =
�
2(1− Z)
2− Z

�
R +O(m−1

π ), re =
�
−Z

1− Z

�
R +O(m−1

π )
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Description of S = -1, KN s-wave scattering: Λ(1405) in I=0
Chiral unitary approach

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Interaction <-- chiral symmetry

- Amplitude <-- unitarity in coupled channels

T

= +
T

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), .... many others

It works successfully, also in S=0 sector, meson-meson 
scattering sectors, systems including heavy quarks, ...

chiral cutoff
T =

1
1− V G

V

Application to chiral unitary approach
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Natural renormalization condition
Conditions for natural renormalization

We regard this condition as the exclusion of the CDD pole 
contribution from G.

“a” is uniquely determined such that

- Loop function G should be negative below threshold.
- T matches with V at low energy scale.

G(
√

s = MT ) = 0 ⇔ T (MT ) = V (MT )

anaturalsubtraction constant:

Application to chiral unitary approach

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

- Λ(1405) is dominated by meson-baryon structure
- N(1535) requires some additional component

We expect that Z should be zero or small for 
How to check? --> calculate the coupling constant g

anatural



Single-channel problem: MT and m
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Field renormalization constant

T =
1

1− V G(a)
V

2 parameters:

V = − C

2f2
(
√

s−MT ) = C̃(
√

s−MT )

(C̃, a)

--> bound state can be characterized by        or(C̃, a) (a,MB)

Check the Z factor in natural renormalization scheme
from the residue of the pole

g2(MB ; a) = lim√
s→MB

(
√

s−MB)T (
√

s)

For the system with a bound state

:relation among C̃, a, MB

1− V G|√s=MB
= 1− C̃(MB −MT )G(MB ; a) = 0

Application to chiral unitary approach



The residue can be calculated analytically:
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Field renormalization constant
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a = a_natural

g2(MB ; a) = − MB −MT

G(MB ; a) + (MB −MT )G�(MB)

1− Z =

�
2mMT

(MT + m)(MT + m−MB)
MT

8πMB
g2(MB ; a)

(a,MB)

valid for small 
B = (MT + m) - MB

Application to chiral unitary approach
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Summary 1

Field renormalization constant Z: 
quantitative measure of compositeness

For small B, Z is related to the coupling 
constant and scattering observables 
model independently.

Weinbergʼs study of the deuteron structure

Z = 0 Z = 1

Hadronic molecule

S. Weinberg, Phys. Rev. 137 B672-B678 (1965)
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Natural renormalization scheme

Residue of the pole --> coupling constant
natural scheme corresponds to Z ~ 0
--> composite particle is generated

T. Hyodo, D. Jido, A. Hosaka, in preparation

Hadronic molecule

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Application to chiral unitary approach
Summary 2

exclude CDD pole contribution from 
the loop function to generate purely 
molecule resonance


