Hadronic molecule resonances

Tetsuo Hyodo^a,

Tokyo Institute of Technology^a

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Introduction

Hadron spectroscopy

Observed hadronic states (PDG2006) All states come from QCD Lagrangian

Introduction

Structure of hadron resonances

Example) baryon excited state

Excited states = resonances in hadron scattering

Exotic structure near threshold? c.f. ¹²C Hoyle state

Introduction

Study of the internal structure

Number of quarks and antiquarks are not conserved.

 $|B\rangle = \mathcal{N}_3 |qqq\rangle + \mathcal{N}_5 |qqq q\bar{q}\rangle + \mathcal{N}_7 |qqq q\bar{q} q\bar{q}\rangle + \dots$

 $\langle \, qqq \, | \, qqq \, \, q\bar{q} \, \rangle \neq 0$

How to investigate the internal structure?

- Comparison of model calculation v.s. experiments (mass, width, decay properties, etc.)
 - : Any model can describe data with appropriate corrections
 - : Model-dependent definition
- Extrapolation to the ideal world, change the environment (large Nc, symmetry restoration, etc.)
 - : Structure may change during the extrapolation
 - : Qualitative discussion only

--> model-independent and quantitative distinction?

Contents

Introduction Weinberg's study of the deuteron structure Field renormalization constant Z relation to couplings and observables S. Weinberg, Phys. Rev. 137 B672-B678 (1965) **Application to chiral unitary approach** natural renormalization scheme Z as "compositeness"

T. Hyodo, D. Jido, A. Hosaka, PRC78, 025203 (2008) + in preparation

Z: probability of finding deuteron in a bare elementary state

For a bound state with small binding energy, the following equation should be satisfied model independently:

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right]R + \mathcal{O}(m_\pi^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right]R + \mathcal{O}(m_\pi^{-1})$$

a_s: scattering length r_e: effective range <-- Experiments R: deuteron radius (binding energy)

 $a_s = +5.41 \text{ [fm]}, \quad r_e = +1.75 \text{ [fm]}, \quad R \equiv (2\mu B)^{-1/2} = 4.31 \text{ [fm]}$

 $\Rightarrow Z \lesssim 0.2$ --> deuteron is almost composite!

Derivation of the theorem

The theorem is derived in two steps:

Step 1 (Sec. II): Z --> p-n-d coupling constant g

$$g^2 = \frac{2\sqrt{B}(1-Z)}{\pi\rho}$$

$$\rho = 4\pi \sqrt{2\mu^3}$$

Step 2 (Sec. III): coupling constant g --> a_s, r_e

$$a_s = 2R\left[1 + \frac{2\sqrt{B}}{\pi\rho g^2}
ight]$$
 $r_e = R\left[1 - \frac{2\sqrt{B}}{\pi\rho g^2}
ight]$

Assumption: B is sufficiently smaller than the typical energy scale of the NN interaction

$$p \sim m_{\pi}, \quad B \ll m_{\pi}^2/2\mu \quad \Leftrightarrow \quad R^2 \gg m_{\pi}^2$$

--> uncertainty for order R quantity: m_{π}^{-1}

Definition of the probability Z

Hamiltonian of NN system: free + interaction V

 $\mathcal{H} = \mathcal{H}_0 + V$

Complete set for free Hamiltonian: bare Id₀ > + continuum

$$1 = |d_0\rangle \langle d_0| + \int d\boldsymbol{k} |\boldsymbol{k}\rangle \langle \boldsymbol{k}|$$

 $\mathcal{H}_0 | d_0 \rangle = E_0 | d_0 \rangle, \quad \mathcal{H}_0 | \boldsymbol{k} \rangle = E(\boldsymbol{k}) | \boldsymbol{k} \rangle$

(original, d₀: sum of discrete states, k: α)

Physical deuteron Id> : eigenstate of full Hamiltonian

$$\left(\mathcal{H}_0 + V\right) | d \rangle = -B | d \rangle$$

Z: overlap of d and d₀ (wavefunction renormalization factor)

$$Z \equiv |\langle d_0 \, | \, d \, \rangle|^2$$

$$|\,d\,
angle = \sqrt{Z} |\,d_0\,
angle + \sqrt{1-Z}\int dm{k} |\,m{k}\,
angle$$

p-n-d coupling constant

After some algebra, we arrive at

$$1 - Z = \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | d \rangle|^2}{[E(\mathbf{k}) + B]^2} \qquad \langle \mathbf{k} | V | d \rangle = g(\mathbf{k}) : \underbrace{\qquad}_{d} \underbrace{\qquad}_{n}$$

Typical energy scale E₀: below E₀, coupling is constant

 $\langle \mathbf{k} | V | d \rangle = g(\mathbf{k}) \sim g \text{ for } |E(\mathbf{k})| \leq E_0 \quad \text{(NN scattering : } E_0 \approx m_\pi^2/2\mu \text{)}$

n

Scattering equations

The Lippmann-Schwinger equation

$$T(W) = V + V \frac{1}{W - \mathcal{H}_0} T(W)$$

 $\Rightarrow T(W) = V + V \frac{1}{W - \mathcal{H}} V \qquad \text{(Chew-Goldberger solution)}$

Complete set for full Hamiltonian (asymptotic completeness)

$$1 = |d\rangle \langle d| + \int d\mathbf{k} |\mathbf{k}, \text{in}\rangle \langle \mathbf{k}, \text{in} | \qquad V |\mathbf{k}, \text{in}\rangle = T |\mathbf{k}\rangle$$
$$T_{\mathbf{k}'\mathbf{k}}(W) = V_{\mathbf{k}'\mathbf{k}} + \frac{\langle \mathbf{k}' |V| d\rangle \langle d|V| \mathbf{k}\rangle}{W + B} + \int d\mathbf{k}'' \frac{\langle \mathbf{k}' |V| \mathbf{k}'', \text{in}\rangle \langle \mathbf{k}'', \text{in} |V| \mathbf{k}\rangle}{W - E(\mathbf{k}'')}$$

Setting $W = E(\mathbf{k}) + i\epsilon$, we obtain the Low equation

$$T_{\boldsymbol{k}'\boldsymbol{k}} = V_{\boldsymbol{k}'\boldsymbol{k}} + \frac{\langle \, \boldsymbol{k}' \, | V | \, d \, \rangle \langle \, d \, | V | \, \boldsymbol{k} \, \rangle}{E(\boldsymbol{k}) + B} + \int d\boldsymbol{k}'' \frac{T_{\boldsymbol{k}'\boldsymbol{k}''}T_{\boldsymbol{k}''\boldsymbol{k}}}{E(\boldsymbol{k}) - E(\boldsymbol{k}'') + i\epsilon}$$

So far no approximations.

Solution for the scattering equation

The same assumption: B << E₀, external energy E << E₀

$$\frac{\langle \mathbf{k}' | V | d \rangle \langle d | V | \mathbf{k} \rangle}{E(\mathbf{k}) + B} \sim \frac{g^2}{E(\mathbf{k}) + B} \propto \frac{1}{\sqrt{B}} \gg V_{\mathbf{k}'\mathbf{k}}$$

We neglect the 1st term (information of V is lost!!).

$$T_{\boldsymbol{k}'\boldsymbol{k}} = \frac{g^2}{E(\boldsymbol{k}) + B} + \int d\boldsymbol{k}'' \frac{T_{\boldsymbol{k}'\boldsymbol{k}''}T_{\boldsymbol{k}''\boldsymbol{k}}}{E(\boldsymbol{k}) - E(\boldsymbol{k}'') + i\epsilon}$$

S-wave scattering (no angular dependence)

$$T_{\mathbf{k}'\mathbf{k}} \to t[E(\mathbf{k})]\delta_{\mathbf{k}'\mathbf{k}}$$
$$t(E) = \frac{g^2}{E+B} + \rho \int_0^\infty dE'' \frac{\sqrt{E''}|t(E)|^2}{E-E''+i\epsilon}$$

The solution of the integral equation (well-known? We should solve t⁻¹(E) using optical theorem and analyticity)

$$t(E) = \left[\frac{E+B}{g^2} + \frac{\pi\rho(B-E)}{2\sqrt{B}} + i\pi\rho\sqrt{E}\right]^{-1}$$

Amplitude, phase shift, and scattering length

The result of low-energy scattering amplitude

$$t(E) = \left[\frac{E+B}{g^2} + \frac{\pi\rho(B-E)}{2\sqrt{B}} + i\pi\rho\sqrt{E}\right]^{-1}$$

S-wave phase shift

$$e^{2i\delta(E)} = 1 - 2i\pi\rho\sqrt{E}t(E)$$
$$\cot\delta = -\frac{1}{\pi\rho\sqrt{E}} \left[\frac{E+B}{g^2} + \frac{\pi\rho(B-E)}{2\sqrt{B}}\right]$$

Scattering length as, effective range re

$$k \cot \delta = -\frac{1}{a_s} + r_e \frac{k^2}{2}, \quad E = \frac{k^2}{2\mu}, \quad R = \frac{1}{\sqrt{2\mu B}}$$

We obtain the final result (no expansion needed)

$$a_s = 2R\left[1 + \frac{2\sqrt{B}}{\pi\rho g^2}
ight]$$
 $r_e = R\left[1 - \frac{2\sqrt{B}}{\pi\rho g^2}
ight]$

Z: probability of finding deuteron in a bare elementary state

For a bound state with small binding energy, the following equation should be satisfied model independently:

coupling constant <--> Z

$$g^2 = \frac{2\sqrt{B}(1-Z)}{\pi\rho}$$

scattering length, effective range <--> Z

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right] R + \mathcal{O}(m_{\pi}^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right] R + \mathcal{O}(m_{\pi}^{-1})$$

Chiral unitary approach

Description of S = -1, $\overline{K}N$ s-wave scattering: $\Lambda(1405)$ in I=0

- Interaction <-- chiral symmetry

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

- Amplitude <-- unitarity in coupled channels

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),

- E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
- J.A. Oller, U.G. Meissner, Phys. Lett. B500, 263 (2001),
- M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully, also in S=0 sector, meson-meson scattering sectors, systems including heavy quarks, ...

Natural renormalization condition

- **Conditions for natural renormalization**
 - Loop function G should be negative below threshold.
 - T matches with V at low energy scale.
- "a" is uniquely determined such that

 $G(\sqrt{s} = M_T) = 0 \quad \Leftrightarrow \quad T(M_T) = V(M_T)$

subtraction constant: $a_{natural}$

We regard this condition as the exclusion of the CDD pole contribution from G.

- Λ(1405) is dominated by meson-baryon structure
- N(1535) requires some additional component

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

We expect that Z should be zero or small for $a_{natural}$ How to check? --> calculate the coupling constant g

Field renormalization constant

Single-channel problem: M_T and m

$$T = \frac{1}{1 - VG(a)}V$$
$$V = -\frac{C}{2f^2}(\sqrt{s} - M_T) = \tilde{C}(\sqrt{s} - M_T)$$

- **2 parameters:** (\tilde{C}, a)
- For the system with a bound state $1 - VG|_{\sqrt{s}=M_B} = 1 - \tilde{C}(M_B - M_T)G(M_B; a) = 0$:relation among \tilde{C}, a, M_B
- --> bound state can be characterized by (\tilde{C}, a) or (a, M_B)

Check the Z factor in natural renormalization scheme from the residue of the pole

$$g^2(M_B; a) = \lim_{\sqrt{s} \to M_B} (\sqrt{s} - M_B) T(\sqrt{s})$$

Field renormalization constant

The residue can be calculated analytically:

$$g^{2}(M_{B};a) = -\frac{M_{B} - M_{T}}{G(M_{B};a) + (M_{B} - M_{T})G'(M_{B})} \quad \longleftarrow \quad (a, M_{B})$$

$$1 - Z = \sqrt{\frac{2mM_T}{(M_T + m)(M_T + m - M_B)}} \frac{M_T}{8\pi M_B} g^2(M_B; a) \quad \text{valid for small} \\ \mathbf{B} = (\mathbf{M}_T + \mathbf{m}) - \mathbf{M}_B$$

1) a = a_{natural}, vary B

2) B = 10 MeV, vary a

Summary 1

Weinberg's study of the deuteron structure

Field renormalization constant Z: quantitative measure of compositeness

For small B, Z is related to the coupling constant and scattering observables model independently.

S. Weinberg, Phys. Rev. 137 B672-B678 (1965)

Summary 2

Application to chiral unitary approach

Natural renormalization scheme

exclude CDD pole contribution from the loop function to generate purely molecule resonance

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

3

Residue of the pole --> coupling constant natural scheme corresponds to Z ~ 0 --> composite particle is generated

T. Hyodo, D. Jido, A. Hosaka, in preparation