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Chiral symmetry breaking in hadron physics

Consequence of chiral symmetry breaking in hadron physics

Chiral symmetry and its breaking

Underlying QCD <==> observed hadron phenomena
SU(3)R ⊗ SU(3)L → SU(3)V

Introduction to s-wave chiral dynamics

Chiral symmetry: QCD with massless quarks

- constraints on the NG-boson--hadron interaction
  low energy theorems <-- current algebra
  systematic low energy (m,p/4πfπ) expansion: ChPT

- appearance of the Nambu-Goldstone (NG) boson

- dynamical generation of hadron masses
mπ ∼ 140 MeV

Mp ∼ 1 GeV ∼ 3Mq, Mq ∼ 300 MeV v.s. 3− 7 MeV
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s-wave low energy interaction
Low energy NG boson (Ad) + target hadron (T) scattering 

Projection onto s-wave: Weinberg-Tomozawa (WT) term
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

Low energy theorem: leading order term in ChPT

energy dependence (derivative coupling)
decay constant of π (gV=1)

Introduction to s-wave chiral dynamics

Vij = −Cij

4f2
(ωi + ωj)

α

�

T (p)

Ad(q)
=

1
f2

p · q

2MT
�FT · FAd�α + O

��
m

MT

�2
�

Group theoretical structure and flavor SU(3) symmetry 
determines the sign and the strength of the interaction

Cij =
�

α

Cα,T

�
8 T α

IMi , YMi ITi , YTi I, Y

��
8 T α

IMj , YMj ITj , YTj I, Y

�

Cα,T = �2FT · FAd�α = C2(T ) − C2(α) + 3
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Scattering amplitude and unitarity
Unitarity of S-matrix: Optical theorem

Im [T−1(s)] =
ρ(s)
2

phase space of two-body state

General amplitude by dispersion relation

T−1(
√

s) =
�

i

Ri√
s−Wi

+ ã(s0) +
s− s0

2π

� ∞

s+
ds�

ρ(s�)
(s� − s)(s� − s0)

Scattering amplitude

V? chiral expansion of T, (conceptual) matching with ChPT
T (1) = V (1), T (2) = V (2), T (3) = V (3) − V (1)GV (1), ...

Amplitude T: consistent with chiral symmetry + unitarity

Ri, Wi, a: to be determined by chiral interaction

Identify dispersion integral = loop function G, the rest = V-1 

T (
√

s) =
1

V −1(
√

s)−G(
√

s; a)

Introduction to s-wave chiral dynamics
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Description of S = -1, KN s-wave scattering: Λ(1405) in I=0
Chiral unitary approach

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Interaction <-- chiral symmetry

- Amplitude <-- unitarity in coupled channels

T

= +
T

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), .... many others

It works successfully, also in S=0 sector, meson-meson 
scattering sectors, systems including heavy quarks, ...

chiral cutoff
T =

1
1− V G

V

Introduction to s-wave chiral dynamics
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T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, PRC68, 018201 (2003); PTP 112, 73 (2004)
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The simplest model (1 parameter) v.s. experimental data
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γ Rc Rn

exp. 2.36 0.664 0.189

theo. 1.80 0.624 0.225

Total cross section of K-p scattering Branching ratio

πΣ spectrum

Λ(1405)

Good agreement with data above, at, and below KN threshold
more quantitatively --> fine tuning, higher order terms,...

Introduction to s-wave chiral dynamics
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Chiral dynamics for non-exotic hadrons

Λ(1405) Λ(1670) Σ(1670)
N(1535) Ξ(1620) Ξ(1690)
Λ(1520) Ξ(1820) Σ(1670)
Λc(2880) Λc(2593) Ds(2317)

σ(600) κ(900) f0(980) a0(980)

b1(1235) h1(1170) h1(1380) a1(1260)
f1(1285) K1(1270) K1(1440)

JP = 1/2−

JP = 3/2−

JP = 1+

JP = 0+

Hadron excited states in NG boson-hadron scattering

many references....

Introduction to s-wave chiral dynamics

Questions
- No particle with exotic quantum number. Why?
- Are they all hadronic molecule?
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Observed hadrons in experiments (PDG06):

~160 mesons
~130 baryons

Exotic hadrons in hadron spectrum

∼ 1
300

!

Exotic hadrons

Exotic hadrons are indeed exotic !!



We should look at
1) property of the interaction in exotic channel
   <-- exotic channel?
2) strength of the attraction to form a bound state
   <-- critical coupling strength?

10

Exotic hadrons in chiral dynamics
Exotic hadrons

Exotic hadrons: more than four valence quarks
ex) Θ+, Ξ(Φ)--, Θc(DN bound state), Tcc, Hc, H,...
- hard to observe experimentally
- easy to generate theoretically (in general)
  quark model, soliton model, ..., QCD?

s-wave chiral dynamics 
--> many resonances but no exotic state

Let us study the SU(3) symmetric limit for simplicity
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s-wave low energy interaction
Weinberg-Tomozawa interaction in SU(3) limit

Exotic hadrons

Vα,T = −Cα,T
ω

2f2

exotic channel --> large representation --> large Casimir

α: representation of total system ~ resonance.
If the Casimir for α is large, the interaction is repulsive.

α

�
Ad

T

Cα,T = �2FT · FAd�α = C2(T ) − C2(α) + 3

c.f. Vector meson exchange
FT

FAd

α

�

--> Result is generic for flavor current exchange interaction

∝ �FT · FAd�α
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Coupling strengths: Examples
Coupling strengths (positive --> attractive interaction)
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α

Exotic hadrons

- Exotic channels: mostly repulsive
- Attractive interaction: C = 1

Next question: what do we have in general case?

Cα,T = �2FT · FAd� = C2(T ) − C2(α) + 3
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Coupling strengths : General expression

sign
repulsive

attractive
attractive
attractive
attractive
attractive

For a general target
α ∈ [p, q]⊗ [1, 1] Cα,T

[p + 1, q + 1] −p− q

[p + 2, q − 1] 1− p

[p− 1, q + 2] 1− q

[p, q]
[p, q]

3
3

[p + 1, q − 2] 3 + q

[p− 2, q + 1] 3 + p

[p− 1, q − 1] 4 + p + q

Exotic hadrons

- Strength should be an integer.
- Sign is determined for most cases.

Next question: which is the exotic channel?

T = [p, q]
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Exoticness and exotic channel
Exoticness E: minimal number of extra qq 
for [p,q] representation with baryon number B

Exotic hadrons

Exotic channel:
<-- resonance is more exotic than the target α

T

∆E = Eα − ET = +1

E = �θ(�) + νθ(ν), � ≡ p + 2q

3
−B, ν ≡ p− q

3
−B

repulsiveα = [p + 1, q + 1] : Cα,T = −p− q

Universal attraction for the exotic channel
Cexotic = 1 T = [p, 0], α = [p− 1, 2]

not considered here
α = [p + 2, q − 1] : Cα,T = 1− p

p = 0 ⊕ νT ≥ 0 ⇒attraction: BT ≤ −q/3

OK!
α = [p− 1, q + 2] : Cα,T = 1− q

attraction: q = 0 ⊕ νT ≤ 0 ⇒ BT ≥ p/3
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Renormalization and bound states
Scattering amplitude

Exotic hadrons

Vα = − ω

2f2
Cα,T

Tα(
√

s) =
1

1− Vα(
√

s)G(
√

s)
Vα(
√

s)

Cutoff parameter in the loop function
<-- renormalization condition

G(µ) = 0 ⇔ T (µ) = V (µ) at µ = MT

exclusion of the genuine quark states from the loop function
(more detail in latter part of this seminar)
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Condition to have a bound state
1− V (Mb)G(Mb) = 0 MT < Mb < MT + m

--> critical value of the coupling strength C
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Critical coupling strength
Exotic hadrons

Behavior of the function
--> monotonically decreasing

1− V (
√

s)G(
√

s)

Fixed
G(MT ) = 0

1− V G = 1

Critical attraction: 1− V G = 0 at
√

s = MT + m

Ccrit =
2f2

m[−G(MT + m)]

MT MT + m
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Critical attraction and exotic attraction

bound 
state Cexotic = 1

N ΛcD BΔ

Exotic hadrons

Critical coupling strength

The attraction is not enough to generate a bound state.
Cexotic < Ccrit

m = 368 MeV and f = 93 MeV
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Summary 1: SU(3) limit
We study the exotic bound states in s-wave 
chiral dynamics in flavor SU(3) limit.

The interactions in exotic channels are in 
most cases repulsive.
There are attractive interactions in exotic 
channels, with universal and the smallest 
strength:
The strength is not enough to generate a 
bound state: 

Cexotic = 1

Cexotic < Ccrit

The result is model independent as far as 
we respect chiral symmetry.

Exotic hadrons
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Summary 2: Physical world

The repulsion in exotic channel is generic for flavor 
current exchange interaction.

We do not exclude the exotics which have other origins 
(genuine quark state, soliton rotation,...).
In practice, SU(3) breaking effect, higher order terms,... 

In Nature, it is difficult to generate exotic 
hadrons as in the same way with              
Λ(1405),... based on chiral dynamics.

Exotic hadrons

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006);
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. D75, 034002 (2007)

Pro

Contra
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Classification of resonances
Resonances in two-body scattering

CDD pole: elementary particle, preformed state, ...

Dynamical state: two-body molecule, quasi-bound state, ...

L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956) 

e.g.) Deuteron in NN, positronium in e+e-, ...

e.g.) J/Ψ in e+e-, ...

- Knowledge of interaction (potential)
- Experimental data (cross section, ...)

Hadronic molecule
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Explicit resonance field in V (interaction)
(Known) CDD poles in chiral unitary approach

Is that all? subtraction constant?

U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000)
D. Jido, E. Oset, A. Ramos, Phys. Rev. C66, 055203 (2002)

Contracted resonance propagator in higher order V

G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B321, 311 (1989) 
V. Bernard, N. Kaiser, U.G. Meissner, Nucl. Phys. A615, 483 (1997)

J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D59, 074001 (1999)

Hadronic molecule



22

CDD pole in subtraction constant?
Phenomenological (standard) scheme
 --> V is given, “a” is determined by data

leading order

next to leading order

Natural renormalization scheme
--> fix “a” first, then determine V
to exclude CDD pole contribution from G, 
based on theoretical argument.

“a” represents the effect which is not included in V.
CDD pole contribution in G?

↑pole               ?

T =
1

(V (1))−1 −G(a)

T =
1

(V (1) + V (2))−1 −G(a�)

Hadronic molecule
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Natural renormalization condition
Conditions for natural renormalization

K. Igi, K. Hikasa, Phys. Rev. D59, 034005 (1999)
U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000)

M.F.M. Lutz, E. Kolomeitsev, Nucl. Phys. A700, 193 (2002)

matching with low energy interaction

crossing symmetry (matching with u-channel amplitude)

We regard this condition as the exclusion of the CDD pole 
contribution from G.

“a” is uniquely determined such that

- Loop function G should be negative below threshold.
- T matches with V at low energy scale.

G(
√

s = MT ) = 0 ⇔ T (MT ) = V (MT )

anaturalsubtraction constant:

Hadronic molecule
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Pole in the effective interaction: single channel

pole!

Leading order V : Weinberg-Tomozawa term
C/f2 : coupling constant
no s-wave resonanceVWT = − C

2f2
(
√

s−MT )

↑data fit ↑given↑ChPT
T−1 = V −1

WT −G(apheno) = V −1
natural −G(anatural)

Effective interaction in natural scheme

Vnatural = − C

2f2
(
√

s−MT ) +
C

2f2

(
√

s−MT )2√
s−Meff

Meff = MT −
16π2f2

CMT ∆a
, apheno − anatural

There is always a pole for
- small deviation <=> pole at irrelevant energy scale 
- large deviation <=> pole at relevant energy scale

apheno �= anatural

Hadronic molecule
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Pole in the effective interaction
Pole in the effective interaction (Meff) : pure CDD pole

T−1 = V −1
WT −G(apheno) = V −1

natural −G(anatural)

==> Important CDD pole contribution in N(1535)
Next question: quantitative measure for compositeness?

Difference of interactions
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∆V ≡ Vnatural − VWT

Λ(1405) N(1535)

For Λ(1405):                              irrelevant!
For N(1535):                              relevant?zN∗

eff = 1693± 37i MeV

zΛ∗

eff ∼ 7.9 GeV

Hadronic molecule
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Weinberg’s theorem for deuteron

For a bound state with small binding energy, the following 
equation should be satisfied model independently:

as =
�
2(1− Z)
2− Z

�
R +O(m−1

π ), re =
�
−Z

1− Z

�
R +O(m−1

π )

“Evidence That the Deuteron Is Not an Elementary Particle”

as = +5.41[fm], re = +1.75[fm], R ≡ (2µB)−1/2 = 4.31[fm]

<-- Experiments (observables)

⇒ Z � 0.2 -->  deuteron is composite!

1 = |d0��d0| +
�

dk|k��k|

S. Weinberg, Phys. Rev. 137 B672-B678, (1965)

Z: probability of finding deuteron in a bare elementary state
| d � =

√
Z| d0 �+

√
1− Z

�
dk| k �

: eigenstates of free Hamiltonian

Hadronic molecule
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Derivation of the theorem
The theorem is derived in two steps:

Step 1 (Sec. II): Z --> p-n-d coupling constant

Step 2 (Sec. III): coupling constant --> as, re

uncertainty for order R=(2μB)1/2 quantity: mπ-1

ρ = 4π
�

2µ3

d

p

n

Vg2 =
2
√

B(1− Z)
πρ

as = 2R

�
1 +

2
√

B

πρg2

�
re = R

�
1− 2

√
B

πρg2

�

The coupling constant g2 can be calculated by the residue of 
the pole in chiral unitary approach ==> Z?

--> study Z in natural renormalization scheme 

Hadronic molecule



Single-channel problem: MT and m
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Field renormalization constant

T =
1

1− V G(a)
V

2 parameters:

V = − C

2f2
(
√

s−MT ) = C̃(
√

s−MT )

(C̃, a)

--> system can be characterized by        or(C̃, a) (a,MB)

Check the Z factor in natural renormalization scheme
from the residue of the pole

g2(MB ; a) = lim√
s→MB

(
√

s−MB)T (
√

s)

For the system with a bound state

:relation among C̃, a, MB

1− V G|√s=MB
= 1− C̃(MB −MT )G(MB ; a) = 0

Hadronic molecule



The residue can be calculated analytically:
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Field renormalization constant
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G(MB ; a) + (MB −MT )G�(MB)

1− Z =

�
2mMT

(MT + m)(MT + m−MB)
MT

8πMB
g2(MB ; a)

(a,MB)

valid for small 
B = (MT + m) - MB

Hadronic molecule
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Summary: Origin of resonances 

Natural renormalization scheme

Comparison with phenomenology           
--> Pole in the effective interaction

We study the origin (dynamical/CDD) of the 
resonances in the chiral unitary approach

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Exclude CDD pole contribution from 
the loop function, consistent with N/D.

Λ(1405) : predominantly dynamical
N(1535) : dynamical + CDD pole

Hadronic molecule
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Summary: Compositeness of resonances

Field renormalization constant Z: 
quantitative measure of compositeness

Residue of the pole --> coupling constant

We consider a single-channel problem with a 
bound state to study the compositeness

natural scheme corresponds to Z ~ 0
T. Hyodo, D. Jido, A. Hosaka, in preparation

Z = 0 Z = 1

Hadronic molecule


