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Classification of resonances
Resonances in two-body scattering

CDD pole: elementary particle, preformed state, ...

Dynamical state: two-body molecule, quasi-bound state, ...

L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956) 

e.g.) Deuteron in NN, positronium in e+e-, ...

e.g.) J/Ψ in e+e-, ...

- Knowledge of interaction (potential)
- Experimental data (cross section, ...)

Introduction
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Description of S = -1, KN s-wave scattering: Λ(1405) in I=0
Chiral unitary approach

R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Interaction <-- chiral symmetry

- Amplitude <-- unitarity in coupled channels

T

= +
T

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), .... many others

It works successfully, also in S=0 sector, meson-meson 
scattering sectors, systems including heavy quarks, ...

chiral cutoff
(subtraction 
constant)

T =
1

1− V G
V

Chiral unitary approach
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Explicit resonance field in V (interaction)
(Known) CDD poles in chiral unitary approach

Is that all? subtraction constant?

U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000)
D. Jido, E. Oset, A. Ramos, Phys. Rev. C66, 055203 (2002)

Contracted resonance propagator in higher order V

G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B321, 311 (1989) 
V. Bernard, N. Kaiser, U.G. Meissner, Nucl. Phys. A615, 483 (1997)

J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D59, 074001 (1999)

Chiral unitary approach
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CDD pole in subtraction constant?
Phenomenological (standard) scheme
 --> V is given, “a” is determined by data

leading order

next to leading order

Natural renormalization scheme
--> fix “a” first, then determine V
to exclude CDD pole contribution from G, 
based on theoretical argument.

“a” represents the effect which is not included in V.
CDD pole contribution in G?

↑pole               ?

T =
1

(V (1))−1 −G(a)

T =
1

(V (1) + V (2))−1 −G(a�)

Chiral unitary approach
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Natural renormalization condition
Conditions for natural renormalization

K. Igi, K. Hikasa, Phys. Rev. D59, 034005 (1999)
U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000)

M.F.M. Lutz, E. Kolomeitsev, Nucl. Phys. A700, 193 (2002)

matching with low energy interaction

crossing symmetry (matching with u-channel amplitude)

We regard this condition as the exclusion of the CDD pole 
contribution from G.

“a” is uniquely determined such that

- Loop function G should be negative below threshold.
- T matches with V at low energy scale.

G(
√

s = MT ) = 0 ⇔ T (MT ) = V (MT )

Natural renormalization condition

anaturalsubtraction constant:



7

Pole in the effective interaction: single channel

pole!

Leading order V : Weinberg-Tomozawa term
C/f2 : coupling constant
no s-wave resonanceVWT = − C

2f2
(
√

s−MT )

↑data fit ↑given↑ChPT
T−1 = V −1

WT −G(apheno) = V −1
natural −G(anatural)

Effective interaction in natural scheme

Vnatural = − C

2f2
(
√

s−MT ) +
C

2f2

(
√

s−MT )2√
s−Meff

Meff = MT −
16π2f2

CMT ∆a
, apheno − anatural

There is always a pole for
- small deviation <=> pole at irrelevant energy scale 
- large deviation <=> pole at relevant energy scale

apheno �= anatural

Natural renormalization condition
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Pole in the effective interaction
Pole in the effective interaction (Meff) : pure CDD pole

T−1 = V −1
WT −G(apheno) = V −1

natural −G(anatural)

Natural renormalization condition

==> Important CDD pole contribution in N(1535)
Next question: quantitative measure for compositeness?
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For Λ(1405):                              irrelevant!
For N(1535):                              relevant?zN∗

eff = 1693± 37i MeV

zΛ∗

eff ∼ 7.9 GeV
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Weinberg’s theorem for deuteron

For a bound state with small binding energy, the following 
equation should be satisfied model independently:

as =
�
2(1− Z)
2− Z

�
R +O(m−1

π ), re =
�
−Z

1− Z

�
R +O(m−1

π )

“Evidence That the Deuteron Is Not an Elementary Particle”

as = +5.41[fm], re = +1.75[fm], R ≡ (2µB)−1/2 = 4.31[fm]

<-- Experiments (observables)

⇒ Z � 0.2 -->  deuteron is composite!

1 = |d0��d0| +
�

dk|k��k|

S. Weinberg, Phys. Rev. 137 B672-B678, (1965)

Z: probability of finding deuteron in a bare elementary state
| d � =

√
Z| d0 �+

√
1− Z

�
dk| k �

Compositeness: field renormalization constant

: eigenstates of free Hamiltonian
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Derivation of the theorem
The theorem is derived in two steps:

Step 1 (Sec. II): Z --> p-n-d coupling constant

Step 2 (Sec. III): coupling constant --> as, re

uncertainty for order R=(2μB)1/2 quantity: mπ-1

ρ = 4π
�

2µ3

d

p

n

Vg2 =
2
√

B(1− Z)
πρ

as = 2R

�
1 +

2
√

B

πρg2

�
re = R

�
1− 2

√
B

πρg2

�

The coupling constant g2 can be calculated by the residue of 
the pole in chiral unitary approach ==> Z?

--> study Z in natural renormalization scheme 

Compositeness: field renormalization constant



Single-channel problem: MT and m
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Field renormalization constant

T =
1

1− V G(a)
V

2 parameters:

V = − C

2f2
(
√

s−MT ) = C̃(
√

s−MT )

(C̃, a)

--> system can be characterized by        or(C̃, a) (a,MB)

Check the Z factor in natural renormalization scheme
from the residue of the pole

g2(MB ; a) = lim√
s→MB

(
√

s−MB)T (
√

s)

For the system with a bound state

:relation among C̃, a, MB

1− V G|√s=MB
= 1− C̃(MB −MT )G(MB ; a) = 0

Compositeness: field renormalization constant



The residue can be calculated analytically:
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Field renormalization constant
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valid for small MB

Compositeness: field renormalization constant
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Summary: Origin of resonances 

Natural renormalization scheme

Comparison with phenomenology           
--> Pole in the effective interaction

We study the origin (dynamical/CDD) of the 
resonances in the chiral unitary approach

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Exclude CDD pole contribution from 
the loop function, consistent with N/D.

Λ(1405) : predominantly dynamical
N(1535) : dynamical + CDD pole

Summary
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Summary: Compositeness of resonances

Field renormalization constant Z: 
quantitative measure of compositeness

Residue of the pole --> coupling constant

We consider a single-channel problem with a 
bound state to study the compositeness

natural scheme corresponds to Z ~ 0
T. Hyodo, D. Jido, A. Hosaka, in preparation

Z = 0 Z = 1

Summary


