Exotic hadrons and hadronic molecules in s-wave chiral dynamics

Tetsuo Hyodo ${ }^{\text {a }}$,

Daisuke Jido ${ }^{\text {b }}$, and Atsushi Hosaka ${ }^{\text {c }}$

Tokyo Institute of Technology ${ }^{a} \quad$ YITP, Kyoto ${ }^{b} \quad$ RCNP, Osakac supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Contents

Introduction to s-wave chiral dynamics
Exotic hadrons (manifestly-exotic states)

- critical coupling strength

Phys. Rev. Lett. 97, 192002 (2006) + Phys. Rev. D75, 034002 (2007)
Hadronic molecules (crypto-exotic states)

- natural renormalization scheme
- field renormalization Z as "compositeness"

Phys. Rev. C78, 025203 (2008) + in preparation

Summary

8

\square

\square

\qquad

- chiral interaction in exotic channels
)

Introduction to s-wave chiral dynamics

Chiral symmetry breaking in hadron physics

Chiral symmetry: QCD with massless quarks
Consequence of chiral symmetry breaking in hadron physics

- appearance of the Nambu-Goldstone (NG) boson $m_{\pi} \sim 140 \mathrm{MeV}$
- dynamical generation of hadron masses $M_{p} \sim 1 \mathrm{GeV} \sim 3 M_{q}, \quad M_{q} \sim 300 \mathrm{MeV}$ v.s. $3-7 \mathrm{MeV}$
- constraints on the NG-boson--hadron interaction low energy theorems <-- current algebra systematic low energy (m,p/4mfr) expansion: ChPT

Chiral symmetry and its breaking

$$
S U(3)_{R} \otimes S U(3)_{L} \rightarrow S U(3)_{V}
$$

Underlying QCD $<==$ observed hadron phenomena

s-wave low energy interaction

Low energy NG boson (Ad) + target hadron (T) scattering

$$
\alpha\left[\begin{array}{c}
\operatorname{Ad}(q) \vdots \\
T(p) \longrightarrow \mathbf{U}^{\prime} \boldsymbol{\sigma}^{\prime}
\end{array}=\frac{1}{f^{2}} \frac{p \cdot q}{2 M_{T}}\left\langle\boldsymbol{F}_{T} \cdot \boldsymbol{F}_{\mathrm{Ad}}\right\rangle_{\alpha}+\mathcal{O}\left(\left(\frac{m}{M_{T}}\right)^{2}\right)\right.
$$

Projection onto s-wave: Weinberg-Tomozawa (WT) term Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
 decay constant of $\boldsymbol{\pi}(\mathrm{gv}=1)$

$$
\begin{aligned}
& C_{i j}=\sum_{\alpha} C_{\alpha, T}\left(\begin{array}{cc|c}
8 & T & \alpha \\
I_{M_{i}}, Y_{M_{i}} & I_{T_{i}}, Y_{T_{i}} & I, Y
\end{array}\right)\left(\left.\begin{array}{cc}
8 & T \\
I_{M_{j}}, Y_{M_{j}} & I_{T_{j}}, Y_{T_{j}}
\end{array} \right\rvert\, \begin{array}{c}
\alpha \\
I, Y
\end{array}\right) \\
& C_{\alpha, T}=\left\langle 2 \boldsymbol{F}_{T} \cdot \boldsymbol{F}_{\mathrm{Ad}}\right\rangle_{\alpha}=C_{2}(T)-C_{2}(\alpha)+3
\end{aligned}
$$

Group theoretical structure and flavor $\operatorname{SU}(3)$ symmetry determines the sign and the strength of the interaction Low energy theorem: leading order term in ChPT

Scattering amplitude and unitarity

Unitarity of S-matrix: Optical theorem

$$
\operatorname{Im}\left[T^{-1}(s)\right]=\frac{\square(s)}{2} \text { phase space of two-body state }
$$

General amplitude by dispersion relation

$$
T^{-1}(\sqrt{s})=\sum_{i} \frac{R_{i}}{\sqrt{s}-W_{i}}+\tilde{a}\left(s_{0}\right)_{i}+\frac{s-s_{0}}{2 \pi} \int_{s^{+}}^{\infty} d s^{\prime} \frac{\rho\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{0}\right)}
$$

$\mathbf{R}_{\mathrm{i}}, \mathrm{W}_{\mathrm{i}}$, a: to be determined by chiral interaction
Identify dispersion integral $=$ loop function G, the rest $=\mathrm{V}^{-1}$

$$
T(\sqrt{s})=\frac{1}{V^{-1}(\sqrt{s})-G(\sqrt{s} ; a)}
$$

Scattering amplitude
V? chiral expansion of \mathbf{T}, (conceptual) matching with ChPT

$$
T^{(1)}=V^{(1)}, \quad T^{(2)}=V^{(2)}, \quad T^{(3)}=V^{(3)}-V^{(1)} G V^{(1)}, \ldots
$$

Amplitude T: consistent with chiral symmetry + unitarity

Introduction to s-wave chiral dynamics

Chiral unitary approach

Description of $S=-1, \bar{K} N$ s-wave scattering: $\Lambda(1405)$ in $\mathrm{I}=0$

- Interaction <-- chiral symmetry
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Amplitude <-- unitarity in coupled channels
R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)
N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully, also in $\mathrm{S}=0$ sector, meson-meson scattering sectors, systems including heavy quarks, ...

Introduction to s-wave chiral dynamics

The simplest model (1 parameter) v.s. experimental data

Total cross section of K-p scattering

Branching ratio

	γ	$\mathbf{R}_{\mathbf{c}}$	\mathbf{R}_{n}
\exp.	2.36	0.664	0.189
theo.	1.80	0.624	0.225

$\pi \Sigma$ spectrum

T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, PRC68, 018201 (2003); PTP 112, 73 (2004)

Good agreement with data above, at, and below $\bar{K} N$ threshold more quantitatively --> fine tuning, higher order terms,...

Chiral dynamics for non-exotic hadrons

Hadron excited states in NG boson-hadron scattering

light baryon	$J^{P}=1 / 2^{-}$	$\Lambda(1405)$	$\Lambda(1670)$	$\Sigma(1670)$	
		$J^{P}=3 / 2^{-}$	$\Lambda(1535)$	$\Xi(1620)$	$\Xi(1690)$
		$\Xi(1820)$	$\Sigma(1670)$		
heavy		$\Lambda_{c}(2880)$	$\Lambda_{c}(2593)$	$D_{s}(2317)$	
light	$J^{P}=1^{+}$	$b_{1}(1235)$	$h_{1}(1170)$	$h_{1}(1380)$	$a_{1}(1260)$
meson		$f_{1}(1285)$	$K_{1}(1270)$	$K_{1}(1440)$	
---	$J^{P}=0^{+}$	$\sigma(600)$	$\kappa(900)$	$f_{0}(980)$	$a_{0}(980)$

many references....

Questions

- No particle with exotic quantum number. Why?
- Are they all hadronic molecule?

Exotic hadrons in hadron spectrum

Observed hadrons in experiments (PDG06):

Exotic hadrons are indeed exotic !!

Exotic hadrons

Exotic hadrons in chiral dynamics

Exotic hadrons: more than four valence quarks ex) $\boldsymbol{\Theta}^{+}, \equiv(\Phi)^{--}, \boldsymbol{\Theta}_{\mathrm{c}}\left(\overline{\mathrm{D}} \mathbf{N}\right.$ bound state), $\mathrm{T}_{\mathrm{cc}}, \mathrm{H}_{\mathrm{c}}, \mathrm{H}, \ldots$

- hard to observe experimentally
- easy to generate theoretically (in general) quark model, soliton model, ..., QCD?
s-wave chiral dynamics
--> many resonances but no exotic state
We should look at

1) property of the interaction in exotic channel <-- exotic channel?
2) strength to form a bound state <-- renormalization constant?

Let us study the $\mathrm{SU}(3)$ symmetric limit for simplicity

Exotic hadrons

s-wave low energy interaction

Weinberg-Tomozawa interaction in SU(3) limit

$$
\begin{aligned}
& V_{\alpha, T}=-C_{\alpha, T} \frac{\omega}{2 f^{2}} \\
& C_{\alpha, T}=\left\langle 2 \boldsymbol{F}_{T} \cdot \boldsymbol{F}_{\mathrm{Ad}}\right\rangle_{\alpha}=C_{2}(T)-C_{2}(\alpha)+3 \\
& \alpha\left[\begin{array}{l}
\mathrm{Ad} \\
T
\end{array}\right.
\end{aligned}
$$

a: representation of total system \sim resonance. If the Casimir for a is large, the interaction is repulsive. exotic channel --> large representation --> large Casimir c.f. Vector meson exchange

--> Result is generic for flavor current exchange interaction

Exotic hadrons

Coupling strengths: Examples

Coupling strengths (positive --> attractive interaction)

$$
C_{\alpha, T}=\left\langle 2 \boldsymbol{F}_{T} \cdot \boldsymbol{F}_{\mathrm{Ad}}\right\rangle=C_{2}(T)-C_{2}(\alpha)+3
$$

α	$\mathbf{1}$	$\mathbf{8}$	$\mathbf{1 0}$	$\overline{\mathbf{1 0}}$	$\mathbf{2 7}$	$\mathbf{3 5}$	
$T=\mathbf{8}(N, \Lambda, \Sigma, \Xi)$	6	3	0	0	-2		
$T=\mathbf{1 0}\left(\Delta, \Sigma^{*}, \Xi^{*}, \Omega\right)$		6	3		1	-3	
		$\overline{\mathbf{3}}$	$\mathbf{6}$	$\overline{\mathbf{1 5}}$	$\mathbf{2 4}$		
	3	1	-1				

- Exotic channels: mostly repulsive
- Attractive interaction: C = 1

Next question: what do we have in general case?

Coupling strengths : General expression

For a general target $T=[p, q]$

$\alpha \in[p, q] \otimes[1,1]$	$C_{\alpha, T}$	sign
$[p+1, q+1]$	$-p-q$	repulsive
$[p+2, q-1]$	$1-p$	
$[p-1, q+2]$	$1-q$	
$[p, q]$	3	attractive
$[p, q]$	3	attractive
$[p+1, q-2]$	$3+q$	attractive
$[p-2, q+1]$	$3+p$	attractive
$[p-1, q-1]$	$4+p+q$	attractive

- Strength should be an integer.
- Sign is determined for most cases.

Exotic hadrons

Exoticness and exotic channel

Exoticness E: minimal number of extra $q \bar{q}$ for [p, q] representation with baryon number \mathbf{B}

$$
E=\epsilon \theta(\epsilon)+\nu \theta(\nu), \quad \epsilon \equiv \frac{p+2 q}{3}-B, \quad \nu \equiv \frac{p-q}{3}-B
$$

Exotic channel: $\Delta E=E_{\alpha}-E_{T}=+1$
$<-$ resonance is more exotic than the target

$$
\begin{aligned}
& \alpha=[p+1, q+1]: C_{\alpha, T}=-p-q \quad \text { repulsive } \\
& \alpha=[p+2, q-1]: C_{\alpha, T}=1-p
\end{aligned}
$$

$$
\text { attraction: } p=0 \oplus \nu_{T} \geq 0 \Rightarrow B_{T} \leq-q / 3 \text { not considered here }
$$

$$
\alpha=[p-1, q+2]: C_{\alpha, T}=1-q
$$

$$
\text { attraction: } q=0 \oplus \nu_{T} \leq 0 \Rightarrow B_{T} \geq p / 3 \quad \text { OK! }
$$

Universal attraction for the exotic channel

$$
C_{\text {exotic }}=1 \quad T=[p, 0], \quad \alpha=[p-1,2]
$$

Renormalization and bound states

Scattering amplitude

$$
\begin{aligned}
& V_{\alpha}=-\frac{\omega}{2 f^{2}} C_{\alpha, T} \\
& T_{\alpha}(\sqrt{s})=\frac{1}{1-V_{\alpha}(\sqrt{s}) G(\sqrt{s})} V_{\alpha}(\sqrt{s})
\end{aligned}
$$

Cutoff parameter in the loop function $<-$ renormalization condition

$$
G(\mu)=0 \quad \Leftrightarrow \quad T(\mu)=V(\mu) \quad \text { at } \quad \mu=M_{T}
$$

exclusion of the genuine quark states from the loop function (more detail in latter part of this seminar)
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Condition to have a bound state

$$
1-V\left(M_{b}\right) G\left(M_{b}\right)=0 \quad M_{T}<M_{b}<M_{T}+m
$$

--> critical value of the coupling strength C

Critical coupling strength

Behavior of the function $1-V(\sqrt{s}) G(\sqrt{s})$
--> monotonically decreasing

Critical attraction: $1-V G=0 \quad$ at $\quad \sqrt{s}=M_{T}+m$

$$
C_{\mathrm{crit}}=\frac{2 f^{2}}{m\left[-G\left(M_{T}+m\right)\right]}
$$

Critical attraction and exotic attraction

Critical coupling strength $m=368 \mathrm{MeV}$ and $f=93 \mathrm{MeV}$

The attraction is not enough to generate a bound state.

$$
C_{\text {exotic }}<C_{\text {crit }}
$$

Exotic hadrons
We study the exotic bound states in s-wave
chiral dynamics in flavor $\operatorname{SU}(3)$ limit.
We study the exotic bound states in s-wave
chiral dynamics in flavor $\operatorname{SU}(3)$ limit. most cases repulsive.
There are attractive interactions in exotic channels, with universal and the smallest strength: $C_{\text {exotic }}=1$
The strength is not enough to generate a bound state: $C_{\text {exotic }}<C_{\text {crit }}$
The result is model independent as far as we respect chiral symmetry.

Summary 1: SU(3) limit

The interactions in exotic channels are in

Summary 2: Physical world

Pro

The repulsion in exotic channel is generic for flavor current exchange interaction.

Contra

We do not exclude the exotics which have other origins (genuine quark state, soliton rotation,...). In practice, SU(3) breaking effect, higher order terms,...

In Nature, it is difficult to generate exotic hadrons as in the same way with
$\Lambda(1405), \ldots$ based on chiral dynamics.
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006);
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. D75, 034002 (2007)

Hadronic molecule

Classification of resonances

Resonances in two-body scattering

- Knowledge of interaction (potential)
- Experimental data (cross section, ...)

Dynamical state: two-body molecule, quasi-bound state, ...

e.g.) Deuteron in NN, positronium in $\mathrm{e}^{+} \mathrm{e}^{-}, \ldots$

CDD pole: elementary particle, preformed state, ...
L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

e.g.) J / Ψ in $\mathrm{e}^{+} \mathrm{e}^{-}$, ...

(Known) CDD pole in chiral unitary approach

Explicit resonance field in V (interaction)

U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000)
D. Jido, E. Oset, A. Ramos, Phys. Rev. C66, 055203 (2002)

Contracted resonance propagator in higher order V

G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B321, 311 (1989)
V. Bernard, N. Kaiser, U.G. Meissner, Nucl. Phys. A615, 483 (1997)

J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D59, 074001 (1999)

Is that all? subtraction constant?

Hadronic molecule

CDD pole in subtraction constant?

Phenomenological (standard) scheme
$-->V$ is given, "a" is determined by data

$$
\begin{aligned}
& T=\frac{1}{\left.\left(V^{(1)}\right)^{-1}-G \underline{a}\right)} \\
& T=\frac{1}{\left(V^{(1)}+V^{(2)}\right)^{-1}-G\left(\underline{a^{\prime}}\right)} \\
& \quad \uparrow \text { pole } \vdots
\end{aligned}
$$

leading order
next to leading order
"a" represents the effect which is not included in V .
CDD pole contribution in G ?
Natural renormalization scheme
--> fix "a" first, then determine V
to exclude CDD pole contribution from G, based on theoretical argument.

Natural renormalization condition

Conditions for natural renormalization

- Loop function G should be negative below threshold.
- T matches with V at low energy scale.
"a" is uniquely determined such that

$$
G\left(\sqrt{s}=M_{T}\right)=0 \quad \Leftrightarrow \quad T\left(M_{T}\right)=V\left(M_{T}\right)
$$

subtraction constant: $a_{\text {natural }}$
matching with low energy interaction
K. Igi, K. Hikasa, Phys. Rev. D59, 034005 (1999)
U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000)
crossing symmetry (matching with u-channel amplitude)
M.F.M. Lutz, E. Kolomeitsev, Nucl. Phys. A700, 193 (2002)

We regard this condition as the exclusion of the CDD pole contribution from G.

Pole in the effective interaction: single channel

Leading order V : Weinberg-Tomozawa term

$$
\begin{array}{ll}
V_{\mathrm{WT}}=-\frac{C}{2 f^{2}}\left(\sqrt{s}-M_{T}\right) & \begin{array}{l}
\text { C/f} \\
\\
\text { no s-wave resonance }
\end{array} \\
\text { no s-wauling constant }
\end{array}
$$

$T^{-1}=V_{\mathrm{WT}}^{-1}-G\left(a_{\text {pheno }}\right)=V_{\text {natural }}^{-1}-G\left(a_{\text {natural }}\right)$

$$
\uparrow \text { ChPT } \uparrow \text { data fit } \quad \uparrow \text { given }
$$

Effective interaction in natural scheme

$$
\begin{aligned}
& V_{\text {natural }}=-\frac{C}{2 f^{2}}\left(\sqrt{s}-M_{T}\right)+\frac{C}{2 f^{2}} \frac{\left(\sqrt{s}-M_{T}\right)^{2}}{\sqrt{s}-M_{\mathrm{eff}}} \\
& \quad \text { pole! } \\
& M_{\mathrm{eff}}=M_{T}-\frac{16 \pi^{2} f^{2}}{C M_{T} \Delta a}, \quad a_{\text {pheno }}-a_{\text {natural }}
\end{aligned}
$$

There is always a pole for $a_{\text {pheno }} \neq a_{\text {natural }}$

- small deviation <=> pole at irrelevant energy scale
- large deviation <=> pole at relevant energy scale

Hadronic molecule

Comparison of pole positions

Pole of the full amplitude: physical state
Pole of the $\mathrm{V}_{\mathrm{wt}}+$ natural: pure dynamical +

$=\Rightarrow \Lambda(1405)$ is mostly dynamical state
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Physical interpretation of the renormalization condition?

- field renormalization constant Z

Weinberg's theorem for deuteron

"Evidence That the Deuteron Is Not an Elementary Particle"
S. Weinberg, Phys. Rev. 137 B672-B678, (1965)

Z: probability of finding deuteron in a bare elementary state

$$
\begin{aligned}
& |d\rangle=\sqrt{Z}\left|d_{0}\right\rangle+\sqrt{1-Z} \int d \boldsymbol{k}|\boldsymbol{k}\rangle \\
& 1=\left|d_{0}\right\rangle\left\langle d_{0}\right|+\int d \boldsymbol{k}|\boldsymbol{k}\rangle\langle\boldsymbol{k}|: \text { eigenstates of free Hamiltonian }
\end{aligned}
$$

For a bound state with small binding energy, the following equation should be satisfied model independently:

$$
\begin{aligned}
& a_{s}=\left[\frac{2(1-Z)}{2-Z}\right]\left[\mathcal{O}\left(m_{\pi}^{-1}\right), \quad r_{e}=\left[\frac{-Z}{1-Z}\right]\left[\mathcal{O}\left(m_{\pi}^{-1}\right)\right.\right. \\
& \text { <-- Experiments (observables) } \\
& a_{s}=+5.41[\mathrm{fm}], \quad r_{e}=+1.75[\mathrm{fm}], \quad R \equiv(2 \mu B)^{-1 / 2}=4.31[\mathrm{fm}] \\
& \Rightarrow Z \lesssim 0.2 \quad-->\text { deuteron is composite! }
\end{aligned}
$$

Hadronic molecule

Derivation of the theorem

The theorem is derived in two steps:
Step 1 (Sec. II): Z --> p-n-d coupling constant

$$
g^{2}=\frac{2 \sqrt{B}(1-Z)}{\pi \rho} \quad \rho=4 \pi \sqrt{2 \mu^{3}}
$$

Step 2 (Sec. III): coupling constant $-->\mathrm{a}_{\mathrm{s}}, \mathrm{r}_{\mathrm{e}}$

$$
a_{s}=2 R\left[1+\frac{2 \sqrt{B}}{\pi \rho g^{2}}\right] \quad r_{e}=R\left[1-\frac{2 \sqrt{B}}{\pi \rho g^{2}}\right]
$$

uncertainty for order $R=(2 \mu B)^{1 / 2}$ quantity: $m_{\pi}{ }^{-1}$
The coupling constant g^{2} can be calculated by the residue of the pole in chiral unitary approach $==>$ Z?
--> study Z in natural renormalization scheme

Hadronic molecule

Field renormalization constant

Single-channel problem: $\mathbf{M}_{\boldsymbol{T}}$ and \mathbf{m}

$$
\begin{aligned}
T & =\frac{1}{1-V G(a)} V \\
V & =-\frac{C}{2 f^{2}}\left(\sqrt{s}-M_{T}\right)=\tilde{C}\left(\sqrt{s}-M_{T}\right)
\end{aligned}
$$

2 parameters: (\tilde{C}, a)
For the system with a bound state

$$
1-\left.V G\right|_{\sqrt{s}=M_{B}}=1-\tilde{C}\left(M_{B}-M_{T}\right) G\left(M_{B} ; a\right)=0
$$

:relation among \tilde{C}, a, M_{B}
--> System can be characterized by (\tilde{C}, a) or $\left(a, M_{B}\right)$
Check the \mathbf{Z} factor in natural renormalization scheme from the residue of the pole

$$
g^{2}\left(M_{B} ; a\right)=\lim _{\sqrt{s} \rightarrow M_{B}}\left(\sqrt{s}-M_{B}\right) T(\sqrt{s})
$$

Field renormalization constant

The residue can be calculated analytically:

$$
g^{2}\left(M_{B} ; a\right)=-\frac{M_{B}-M_{T}}{G\left(M_{B} ; a\right)+\left(M_{B}-M_{T}\right) G^{\prime}\left(M_{B}\right)} \longleftarrow\left(a, M_{B}\right)
$$

$1-Z=\sqrt{\frac{2 m M_{T}}{\left(M_{T}+m\right)\left(M_{T}+m-M_{B}\right)}} \frac{M_{T}}{8 \pi M_{B}} g^{2}\left(M_{B} ; a\right)$ valid for small M \mathbf{B}

1) $\mathbf{a}=\mathbf{a}_{\text {natural }}$ vary M_{B}
2) $M_{B}=10 \mathrm{MeV}$, vary a

natural scheme --> Z ~ 0
large deviation --> Z ~ 1 resonances in the chiral unitary approach

Natural renormalization scheme

Exclude CDD pole contribution from the loop function, consistent with N/D.

Comparison with phenomenology --> Pole in the effective interaction

$\Lambda(1405)$: predominantly dynamical $\mathrm{N}(1535)$: dynamical + CDD pole

Hadronic molecule

Summary: Compositeness of resonances

We study the single-channel problem with a bound state for

Field renormalization constant Z: quantitative measure of compositeness

Residue of the pole $-->$ coupling constant natural scheme corresponds to $Z \sim 0$

T. Hyodo, D. Jido, A. Hosaka, in preparation

