$\mathbf{\Lambda} * \mathbf{N}$ bound state

based on chiral dynamics

Tetsuo Hyodo ${ }^{\text {a }}$,

Toshitaka Uchino ${ }^{\text {a }}$, and Makoto Oka ${ }^{\text {a }}$
Tokyo Institute of Technologya

Introduction

$\overline{\mathrm{K}}$ in nuclei

- $\overline{\mathrm{K}} \mathrm{N}$ interaction is strongly attractive <-- $\Lambda(1405)$. Formation of deeply bound state is possible.
Y. Akaishi, T. Yamazaki, Phys. Rev. C65, 044005 (2002)
- Structure of the $\Lambda(1405)$, kaon condensation, ...

The simplest \bar{K}-nucleus: $\bar{K} N N$ three-body system

$\overline{\mathrm{K}}$ in nuclei

- $\overline{\mathrm{K}} \mathrm{N}$ interaction is strongly attractive <-- $\Lambda(1405)$. Formation of deeply bound state is possible.
Y. Akaishi, T. Yamazaki, Phys. Rev. C65, 044005 (2002)
- Structure of the $\Lambda(1405)$, kaon condensation, ...

The simplest \bar{K}-nucleus: $\bar{K} N N$ three-body system
Theory: rigorous few-body calculations with realistic interactions

- System bounds

Yamazaki-Akaishi, Shevchenko, et al., Ikeda-Sato, Doté et al., Wycech-Green,

- Quantitative difference: uncertainties in $\bar{K} N$ int. at far below threshold

\bar{K} in nuclei

- $\overline{\mathrm{K}} \mathrm{N}$ interaction is strongly attractive <-- $\Lambda(1405)$. Formation of deeply bound state is possible.
Y. Akaishi, T. Yamazaki, Phys. Rev. C65, 044005 (2002)
- Structure of the $\Lambda(1405)$, kaon condensation, ...

The simplest \bar{K}-nucleus: $\bar{K} N N$ three-body system

Theory: rigorous few-body calculations with realistic interactions

- System bounds

Yamazaki-Akaishi, Shevchenko, et al., Ikeda-Sato, Doté et al., Wycech-Green,

- Quantitative difference: uncertainties in $\bar{K} N$ int. at far below threshold

- Interpretation?

Introduction

Λ^{*} hypernuclei model

Regarding a K N pair as the $\Lambda^{*}=\Lambda(1405)$, construct the " $\Lambda^{*} \mathrm{~N}$ potential" with the meson-exchange picture
A. Arai, M. Oka, S. Yasui, Prog. Theor. Phys. 119, 103 (2008)

Introduction

Λ^{*} hypernuclei model

Regarding a $\bar{K} N$ pair as the $\Lambda^{*}=\Lambda(1405)$, construct the " $\Lambda^{*} N$ potential" with the meson-exchange picture
A. Arai, M. Oka, S. Yasui, Prog. Theor. Phys. 119, 103 (2008)

$<==\Lambda^{*}$ seems to be surviving in K$N N$ system.
T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007),
A. Doté, T. Hyodo, W. Weise, Nucl. Phys. A 804, 197 (2008); Phys. Rev. C 79, 014003 (2009)

Introduction

Λ^{*} hypernuclei model

Regarding a $\bar{K} N$ pair as the $\Lambda^{*}=\Lambda(1405)$, construct the " $\Lambda^{*} \mathrm{~N}$ potential" with the meson-exchange picture
A. Arai, M. Oka, S. Yasui, Prog. Theor. Phys. 119, 103 (2008)

$<==\Lambda^{*}$ seems to be surviving in K$N N$ system.
T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007),
A. Doté, T. Hyodo, W. Weise, Nucl. Phys. A 804, 197 (2008); Phys. Rev. C 79, 014003 (2009)
Λ^{*} coupling constants: unknown (<-- FINUDA data).

Introduction

Λ^{*} hypernuclei model

Regarding a K N pair as the $\Lambda^{*}=\Lambda(1405)$, construct the " $\Lambda^{*} \mathrm{~N}$ potential" with the meson-exchange picture
A. Arai, M. Oka, S. Yasui, Prog. Theor. Phys. 119, 103 (2008)

$<==\Lambda^{*}$ seems to be surviving in K$N N$ system.
T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007),
A. Doté, T. Hyodo, W. Weise, Nucl. Phys. A 804, 197 (2008); Phys. Rev. C 79, 014003 (2009)
Λ^{*} coupling constants: unknown (<-- FINUDA data).
To determine the coupling and make predictions, we need a framework to describe the $\Lambda^{*}<-$ chiral unitary approach

Chiral unitary approach

Chiral unitary approach

Description of S = -1, $\bar{K} N$ s-wave scattering : $\Lambda(1405)$ in I=0

- Interaction <-- chiral symmetry
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Amplitude <-- unitarity in coupled channels
R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

Chiral unitary approach

Chiral unitary approach

Description of S = $1, \bar{K} N$ s-wave scattering : $\Lambda(1405)$ in $\mathrm{I}=0$

- Interaction <-- chiral symmetry
Y. Tomozawa, Nuovo Cim. 46A, 707 (1966); S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)
- Amplitude <-- unitarity in coupled channels
R.H. Dalitz, T.C. Wong, G. Rajasekaran, Phys. Rev. 153, 1617 (1967)

$$
T=\frac{1}{1-V G} V
$$

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995),
E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998),
J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001),
M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

It works successfully, also in $\mathrm{S}=0$ sector, meson-meson scattering sectors, systems including heavy quarks, ...

Chiral unitary approach

KN scattering : comparison with data

Total cross section of K-p scattering

Branching ratio

	γ	$\mathbf{R}_{\mathbf{c}}$	$\mathbf{R}_{\mathbf{n}}$
exp.	2.36	0.664	0.189
theo.	1.80	0.624	0.225

$\pi \Sigma$ spectrum

T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, PRC68, 018201 (2003); PTP 112, 73 (2004)

Chiral unitary approach

KN scattering : comparison with data

Total cross section of K-p scattering

Branching ratio

	γ	$\mathbf{R}_{\mathbf{c}}$	$\mathbf{R}_{\mathbf{n}}$
\exp.	2.36	0.664	0.189
theo.	1.80	0.624	0.225

$\pi \Sigma$ spectrum

T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, PRC68, 018201 (2003); PTP 112, 73 (2004)

Good agreement with data above, at, and below $\bar{K} N$ threshold $\Lambda(1405)$ mass, width, couplings: prediction of the model

Chiral unitary approach

Two poles for one resonance

Poles of the amplitude in the complex plane: resonance

$$
\begin{aligned}
& T_{i j}(\sqrt{s}) \sim \frac{g_{i} g_{j}}{\sqrt{s}-M_{R}+i \Gamma_{R} / 2} \\
& \sim \vdots \vdots! \\
& \ddots \quad!
\end{aligned}
$$

Chiral unitary approach

Two poles for one resonance

Poles of the amplitude in the complex plane: resonance

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003);
T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

Two poles for one resonance

Poles of the amplitude in the complex plane: resonance

D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003);
T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

Chiral unitary approach

Two poles for one resonance

Poles of the amplitude in the complex plane: resonance
D. Jido, J.A. Oller, E. Oset, A. Ramos, U.G. Meissner, Nucl. Phys. A 723, 205 (2003); T. Hyodo, W. Weise, Phys. Rev. C 77, 035204 (2008)

--> Λ^{*} hypernuclei based on chiral dynamics
$\Lambda^{*} N$ potential

$\Lambda^{*} \mathbf{N}$ potential with meson-exchange picture

$\Lambda^{*} \mathbf{N}$ potential with one boson exchange ($\mathrm{i}=1,2$)

$\Lambda^{*} N$ potential

$\Lambda^{*} \mathbf{N}$ potential with meson-exchange picture

$\Lambda^{*} \mathbf{N}$ potential with one boson exchange ($\mathrm{i}=1,2$)

O NNo, NN ω couplings: Jülich (model A) YN potential
$\Lambda^{*} N$ potential

$\Lambda^{*} \mathbf{N}$ potential with meson-exchange picture

$\Lambda^{*} \mathbf{N}$ potential with one boson exchange ($\mathrm{i}=1,2$)

O NNo, NN ω couplings: Jülich (model A) YN potential
$\bigcirc \wedge^{\star} \mathrm{i} K N$ coupling: Chiral unitary approach
$\Lambda^{*} N$ potential

$\Lambda^{*} \mathbf{N}$ potential with meson-exchange picture

$\Lambda^{*} \mathbf{N}$ potential with one boson exchange ($\mathrm{i}=1,2$)

O NNo, NN ω couplings: Jülich (model A) YN potential
$\bigcirc \Lambda^{*} \mathrm{i} K N$ coupling: Chiral unitary approach
$\bigcirc \Lambda^{*}{ }_{i} \Lambda^{*}{ }_{i} \sigma, \Lambda^{\star}{ }_{i} \Lambda^{\star}{ }_{i} \omega$, couplings
--> estimated by microscopic MB=(K $\bar{K}, \pi \Sigma, \eta \Lambda)$ couplings
$\Lambda^{*} \mathrm{~N}$ potential

$\Lambda * N$ potential with meson-exchange picture

$\Lambda^{*} \mathbf{N}$ potential with one boson exchange ($\mathrm{i}=1,2$)

O NNo, NN ω couplings: Jülich (model A) YN potential
$\bigcirc \Lambda^{\star}{ }_{i} K N$ coupling: Chiral unitary approach
$\bigcirc \Lambda^{*}{ }_{i} \Lambda^{*}{ }_{i} \sigma, \Lambda^{\star}{ }_{i} \Lambda^{\star}{ }_{i} \omega$, couplings
--> estimated by microscopic MB=($\bar{K} N, \pi \Sigma, \eta \Lambda)$ couplings

$\Lambda * N$ potential with meson-exchange picture

$\Lambda^{*} \mathbf{N}$ potential with one boson exchange ($\mathrm{i}=1,2$)

O NNo, NN ω couplings: Jülich (model A) YN potential
$\bigcirc \Lambda^{*} \mathrm{i} K N$ coupling: Chiral unitary approach
$\bigcirc \Lambda^{*}{ }_{i} \Lambda^{*}{ }_{i} \sigma, \Lambda^{\star}{ }_{i} \Lambda^{\star}{ }_{i} \omega$, couplings
--> estimated by microscopic MB=(K $\bar{K}, \pi \Sigma, \eta \Lambda)$ couplings

$\Lambda^{*} N$ potential

$\Lambda * N$ potential: K exchange

Λ^{*} KN vertex: scalar type ($\Lambda^{*}=1 / 2$)

$$
\mathcal{H}_{\Lambda^{*} N K}=g_{\Lambda^{*} K N}\left(\bar{\Lambda}^{*} \bar{K} N+\bar{N} K \Lambda^{*}\right)
$$

Exchange factor

$\Lambda^{*} N$ potential

$\Lambda * N$ potential: K exchange

Λ^{*} KN vertex: scalar type ($\Lambda^{*}=1 / 2$)

$$
\mathcal{H}_{\Lambda^{*} N K}=g_{\Lambda^{*} K N}\left(\bar{\Lambda}^{*} \bar{K} N+\bar{N} K \Lambda^{*}\right)
$$

Exchange factor

$$
-\mathcal{P}_{x} \frac{1+\vec{\sigma}_{\Lambda^{*}} \cdot \vec{\sigma}_{N}}{2}
$$

spin dependence
($\mathrm{P}_{\mathrm{x}}=1$ for s -wave)
In total, $S=0(\sigma \sigma=-3)$ attractive, $S=1(\sigma \sigma=1)$ repulsive.
$\Lambda^{*} N$ potential

$\Lambda * N$ potential: K exchange

Λ^{*} KN vertex: scalar type ($\Lambda^{*}=1 / 2$)

$$
\mathcal{H}_{\Lambda^{*} N K}=g_{\Lambda^{*} K N}\left(\bar{\Lambda}^{*} \bar{K} N+\bar{N} K \Lambda^{*}\right)
$$

Exchange factor

$$
-\mathcal{P}_{x} \frac{1+\vec{\sigma}_{\Lambda^{*}} \cdot \vec{\sigma}_{N}}{2}
$$

spin dependence
($\mathrm{P}_{\mathrm{x}}=1$ for s -wave)
In total, $S=0(\sigma \sigma=-3)$ attractive, $S=1(\sigma \sigma=1)$ repulsive.
Mass difference of Λ^{*} and \mathbf{N}
--> effective K mass

$$
\tilde{m}_{K}=\sqrt{m_{K}^{2}-\left(M_{\Lambda^{*}}-M_{N}\right)^{2}}
$$

A. Arai, M. Oka, S. Yasui, Prog. Theor. Phys. 119, 103 (2008)
$\Lambda^{*} \mathrm{~N}$ potential

$\Lambda * \mathbf{N}$ potential: mixing interaction

Chiral unitary approach --> two Λ^{*} states : $\Lambda^{*}{ }_{1}, \Lambda^{*}{ }_{2}$ With sufficient attraction, two $\Lambda^{*} \mathrm{~N}$ bound states in $\mathrm{B}=2$ system : $\Lambda^{*}{ }_{1} \mathrm{~N}, \Lambda^{*}{ }_{2} \mathrm{~N}$

There can be the mixing of $\Lambda^{\star}{ }_{1} N<-->\Lambda^{*}{ }_{2} N$

$\Lambda^{*} N$ potential

$\Lambda * \mathbf{N}$ potential: mixing interaction

Chiral unitary approach --> two Λ^{*} states : $\Lambda^{*}{ }_{1}, \Lambda^{*}{ }_{2}$ With sufficient attraction,
two $\Lambda^{*} \mathrm{~N}$ bound states in $\mathrm{B}=2$ system : $\Lambda^{*}{ }_{1} \mathrm{~N}, \Lambda^{*}{ }_{2} \mathrm{~N}$
There can be the mixing of $\Lambda^{\star}{ }_{1} N<-->\Lambda^{\star}{ }_{2} N$

$\Lambda^{*} N$ potential

$\Lambda * \mathbf{N}$ potential: mixing interaction

Chiral unitary approach --> two Λ^{*} states : $\Lambda^{*}{ }_{1}, \Lambda^{*}{ }_{2}$ With sufficient attraction,
two $\Lambda^{*} \mathrm{~N}$ bound states in $\mathrm{B}=2$ system : $\Lambda^{*}{ }_{1} \mathrm{~N}, \Lambda^{*}{ }_{2} \mathrm{~N}$
There can be the mixing of $\Lambda^{\star}{ }_{1} N<-->\Lambda^{\star}{ }_{2} N$

$\Lambda^{*} N$ potential

$\Lambda * \mathbf{N}$ potential: mixing interaction

Chiral unitary approach --> two Λ^{*} states : $\Lambda^{*}{ }_{1}, \Lambda^{*}{ }_{2}$ With sufficient attraction,
two $\Lambda^{*} \mathrm{~N}$ bound states in $\mathrm{B}=2$ system : $\Lambda^{\star}{ }_{1} \mathrm{~N}, \Lambda^{*}{ }_{2} \mathrm{~N}$
There can be the mixing of $\Lambda^{\star}{ }_{1} N<-->\Lambda^{\star}{ }_{2} N$

$\Lambda^{*} N$ potential

$\Lambda * \mathbf{N}$ potential: mixing interaction

Chiral unitary approach --> two Λ^{*} states : $\Lambda^{*}{ }_{1}, \Lambda^{*}{ }_{2}$ With sufficient attraction,
two $\Lambda^{*} \mathrm{~N}$ bound states in $\mathrm{B}=2$ system : $\Lambda^{\star}{ }_{1} \mathrm{~N}, \Lambda^{*}{ }_{2} \mathrm{~N}$
There can be the mixing of $\Lambda^{\star}{ }_{1} N<-->\Lambda^{\star}{ }_{2} N$

$\Lambda^{*} \mathrm{~N}$ potential

Diagonal potentials for $\Lambda^{*}{ }_{2} N$ in $\mathrm{S}=0$ and $\mathrm{S}=1$, s -wave

Numerical results for the $\Lambda^{*} N$ bound states

$\Lambda^{*} \mathbf{N}$ potential

Diagonal potentials for $\Lambda^{\star}{ }_{2} \mathbf{N}$ in $\mathrm{S}=\mathbf{0}$ and $\mathrm{S}=1$, s -wave

$\mathrm{S}=0$: K exchange is attractive

--> attractive pocket at intermediate range

Numerical results for the $\Lambda^{*} N$ bound states

$\Lambda^{*} \mathbf{N}$ potential

Diagonal potentials for $\Lambda^{*}{ }_{2} \mathbf{N}$ in $\mathrm{S}=\mathbf{0}$ and $\mathrm{S}=1$, s-wave

$\mathrm{S}=0$: K exchange is attractive
--> attractive pocket at intermediate range

$\mathrm{S}=1$: K exchange is repulsive

--> no intermediate attraction.
(short range dip: artificial, not physical)

$\Lambda * N$ bound states without mixing

Solve the schrödinger equation for the s-wave Λ^{*} iN potential without the mixing interaction.

$\Lambda * N$ bound states without mixing

Solve the schrödinger equation for the s-wave $\Lambda^{\star} \mathrm{i} N$ potential without the mixing interaction.

- no physical bound states in $\mathrm{S}=1$ channels

$\Lambda * N$ bound states without mixing

Solve the schrödinger equation for the s-wave $\Lambda^{\star} \mathrm{i} N$ potential without the mixing interaction.

- no physical bound states in $\mathrm{S}=1$ channels
- for $\mathrm{S}=0$ we obtain the bound states in both $\Lambda^{\star}{ }_{i}$

binding from	$\Lambda^{\star} \mathrm{N}$ th. $[\mathrm{MeV}]$	K$N N$ th. $[\mathrm{MeV}]$
$\Lambda^{\star}{ }^{\mathrm{N}} \mathrm{N}$	13.39	22.39
$\Lambda^{\star}{ }_{1} \mathrm{~N}$	0.34	45.34

$\Lambda * N$ bound states without mixing

Solve the schrödinger equation for the s-wave $\Lambda^{\star} \mathrm{i} N$ potential without the mixing interaction.

- no physical bound states in $\mathrm{S}=1$ channels
- for $\mathrm{S}=0$ we obtain the bound states in both $\Lambda^{\star}{ }_{i}$

binding from	$\Lambda^{\star} \mathrm{N}$ th. $[\mathrm{MeV}]$	K$N N$ th. $[\mathrm{MeV}]$
$\Lambda^{\star}{ }_{2} \mathrm{~N}$	13.39	22.39
$\Lambda^{\star}{ }_{1} \mathrm{~N}$	0.34	45.34

Two $\Lambda^{*} \mathrm{~N}$ states in spin $\mathrm{S}=0$ channel

Numerical results for the $\Lambda^{*} N$ bound states

$\Lambda * N$ bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method \approx changing the box size. λ : strength of the mixing interaction, physical for $\lambda=1$

Numerical results for the $\Lambda^{*} N$ bound states

$\Lambda^{*} \mathbf{N}$ bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method \approx changing the box size. λ : strength of the mixing interaction, physical for $\lambda=1$

Numerical results for the $\Lambda^{*} N$ bound states

$\Lambda^{*} \mathbf{N}$ bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method \approx changing the box size. λ : strength of the mixing interaction, physical for $\lambda=1$

Numerical results for the $\Lambda^{*} N$ bound states

$\Lambda^{*} \mathrm{~N}$ bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method \approx changing the box size. λ : strength of the mixing interaction, physical for $\lambda=1$

Numerical results for the $\Lambda^{*} N$ bound states

$\Lambda^{*} \mathrm{~N}$ bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method \approx changing the box size. λ : strength of the mixing interaction, physical for $\lambda=1$

Numerical results for the $\Lambda^{*} N$ bound states

$\Lambda^{*} \mathrm{~N}$ bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method \approx changing the box size. λ : strength of the mixing interaction, physical for $\lambda=1$

Numerical results for the $\Lambda^{*} N$ bound states

$\Lambda^{*} \mathrm{~N}$ bound states with mixing

With mixing, the higher state becomes a resonance. Real scaling method \approx changing the box size. λ : strength of the mixing interaction, physical for $\lambda=1$

The lower energy state bounds more.
The higher energy state disappears (above $\Lambda^{*}{ }_{2} \mathbf{N}$ threshold? $)_{12}$

Summary

Summary

We study the $\Lambda^{*} \mathbf{N}$ two－body system based on the $\Lambda^{*} \mathrm{~N}$ potential with chiral dynamics．

Chiral unitary model：two states $\Lambda^{*}{ }_{1}, \Lambda^{*}{ }_{2}$ Both \wedge^{*} generate bound states with N
in spin $S=0$ channels，＜－－K exchange Both \wedge^{*} generate bound states with N
in spin $S=0$ channels，＜－－K exchange With the mixing，lower states bounds more，and higher states dissolves． B．E．（from KNN）$=52-58 \mathrm{MeV}$
＜－strong mixing between $\Lambda^{\star}{ }_{1} \mathrm{~N}-\Lambda^{\star}{ }_{2} \mathrm{~N}$
T．Uchino，T．Hyodo，M．Oka，in preparation
ジ

 － system based on a

 S左 \square

I

צ

 ．

\qquad
 8
 \qquad

Summary

taken from T. Uchino, Master thesis
No Mixing With Mixing
$\bar{K} N N$

