Evidence That the Deuteron Is Not an Elementary Particle S. Weinberg, Phys. Rev. 137 B672-B678 (1965)

Tetsuo Hyodo^a,

Tokyo Institute of Technology^a

supported by Global Center of Excellence Program "Nanoscience and Quantum Physics"

Z: probability of finding deuteron in a bare elementary state

For a bound state with small binding energy, the following equation should be satisfied model independently:

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right]R + \mathcal{O}(m_\pi^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right]R + \mathcal{O}(m_\pi^{-1})$$

a_s: scattering length r_e: effective range <-- Experiments (observables) R: deuteron radius

 $a_s = +5.41$ [fm], $r_e = +1.75$ [fm], $R \equiv (2\mu B)^{-1/2} = 4.31$ [fm]

 $\Rightarrow Z \lesssim 0.2$ --> deuteron is composite!

Introduction

Derivation of the theorem

The theorem is derived in two steps:

Step 1 (Sec. II): Z --> p-n-d coupling constant

$$g^2 = \frac{2\sqrt{B}(1-Z)}{\pi\rho}$$

$$p = \frac{4\pi}{\sqrt{2\mu^3}}$$

Step 2 (Sec. III): coupling constant --> a_s, r_e

$$a_s = 2R\left[1 + \frac{2\sqrt{B}}{\pi\rho g^2}
ight]$$
 $r_e = R\left[1 - \frac{2\sqrt{B}}{\pi\rho g^2}
ight]$

Assumption: B is sufficiently smaller than the typical energy scale of the NN interaction

$$p \sim m_{\pi}$$
 $B \ll m_{\pi}^2/2\mu$ \Leftrightarrow $R^2 \gg m_{\pi}^2$

--> uncertainty for order R quantity: $m_{\pi^{-1}}$

Step 1 : Z and coupling constant

Definition of the probability Z

Hamiltonian of NN system: free + interaction V

 $\mathcal{H} = \mathcal{H}_0 + V$

Complete set for free Hamiltonian: bare d (d₀) + continuum

 $1 = |d_0\rangle \langle d_0| + \int d\mathbf{k} |\mathbf{k}\rangle \langle \mathbf{k}|$ $\mathcal{H}_0 |d_0\rangle = E_0 |d_0\rangle, \quad \mathcal{H}_0 |\mathbf{k}\rangle = E(\mathbf{k}) |\mathbf{k}\rangle$

(original, d_0 : sum of discrete states, p: α)

Physical deuteron : eigenstate of full Hamiltonian

 $(\mathcal{H}_0 + V)|d\rangle = -B|d\rangle$

Z: overlap of d and d₀ (wavefunction renormalization factor)

 $Z \equiv |\langle d_0 | d \rangle|^2$

$$|d
angle = \sqrt{Z} |d_0
angle + \sqrt{1-Z} \int dm{k} |m{k}
angle$$

Step 1 : Z and coupling constant

p-n-d coupling constant

n

5

After some algebra, we arrive at

$$1 - Z = \int d\mathbf{k} \frac{|\langle \mathbf{k} | V | d \rangle|^2}{(E(\mathbf{k}) + B)^2} \qquad |\langle \mathbf{k} | V | d \rangle| = g(\mathbf{k}) : \underbrace{\qquad }_{d} \underbrace{\qquad }_{p}$$

Typical energy scale E₀: below E₀, coupling is constant

 $|\langle \boldsymbol{k}|V|\boldsymbol{d}\rangle| = g(\boldsymbol{k}) \sim g \quad \text{for} \quad |E(\boldsymbol{k})| \leq E_0$ (NN scatt. : $E_0 \approx m_\pi^2/2\mu$)

Step 2 : coupling constant and a_r, r_e

Scattering equations

The Lippmann-Schwinger equation

$$T(W) = V + V \frac{1}{W - \underline{\mathcal{H}_0}} T(W)$$

$$\Leftrightarrow T(W) = V + V \frac{1}{W - \underline{\mathcal{H}}} V \quad \text{(Chew-Goldberger solution)}$$

Complete set for full Hamiltonian (asymptotic completeness)

$$1 = |d\rangle\langle d| + \int d\mathbf{k} |\mathbf{k}, \mathrm{in}\rangle\langle \mathbf{k}, \mathrm{in}| \qquad V |\mathbf{k}, \mathrm{in}\rangle = T |\mathbf{k}\rangle$$
$$T_{\mathbf{k}'\mathbf{k}}(W) = V_{\mathbf{k}'\mathbf{k}} + \frac{\langle \mathbf{k}' |V| d\rangle\langle d |V| \mathbf{k}\rangle}{W + B} + \int d\mathbf{k}'' \frac{\langle \mathbf{k}' |V| \mathbf{k}'', \mathrm{in}\rangle\langle \mathbf{k}'', \mathrm{in} |V| \mathbf{k}\rangle}{W - E(\mathbf{k}'')}$$

Setting $W = E(\mathbf{k}) + i\epsilon$, we obtain the Low equation

$$T_{\boldsymbol{k}'\boldsymbol{k}} = V_{\boldsymbol{k}'\boldsymbol{k}} + \frac{\langle \, \boldsymbol{k}' \, | V | \, d \, \rangle \langle \, d \, | V | \, \boldsymbol{k} \, \rangle}{E(\boldsymbol{k}) + B} + \int d\boldsymbol{k}'' \frac{T_{\boldsymbol{k}'\boldsymbol{k}''}T_{\boldsymbol{k}''\boldsymbol{k}}}{E(\boldsymbol{k}) - E(\boldsymbol{k}'') + i\epsilon}$$

So far no approximations.

Step 2 : coupling constant and a_r, r_e

Solution for the scattering equation

The same assumption: B << E₀, external energy E << E₀ $\frac{\langle \mathbf{k}' | V | d \rangle \langle d | V | \mathbf{k} \rangle}{E(\mathbf{k}) + B} \sim \frac{g^2}{E(\mathbf{k}) + B} \propto \frac{1}{\sqrt{B}} \gg V_{\mathbf{k}'\mathbf{k}}$

We neglect the 1st term (information of V is lost!!).

$$T_{\boldsymbol{k}'\boldsymbol{k}} = \frac{g^2}{E(\boldsymbol{k}) + B} + \int d\boldsymbol{k}'' \frac{T_{\boldsymbol{k}'\boldsymbol{k}''}T_{\boldsymbol{k}''\boldsymbol{k}}}{E(\boldsymbol{k}) - E(\boldsymbol{k}'') + i\epsilon}$$

S-wave scattering (no angular dependence)

$$T_{\mathbf{k}'\mathbf{k}} \to t[E(|\mathbf{k}|)]\delta_{\mathbf{k}'\mathbf{k}}$$
$$t(E) = \frac{g^2}{E+B} + \rho \int_0^\infty dE'' \frac{\sqrt{E''}|t(E'')|^2}{E-E''+i\epsilon}$$

The solution of the integral equation (well-known? We should solve t⁻¹(E) using optical theorem and analyticity)

$$t(E) = \left[\frac{E+B}{g^2} + \frac{\pi\rho(B-E)}{2\sqrt{B}} + i\pi\rho\sqrt{E}\right]^{-1}$$

Step 2 : coupling constant and ar, re

Amplitude, phase shift, and scattering length

The result of low-energy scattering amplitude

$$t(E) = \left[\frac{E+B}{g^2} + \frac{\pi\rho(B-E)}{2\sqrt{B}} + i\pi\rho\sqrt{E}\right]$$

S-wave phase shift

$$e^{2i\delta(E)} = 1 - 2i\pi\rho\sqrt{E}t(E)$$

$$\cot \delta = -\frac{1}{\pi \rho \sqrt{E}} \left[\frac{E+B}{g^2} + \frac{\pi \rho (B-E)}{2\sqrt{B}} \right]$$

Scattering length as, effective range re

$$k \cot \delta = -\frac{1}{a_s} + r_e \frac{k^2}{2}$$
 $E = \frac{k^2}{2\mu}, \quad R = \frac{1}{\sqrt{2\mu B}}$

We obtain the final result (no expansion needed)

$$a_s = 2R\left[1 + \frac{2\sqrt{B}}{\pi\rho g^2}
ight]$$
 $r_e = R\left[1 - \frac{2\sqrt{B}}{\pi\rho g^2}
ight]$

Z: probability of finding deuteron in a bare elementary state

For a bound state with small binding energy, the following equation should be satisfied model independently:

$$a_s = \left[\frac{2(1-Z)}{2-Z}\right] R + \mathcal{O}(m_{\pi}^{-1}), \quad r_e = \left[\frac{-Z}{1-Z}\right] R + \mathcal{O}(m_{\pi}^{-1})$$

Small B

--> dominance of pole contribution

--> interaction V is only reflected in the coupling g

Applicability of this method

- **Pro: model independence**
- No explicit form of Hamiltonian is needed.
- **Contra: assumptions in the analysis**
- (i) The particle must be stable.
- (ii) The particle must couple to a two-particle channel with threshold not too much above the particle mass (and the absence of nearby coupled channels).
- (iii) The particle must be in s-wave scattering.
- **No other example** than deuteron is found in Nature.
- One begins to suspect that Nature is doing her best to keep us from learning whether the "elementary" particles deserve that title.

What can we do?

After 40 years, application to $a_0(980)$ and $f_0(980)$ mesons

V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, A. Kudryavtsev, PLB586, 53 (2004) "Evidence that the $a_0(980)$ and $f_0(980)$ are not elementary particles"

The method was extended to narrow resonances.

My personal interest:

1) Relation with natural renormalization scheme <u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)</u>

--> For a bound state solution, Z~0 is confirmed.

2) Extension to hadron resonances, Λ(1405), σ meson, ...
 large width, coupled-channel effect, ... ?
 --> Complex scaling method provides the complete set decomposition including resonances?

<u>T. Hyodo, D. Jido, in preparation</u> "Evidence that the $\Lambda(1405)$ is not an elementary particle"...