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For a bound state with small binding energy, the following 
equation should be satisfied model independently:

as: scattering length
re: effective range
R: deuteron radius

as =
[
2(1− Z)
2− Z

]
R +O(m−1

π ), re =
[
−Z

1− Z

]
R +O(m−1

π )
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Main result: theorem
Introduction

as = +5.41[fm], re = +1.75[fm], R ≡ (2µB)−1/2 = 4.31[fm]

N
N|deuteron〉 = or

<-- Experiments (observables)

Z: probability of finding deuteron in a bare elementary state
Z = 0 Z = 1

⇒ Z ! 0.2 -->  deuteron is composite!
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Derivation of the theorem
The theorem is derived in two steps:

Introduction

Step 1 (Sec. II): Z --> p-n-d coupling constant

Step 2 (Sec. III): coupling constant --> as, re

g2 =
2
√

B(1− Z)
πρ

ρ =
4π√
2µ3

as = 2R

[
1 +

2
√

B

πρg2

]
re = R

[
1− 2

√
B

πρg2

]

Assumption: B is sufficiently smaller than the typical energy 
scale of the NN interaction 

--> uncertainty for order R quantity: mπ-1

p ∼ mπ B ! m2
π/2µ ⇔ R2 # m2

π
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Definition of the probability Z
Hamiltonian of NN system: free + interaction V

Step 1 : Z and coupling constant

H = H0 + V

Physical deuteron : eigenstate of full Hamiltonian
(H0 + V )|d〉 = −B|d〉

en
er

gy

d0

free

d V

full

Complete set for free Hamiltonian: bare d (d0) + continuum

(original, d0: sum of discrete states, p: α)

1 = |d0〉〈d0| +
∫

dk|k〉〈k|

H0|d0〉 = E0|d0〉, H0|k〉 = E(k)|k〉

Z: overlap of d and d0 
(wavefunction renormalization factor)

Z ≡ |〈d0|d〉|2

|d〉 =
√

Z|d0〉+
√

1− Z

∫
dk|k〉
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p-n-d coupling constant
After some algebra, we arrive at

Step 1 : Z and coupling constant

1
(E(p) + B)2

g(p)B = −3

p

d

p

n

V

g2 =
2
√

B(1− Z)
πρ

Integrate analytically

k|〈k|V |d〉| = g(k) :

Typical energy scale E0: below E0, coupling is constant
 (NN scatt. :                  )E0 ≈ m2

π/2µ|〈k|V |d〉| = g(k) ∼ g for |E(k)| ≤ E0

1 − Z =
∫

dk
|〈k|V |d〉|2

(E(k) + B)2

B ! E0Assumption:

ρ = 4π/
√

2µ3

= g2ρ

∫ ∞

0

√
E dE

(E + B)2

⇒ 1− Z ∼ g2

∫
dk

(E(k) + B)2

-15 -10 -5 0 5 10 15

-5

5

10

E0 ∼ 4

B = 1

E

g(k)

1
(E(k) + B)2
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Scattering equations
The Lippmann-Schwinger equation

Step 2 : coupling constant and ar, re

T (W ) = V + V
1

W −H0
T (W )

⇔ T (W ) = V + V
1

W −HV (Chew-Goldberger solution)

Setting                      , we obtain the Low equation

Tk′k = Vk′k +
〈k′ |V | d 〉〈 d |V | k 〉

E(k) + B
+

∫
dk′′ Tk′k′′Tk′′k

E(k) − E(k′′) + iε

W = E(k) + iε

So far no approximations.

Complete set for full Hamiltonian (asymptotic completeness)

Tk′k(W ) = Vk′k +
〈k′ |V | d 〉〈 d |V | k 〉

W + B
+

∫
dk′′ 〈k′ |V | k′′, in 〉〈k′′, in |V | k 〉

W − E(k′′)

V | k, in 〉 = T | k 〉1 = |d〉〈d| +
∫

dk|k, in〉〈k, in|
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Solution for the scattering equation
The same assumption: B << E0, external energy E << E0

Step 2 : coupling constant and ar, re

〈k′ |V | d 〉〈 d |V | k 〉
E(k) + B

∼ g2

E(k) + B
∝ 1√

B
& Vk′k

We neglect the 1st term (information of V is lost!!).

Tk′k =
g2

E(k) + B
+

∫
dk′′ Tk′k′′Tk′′k

E(k)− E(k′′) + iε

The solution of the integral equation (well-known? We should 
solve t-1(E) using optical theorem and analyticity)

t(E) =
[
E + B

g2
+

πρ(B − E)
2
√

B
+ iπρ

√
E

]−1

S-wave scattering (no angular dependence)
Tk′k → t[E(|k|)]δk′k

t(E) =
g2

E + B
+ ρ

∫ ∞

0
dE′′

√
E′′|t(E′′)|2

E − E′′ + iε
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Amplitude, phase shift, and scattering length
The result of low-energy scattering amplitude

Step 2 : coupling constant and ar, re

t(E) =
[
E + B

g2
+

πρ(B − E)
2
√

B
+ iπρ

√
E

]−1

S-wave phase shift
e2iδ(E) = 1− 2iπρ

√
Et(E)

cot δ = − 1
πρ
√

E

[
E + B

g2
+

πρ(B − E)
2
√

B

]

as = 2R

[
1 +

2
√

B

πρg2

]
re = R

[
1− 2

√
B

πρg2

]
We obtain the final result (no expansion needed)

Scattering length as, effective range re

k cot δ = − 1
as

+ re
k2

2
E =

k2

2µ
, R =

1√
2µB



For a bound state with small binding energy, the following 
equation should be satisfied model independently:

as =
[
2(1− Z)
2− Z

]
R +O(m−1

π ), re =
[
−Z

1− Z

]
R +O(m−1

π )
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Main result: theorem
Summary

N
N|deuteron〉 = or

Z: probability of finding deuteron in a bare elementary state
Z = 0 Z = 1

Small B 
--> dominance of pole contribution
--> interaction V is only reflected in the coupling g
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Applicability of this method
Summary

One begins to suspect that Nature is doing her best to keep 
us from learning whether the “elementary” particles deserve 
that title.

Contra: assumptions in the analysis
(i) The particle must be stable.
(ii) The particle must couple to a two-particle channel with 
threshold not too much above the particle mass (and the 
absence of nearby coupled channels).
(iii) The particle must be in s-wave scattering.

Pro: model independence

No other example than deuteron is found in Nature.

No explicit form of Hamiltonian is needed.
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What can we do?
After 40 years, application to a0(980) and f0(980) mesons

Later developments

The method was extended to narrow resonances.

V. Baru, J. Haidenbauer, C. Hanhart, Y. Kalashnikova, A. Kudryavtsev, PLB586, 53 (2004)
“Evidence that the a0(980) and f0(980) are not elementary particles”

My personal interest: 

“Evidence that the Λ(1405) is not an elementary particle”...

1) Relation with natural renormalization scheme

--> For a bound state solution, Z~0 is confirmed.
T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

T. Hyodo, D. Jido, in preparation

large width, coupled-channel effect, ... ? 
--> Complex scaling method provides the complete set 
decomposition including resonances?

2) Extension to hadron resonances, Λ(1405), σ meson, ...


