Origin of resonances in chiral dynamics

Tetsuo Hyodo^a,

Daisuke Jido^b, and Atsushi Hosaka^c

Tokyo Institute of TechnologyaYITP, KyotobRCNP, Osakacsupported by Global Center of Excellence Program2009, Sep. 11th 1

Introduction

Classification of resonances

Resonances in two-body scattering

- Knowledge of interaction (potential)
- Experimental data (cross section, ...)

Dynamical state: two-body molecule, quasi-bound state, ...

+ ...

CDD pole: elementary particle, independent state, ...

L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

e.g.) J/Ψ in e⁺e⁻, ...

Introduction

Chiral unitary approach

Description of meson-baryon scattering, s-wave resonances

- Interaction <-- chiral symmetry
- Amplitude <-- unitarity (coupled channel)

V ~ interaction : ChPT at given order G ~ loop function : subtraction constant (cutoff)

N. Kaiser, P. B. Siegel, W. Weise, Nucl. Phys. A594, 325 (1995), E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998), J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001), M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002), many others

By construction, generated resonances are all dynamical?

Introduction

(Known) CDD pole in chiral unitary approach

Explicit resonance field in V (interaction)

U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000) D. Jido, E. Oset, A. Ramos, Phys. Rev. C66, 055203 (2002)

Contracted resonance propagator in higher order V

G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B321, 311 (1989) V. Bernard, N. Kaiser, U.G. Meissner, Nucl. Phys. A615, 483 (1997)

J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D59, 074001 (1999)

Is that all? subtraction constant?

Natural renormalization scheme

CDD pole in subtraction constant?

Phenomenological (standard) scheme --> V is given, "a" is determined by data

$$T = \frac{1}{(V^{(1)})^{-1} - G(a)}$$
$$T = \frac{1}{(V^{(1)} + V^{(2)})^{-1} - G(a')}$$
$$\uparrow \text{pole} \quad (7)$$

leading order

next to leading order

"a" represents the effect which is not included in V. CDD pole contribution in G?

Natural renormalization scheme --> fix "a" first, then determine V

to exclude CDD pole contribution from G, based on theoretical argument.

Natural renormalization scheme

Natural renormalization condition

Conditions for natural renormalization

- Loop function G should be negative below threshold.
- T matches with V at low energy scale.

"a" is uniquely determined such that

 $G(\sqrt{s} = M_T) = 0, \quad \Leftrightarrow \quad T(M_T) = V(M_T)$

matching with low energy interaction

K. Igi, K. Hikasa, Phys. Rev. D59, 034005 (1999) U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000)

crossing symmetry (matching with u-channel amplitude)

M.F.M. Lutz, E. Kolomeitsev, Nucl. Phys. A700, 193 (2002)

We regard this condition as the exclusion of the CDD pole contribution from G.

Effective interaction: origin of the resonances

Two renormalization schemes

Phenomenological scheme

V is given by ChPT (for instance, leading order term), fit cutoff in G to data

Natural renormalization scheme

determine G to exclude CDD pole contribution, V is to be determined

Same physics (scattering amplitude T)

$$T = \frac{1}{V_{\text{ChPT}}^{-1} - G(a_{\text{pheno}})} = \frac{1}{(V_{\text{natural}})^{-1} - G(a_{\text{natural}})}$$
† Effective interaction Origin of the resonance

Effective interaction: origin of the resonances

Pole in the effective interaction

Leading order V : Weinberg-Tomozawa term

 $V_{\rm WT} = - \frac{C}{2f^2} (\sqrt{s} - M_T)$ **C/f² : coupling constant no s-wave resonance**

$$T^{-1} = V_{\text{WT}}^{-1} - G(a_{\text{pheno}}) = (V_{\text{natural}})^{-1} - G(a_{\text{natural}})$$

$$\uparrow \text{ChPT} \quad \uparrow \text{data fit} \qquad \uparrow \text{given}$$

Effective interaction in natural scheme

$$V_{\text{natural}} = -\frac{C}{2f^2} (\sqrt{s} - M_T) + \frac{C}{2f^2} \frac{(\sqrt{s} - M_T)^2}{\sqrt{s} - M_{\text{eff}}} \text{ pole}$$
$$M_{\text{eff}} = M_T - \frac{16\pi^2 f^2}{CM_T \Delta a}, \quad \Delta a = a_{\text{pheno}} - a_{\text{natural}}$$

There is always a pole for $a_{pheno} \neq a_{natural}$

- small deviation <=> pole at irrelevant energy scale
- large deviation <=> pole at relevant energy scale

Application: $\Lambda(1405)$ and N(1535)

Comparison of pole positions

Pole of the full amplitude : physical state

 $z_1^{\Lambda^*} = 1429 - 14i \text{ MeV}, \quad z_2^{\Lambda^*} = 1397 - 73i \text{ MeV}$ two poles $z^{N^*} = 1493 - 31i \text{ MeV}$ for $\Lambda(1405)$

Pole of the V_{WT} + natural : pure dynamical +

 $z_1^{\Lambda^*} = 1417 - 19i \text{ MeV}, \quad z_2^{\Lambda^*} = 1402 - 72i \text{ MeV}$ $z^{N^*} = 1582 - 61i \text{ MeV}$

==> $\Lambda(1405)$ is mostly dynamical state

Application: $\Lambda(1405)$ and N(1535)

Pole in the effective interaction

$$T^{-1} = V_{\rm WT}^{-1} - G(a_{\rm pheno}) = (V_{\rm natural})^{-1} - G(a_{\rm natural})$$

Pole in the effective interaction (M_{eff}) : pure CDD pole

 $z_{
m eff}^{\Lambda^*} \sim 7.9 \ {
m GeV}$ irrelevant! $z_{
m eff}^{N^*} = 1693 \pm 37i \ {
m MeV}$ relevant?

Difference of interactions $\Delta V \equiv V_{natural} - V_{WT}$

==> Important CDD pole contribution in N(1535)

Summary: formulation

We study the origin (dynamical/CDD) of the resonances in the chiral unitary approach

Natural renormalization scheme **Exclude CDD pole contribution from** the loop function, consistent with N/D. Comparison with phenomenology --> Pole in the effective interaction We extract the CDD pole contribution hiddin in the subtraction constant into effective interaction V_{eff}.

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Summary

Summary: application to $\Lambda(1405)$ and N(1535)Structure of baryon resonances: Comparison of natural scheme with phenomenological scheme tells us about the structure of baryon resonance. : consistent with Nc scaling and em size. T. Hyodo, D. Jido, L. Roca, Phys. Rev. D77, 056010 (2008) L. Roca, T. Hyodo, D. Jido, Nucl. Phys. A809, 65 (2008) T. Sekihara, T. Hyodo, D. Jido, Phys. Lett. B669, 133 (2008) N(1535) requires CDD pole contribution. : a quark origin state? : other coupled- channel?