低エネルギーQCDと カイラル有効理論

兵藤 哲雄 hyodo@th.phys.titech.ac.jp 東京工業大学 理工学研究科

標準理論:自然界の力(重力以外)をゲージ理論に基づき記述

電磁相互作用、弱い相互作用:SU(2)×U(1)

強い相互作用:SU(3)

+ Higgs機構 + CKM行列

多くの実験事実により検証されている。

S. Weinbergと有効場の理論 低エネルギーQCDに対する有効場の理論: S. Weinberg

導入

Chiral09 (スイス、ベルン) 2009年7月6日 「有効場の理論、過去と未来」

量子色力学(QCD)

強い相互作用は<mark>QCD</mark>で記述される。

- 場の量子論:一般に解けない(解を書き下せない)。
- -> 結合定数による摂動展開をする。
- 電磁相互作用、弱い相互作用:OK
- 強い相互作用(QCD)は漸近自由性をもつ
 - 高エネルギー領域:摂動的QCD、OK
 - 低エネルギー領域:実際の真空、ハドロン物理
 - 1. カイラル対称性の自発的破れ
 - **2. カラーの閉じ込め**
- ハドロンの多様なダイナミクスはどう記述されるのか?

導入

ハドロンの多様な性質

観測されているハドロン (Particle Data Group)

p		P11		∆(1232)	P_{10}		Σ^+	P_{11}		.Ξ0	Pli		1,2			LIGHT UN	RLAVORED		STRAM	ICE	CHARMED, S	STRANCE	4	FLFS)
	1000	P., 1		A(1400)	P		2.0	А.		2	R.		A. (9666)*			$I^{G}(f^{C})$		$l^{G}(J^{PC})$		15		10	•===(15)	0+(0-+)
N(1	ł¥		, +	-> 丘	fΕ			442	ᆂᄮ			448	<u>5</u>		T ⁰	1-(0-)	• m ₂ (1670)	1-(2-+)	• K [#]	1/2(0~)	 D[±]_i 	0(0-)	 J/ψ(15) 	0-(1)
MIT	们不	えくく		よ見		巳 、	, Al		反叩	田、	F IA	与			*	1-(0-+)	 d(1680) 	0"(1 " ")	 R⁰ 	$1/2(0^{-1})$	 D^{*0}_i 	$0(i_{i_{1}})$	 Xes(1P) 	0"(0 + +)
N(1		201		2012000	200		A.1.1.1.1.1.1.1.1		-		-		A 1 2440 L		• 6,000	0.10 . 1	 p₁(1690) q(1205) 	1+0	- 49	1/2(9)	 D[*]₁₀(2317)[±] D[*]₁₀(2317)[±] 	0(0*)	• (coltr)	2 ¹ /1 + -1
M[16	75)	DB .		A(1905)	Fis		£(1580)	D13		E(1990)		***	5.(2455)		• p(770)	1+(1)	4-(1700)	1-(2++)	A(7)(800)	1/202*1	• D ₁₁ (2466)*	6(1*)	• Xe(1P)	0+(2++)
N(16	(06	F15		A(1910)	P_{11}		E(1670)	S11	**	E(2030)		***	E. (2520)		• w(787)	0-(1)	 6(1710) 	0+(0++)	 R*(892) 	1/2(1)	• D _{c0} (2573) [®]	0(77)	• n _i (25)	0+(0 - +)
N[1	414-1			-						E(2120)		•	$\Sigma_{c}(2800)$		• q*(958)	0+(0-+)	ef (1760)	0+(0-+)	 K₁(1270) 	$1/2(1^+)$	D _{r1} (2700)*	0(17)	• ((25)	0-(1)
N[1	¥1	7-4	-0	フロ	L	EK 🛪	業や			Ξ(2290)			Ξ_c^+		• (900)	1-(0++)	• #(1800) 6 (1830)	1 (0 · ·) 5 ⁺ (2 + +)	 K₁(1400) K²(1400) 	1/2(1*)	BOTT	OM .	• 9(3770) • X(3027)	07(27+)
N(1	7 ¹	LJ	V	Jr.	JE	I D.I.	円と			=(2390)			22		• 4(302.0)	0-0	X(18.35)	70-11	· AC(1430)	1/2(0+)	(8	ki)	$\chi_{cl}(2P)$	0+(2++)
M(1	nei.		. 1		1		17(1770)			=(2500)			$\Xi_{c}^{p_{+}}$		 h(1170) 	0 (1 + -)	 \$\phi_1(1850)\$ 	0-(3)	 A(1430) 	1/2(2*)	• B ²	$1/2(0^{-})$	X(3940)	7,077
M(20	000	F12 1		A(2000)	P35		1.(1775)	D.,		0-			=_c		 b (1235) c (1235) 	1*(1 * -)	m-(1870)	0+(2-+)	R(1460)	1/2(07)	• 8°	1/2(0)	 X(3945) X(4545) 	T'(T'')
MIZE	1007 1007	- 15 		24(2150)	531	-	TURADI	0.		0(2250)-		***	三(2645)		• 41(1200)	0+(2++)	 m₂(1000) m(1900) 	1 (2 - 1) $1^{+}(1 - 1)$	K2(1580)	1/2(2-)	• B* / B* / B*	à bance	• 9(4040)	0 11
N(2				-	. E		TT a	17	- 1			••	=c(2790)		· 6(1285)	0+(1++)	6(1910)	0+0++)	A(1650)	1/2(1*)	ADMOCTUR	1	X(4364)	77(777)
N(2					/ 6	51(/)不[1 /	7 1	(= = =		••	=_{(2815)		 n(1295) 	$0^+(0^{-+})$	 6(1990) 	0+(2++)	 A**(1680) 	1/2(1-)	trix Element	CRM Ma	 X[4261] 	77(1)
N(2	•	•	100			-0 -			- 1	F7 I			=.(2980)		• #(1300)	1 (0)	Pp(1990)	1+(1)	 K₁(1770) 	$1/2(2^{-})$	•B*	$1/2(1^{-})$	X(4360)	7 (1)
N[22	(00)	D15		$\Delta(2400)$	G ₃₇₉	**	Σ(2000)	511	•				5.(3055)		• 45(1326)	a+(a++)	 P_(2010) A(2020) 	0.0.1.1	 A[*]₃(1780) 	1/2(37)	85(5732)	7(7')	× 9[4415] X(4660)	27(1)
M[22	20)	H ₂₉		∆ (2420)	$H_{5,11}$		$\Sigma(2030)$	F17					E.(3080)		h(1380)	7-(1+-)	· 4,(2040)	1-(4++)	 A(1836) A(1836) 	1/2(2)	• 85(5721)* • 85(5747)*	1/2(2+1)	of and	<u></u>
N(22	(50)	G10 1		A(2750)	A		£ (9070)	F11	•	Constant of the			$\Xi_{c}(3123)$	•	• m ₁ (1400)	1-(1-+)	 6(2050) 	0+(4++)	A(1950)	1/2(0+)	and the state of t	The state of		0
IN[2	17	44	64	~ 手			4	-	+п	白IE	日在	-	Ω_c^0	•••	 n(1405) 6 (1405) 	0*(0-+)	m(2100)	1 (2 - 1)	A(1980)	$1/2(2^+)$	10110M, S	RANCE (I. TI)	(15) 7(15)	0.(0 .)
MIL.	1	7 13	\overline{z}	よ里			 	-	τH	局リ		Z	$\Omega_{c}(2770)^{0}$		• - (1420)		6(2100)	0.0.441	 A[*]₄(2045) 	$1/2(4^+)$	• B ⁰	0(0.11)	• Ye(1P)	0+(0++)
	-														6(1430)	0+(2++)	p(2150)	1+(1)	K ₁ (2250)	1/2(2~)	•B	0(1)	• Xm(1P)	0+(1++)
I				A(1520)	Dea		E(2620)								• a ₀ (1450)	1-(0++)	\$(2170)	0-(1)	A(2000)	1/2(5-)	• $B_{el}($830)^0$	$1/2(1^+)$	• Xic(1P)	0"(2"")
I				A(1600)	Pu1		$\Sigma(3000)$		•				R		• p(1450)	1+(1)	6(2200)	0.0.11	, 84(2500)	1/2(47)	 B[*]₄₂(\$\$40)ⁿ B[*] (\$\$850) 	1/2(2")	• 7(25) 7(1/1)	0 (1)
I				A(1670)	501	****	$\Sigma(3170)$		•				Σ.	***	• 6(1900)	0+10++1	w(22.26)	0+0-+1	" A((3100)	$T^{T}(T^{TT})$	n."(sean)	ifted.	• Xm(2P)	0+(0++)
I				A(1690)	D_{00}								Σ:	***	5(1510)	0+(1++)	P.(2250)	1+(3)	CHARM	/ED	BOTTOM, C	HARMED	• Xs(3P)	0+(1++)
I				A(1800)	S ₀₁								25.27		 f'_2(1525) 	0*(2 * *)	 f₁(2300) 	0+(2++)	(C = 1	10)	10 - 0 -	#10	 χ₀(2P) χ₀(2P) 	0*(2**)
I				A(1810)	Plu								Ω_b^-		5(1585)	170-0	6(2300)	0.16	 D* 	1/2(0)	• 0,	100.3	• 7(45)	0-(1)
I				A(1820)	P05										A(1505)	0-0 + -1	 6(2340) 	0+(2++)	• D*	1/2(0~)			· 7(10860)	0"(1)
I				A(1890)	D05										• m1(1600)	1-(1-+)	Ph(2250)	1+6)	· D*(2007)*	1/20.73			 7(11020) 	0-(1)
I				A(2000)	1.69										a1(1640)	1-(1++)	a _b (2450)	$1^{-}(6^{++})$	$D_{0}^{*}(2400)^{0}$	1/2(0+)			NON 47 CA	ANDIDATES
I				A(7020)	Fro.										6(1640)	0*(2**)	6(2510)	0.6)	$D_0^*(2400)^{\pm}$	$1/2(0^+)$			NON aT C	ANDS
				A(2100)	Gur										• @(1645)	0-11	OTHER	LIGHT	• D1 (2420) ^P	1/2(1")			DATES	
				A(2110)	F05	***									• un(1670)	0-(0)	Further St.	ite	D (2430 P	1/2(1°)				
				A(2325)	D ₀₀	•	1101	1 -	-		74	20	ノ北手・	· 古					- 719 (1460 ⁻⁰	1/2011		CO	任	米石
				A(2350)	Hes		/ \ '	」」	1.	~ ע		5(リイ単分						• (1460) *	1/2(2*)	~	OU	/1単き	光月
				A(2585)			• •		• •	T	- 1								D*(2640)*	1/2(r')	l •		• قطعه ا	
							-																	

全てが単一のQCDラグランジアンから出てくる。どのように?

低エネルギーQCDの研究方法

- QCDの第1原理計算:格子QCDシミュレーション
 - 時空を離散化して格子上の場の理論にする。 周期境界条件で有限体積化:経路積分は有限次元
 - --> 数値計算により非摂動的な行列要素が得られる。
- 有効理論(一般に):
 - 興味のある物理に有効な自由度を用いて系を記述する

	弱い相互作用	超伝導	強い相互作用
有効理論	4-fermi相互作用	BCS理論	QCD
基礎理論	Weinberg-Salam	QED	統一理論?

- 低エネルギーQCDの有効理論:
 - カイラル対称性を指針にしたハドロン自由度の有効場の理論

カイラル対称性と自発的破れ

<mark>カイラル対</mark>称性:

- QCDの (零質量極限での) クォークが持つ対称性。 自発的、およびあからさまに破れている。
- なぜ破れているのに重要なのか?
- カイラル対称性と自発的破れがあることにより
 - Nambu-Goldstone(NG)ボソンの出現:π
 - ハドロン質量の動的な生成
 - 低エネルギー定理(ハドロンとNGボソンの相互作用を規定)

カレント代数による研究:交換関係を用いる。計算が煩雑。 -> 有効場の理論によって体系的で効率よく研究できる。

Weinberg の "Folk Theorem"

有効場の理論を作る指針:対称性と摂動展開

S. Weinberg, Physica A96, 327 (1979).

in the context of perturbation theory: if one writes down the most general possible Lagrangian, including all terms consistent with assumed <u>symmetry</u> principles, and then calculates matrix elements with this Lagrangian to any given order of perturbation theory, the result will simply be the most general possible S-matrix consistent with analyticity, perturbative unitarity, cluster decomposition and the assumed symmetry principles. As I said, this has not been proved, but any counterexamples would be of great interest, and I do not know of any.

≃ 対称性を満たす最も一般的なラグランジアンを作って摂動 計算すれば、対称性に矛盾のない散乱振幅が得られる。

なにか<mark>展開パラメーター</mark>があれば、QCDと同じ対称性を持つハド ロンの自由度の低エネルギー有効理論が作れるのでは?

低エネルギーQCDと有効場の理論

カイラル対称性とその破れ=有効場の理論

導入

- ・この授業の位置づけ
- ・低エネルギーQCDと有効場の理論

🗳 QCDのカイラル対称性

- ・カイラル対称性とカイラル変換(1フレーバー)
- ・カイラル対称性とカイラル変換(NFフレーバー)
- ・対称性の自発的/あからさまな破れ

✓ 有効場の理論

- ・線形シグマ模型と自発的対称性の破れ
- ・非線形シグマ模型、次数勘定、カイラル摂動論

カイラル対称性:射影演算子

- カイラル対称性:零質量フェルミオンの持つ対称性 (c.f. 岡さんの講義ノート3.3)
- フェルミオンのラグランジアン:1フレーバーの場合
 - $\mathcal{L} = \bar{q}(\partial m)q$ 運動項+質量項
- 右巻き、左巻きへの射影演算子 $P_L = \frac{1}{2}(1 - \gamma_5)$ $P_R = \frac{1}{2}(1 + \gamma_5)$

射影演算子の性質

 $P_L + P_R = 1 \qquad P_L^2 = P_L, \quad P_R^2 = P_R$ $P_R P_L = P_L P_R = 0$

カイラル対称性:右と左への分解

右巻き、左巻き成分へのフェルミオン場の分解 $q = (P_L + P_R)q = q_L + q_R$

 $\bar{q}_{L} = (P_{L}q)^{\dagger}\gamma_{0} = \bar{q}P_{R} \qquad \bar{q}_{R} = \bar{q}P_{L}$ **LとRが反対** $\bar{q} = \bar{q}(P_{L} + P_{R}) = \bar{q}_{R} + \bar{q}_{L}$

カイラリティ: ⁷5 の固有値

 $\gamma_5 q_L = -q_L, \quad \gamma_5 q_R = q_R,$

ラグランジアンは

 $\mathcal{L} = \bar{q}(\partial - m)q = \bar{q}_L \partial q_L + \bar{q}_R \partial q_R + \bar{q}_L m q_R + \bar{q}_R m q_L$

運動項:LとRが独立 質量項:LとRが混ざる

右、左のカイラル変換

 $m \rightarrow 0$ のとき、LとRは互いに関連が無い

: それぞれを大局的位相変換してもラグランジアンは不変

$$q_L \to e^{i\theta_L} q_L, \quad \bar{q}_L \to \bar{q}_L e^{-i\theta_L}$$
$$q_R \to e^{i\theta_R} q_R, \quad \bar{q}_R \to \bar{q}_R e^{-i\theta_R}$$

1フレーバーのカイラル対称性: $G = U(1)_R \otimes U(1)_L$

右巻きフェルミオン、左巻きフェルミオンを2つの成分とすると

全体の群Gのパラメーターは2つ: θ_R, θ_L

右だけの変換: $g_R = (e^{i\theta_R}, 1)$ 左だけの変換: $g_L = (1, e^{i\theta_L})$

軸性、極性のカイラル変換

極性(vector)、軸性(axial vector)変換:qに対して $q \rightarrow e^{i\theta_V}q$ $q \rightarrow e^{i\gamma_5\theta_A}q$

右、左の成分で見ると

$$g_V = (e^{i\theta_V}, e^{i\theta_V})$$
同じ角度で回転

$$g_A = (e^{i\theta_A}, e^{-i\theta_A})$$
反対向きに同じ角度で回転
 γ_5 の固有値

これは基底の組み替えに対応する。右、左変換の生成子は $t_R = (1,0), \quad t_L = (0,1)$

であるので、極性、軸性変換の生成子は $t_V = (1,1) = t_R + t_L$ $t_A = (1,-1) = t_R - t_L$ と関係しており、同じ群を生成する。

軸性変換と質量項

- ラグランジアンの極性、軸性変換を考える。 $\bar{q} \rightarrow \bar{q}e^{-i\theta_V}$ $\bar{q} \rightarrow \bar{q}e^{+i\gamma_5\theta_A}$
- より、運動項は不変であるが、質量項は軸性変換に対して $\bar{q}mq \rightarrow \bar{q}e^{2i\gamma_5\theta_A}mq$
- となり、不変でない。
- 一方で極性変換では、質量項も含めてラグランジアンは不変。
- よって、1成分フェルミオン系の対称性としては
 - 質量無し: $G = U(1)_R \otimes U(1)_L = U(1)_V \otimes U(1)_A$
 - 質量有り: $H = U(1)_V$ フェルミオン数の保存
- 注) 厳密には、質量が無い場合でも量子補正を考慮すると U(1)_Aは破れる(アノマリー)。

右、左のカイラル変換(NFフレーバー)

クォークはフレーバーの自由度を持っている。NF種類のクォーク のフレーバー空間での回転:フレーバー対称性

$$q = \begin{pmatrix} u \\ d \\ s \\ \vdots \end{pmatrix} \qquad q \to \underline{e^{it^a \theta_V^a}} q \qquad a = 1, \dots, N_F^2 - 1$$
行列

 t^a はSU(N_F)の生成子でフレーバー空間の足をもつN_F×N_F行列。 クォークの質量が等しければラグランジアンはこの変換で不変。

クォークが零質量であれば、右巻きと左巻きが1フレーバーのとき と同様に定義でき、右と左を独立に回転できる:カイラル対称性

$$q_L \to e^{it^a \theta_L^a} q_L, \quad \bar{q}_L \to \bar{q}_L e^{-it^a \theta_L^a}$$
$$q_R \to e^{it^a \theta_R^a} q_R, \quad \bar{q}_R \to \bar{q}_R e^{-it^a \theta_R^a}$$

極性、軸性のカイラル変換(NFフレーバー)

対称性の群の構造は

質量無し:カイラル対称性 $G = SU(N_F)_R \otimes SU(N_F)_L$

質量有り:フレーバー対称性 $H = SU(N_F)_V$

カイラル群Gの要素を右と左の成分で表示

 $G \ni g = (e^{it^a \theta_R^a}, e^{it^a \theta_L^a})$

右、左変換の生成子は

 $t_R^a = (t^a, 0), \quad t_L^a = (0, t^a)$

であるので、極性、軸性変換の生成子を、以前と同様に $t_V^a = t_R^a + t_L^a = (t^a, t^a), \quad t_A^a = t_R^a - t_L^a = (t^a, -t^a)$

と定義する。これは、qに対して γ_5 で定義するのと等価。 $q \rightarrow e^{it^a \theta_V^a} q, \quad q \rightarrow e^{it^a \gamma_5 \theta_A^a} q$

交換関係と群の直積

- SU(N_F)は非可換群。生成子の交換関係は $[t^a, t^b] = if^{ab}_{\ c}t^c$
- ここでf_{abc}は群の構造定数。

右と左の群は直積なので、生成子は交換する $\begin{bmatrix} t_R^a, t_R^b \end{bmatrix} = i f_c^{ab} t_R^c, \quad \begin{bmatrix} t_L^a, t_L^b \end{bmatrix} = i f_c^{ab} t_L^c, \quad \begin{bmatrix} t_R^a, t_L^b \end{bmatrix} = 0$ RはRへ LはLへ LとRは交換 SU(NF)R、SU(NF)Lはそれぞれ群を構成している。

一方で極性と軸性の生成子の交換関係は

 $\begin{bmatrix} t_V^a, t_V^b \end{bmatrix} = if^{ab}_{\ c} t_V^c, \quad \begin{bmatrix} t_A^a, t_A^b \end{bmatrix} = if^{ab}_{\ c} t_V^c, \quad \begin{bmatrix} t_A^a, t_V^b \end{bmatrix} = if^{ab}_{\ c} t_A^c$ **VはVへ Aの交換関係にVが関与する SU(NF)vは群だが、軸性変換は群ではない(閉じていない)!**

2フレーバー零質量QCDの対称性

QCDラグランジアンでu,dクォークを近似的に零質量とした場合 を考える。ラグランジアンの持つ対称性は、

- $G = U(2)_R \otimes U(2)_L$
 - $= U(1)_R \otimes U(1)_L \otimes SU(2)_R \otimes SU(2)_L$
 - $= U(1)_V \otimes U(1)_A \otimes SU(2)_R \otimes SU(2)_L$

数保存 量子異常 カイラル対称性

以下ではU(1)を除いたカイラル対称性について考える。

質量項 *q̄mq*: 極性変換SU(2)∨でのみ不変

対称性の破れはどのように起こるのか?

カイラル対称性の破れ

カイラル対称性は現実世界では2通りに<mark>破れている</mark>。

- 自発的な破れ(spontaneous symmetry breaking) あからさまな破れ(explicit symmetry breaking)
- 特に重要なのは<mark>自発的な破れ</mark>であり、ここから低エネルギーQCD を支配する種々の法則が導かれる。
 - Nambu-Goldstone(NG)ボソンの出現:π
 - ハドロン質量の動的な生成
 - 低エネルギー定理(ハドロンとNGボソンの相互作用を規定)

あからさまな破れは、小さい量として摂動で扱う。

- 有限のπの質量

自発的対称性の破れ

- ラグランジアンの持っている対称性が、真空によって破られる。 (c.f. Gupta-Bleulerによる電磁場の共変的な量子化) $\langle 0 | \bar{q}q | 0 \rangle = v \neq 0$
- クォーク対凝縮(質量項と同じ形をしている)はカイラル不変で なく、フレーバー対称性でのみ不変である。

対称性の自発的破れ

ラグランジアンの対称性: $G = SU(2)_R \otimes SU(2)_L$ 真空の対称性: $H = SU(2)_V$ $G \rightarrow H$

クォーク凝縮の値(GMOR関係式から、1GeVスケールで): $\langle 0 | (\bar{u}u + \bar{d}d)/2 | 0 \rangle \sim -(250 \text{ MeV})^3$

Nambu-Goldstoneの定理とNGボソン

対称性が自発的に破れたとき、破れた生成子と同じ数の零質量ボ ソンがあらわれる。

- Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); ibid, 124, 246 (1961),
- J. Goldstone, Nuovo Cim. 19, 154 (1961),
- J. Goldstone, A. Salam, S. Weinberg, Phys. Rev. 127, 965 (1962).

2フレーバーのカイラル対称性の場合は

$$SU(2)_R \otimes SU(2)_L \rightarrow SU(2)_V$$

生成子6つ 生成子3つ

破れた対称性の生成子:3つ => l=1(3成分)の擬スカラーメソンπがNGボソン。 πの質量が他のハドロンに比べて非常に軽い理由を説明。

カイラル対称性のあからさまな破れ

あからさまな破れ:クォークのbare質量、NGボソン質量の程度

	クォーク質量(<mark>MS</mark> , 2GeV)	NGボソン質量
SU(2)	$m_u \sim 3 \mathrm{MeV}, \ \ m_d \sim 7 \mathrm{MeV}$	$m_{\pi} \sim 140 \text{ MeV}$
SU(3)	$m_s \sim 150 { m ~MeV}$	$m_K \sim 495 { m MeV}$

自発的対称性の破れ(ハドロン質量)のスケール $\Lambda_{\chi} \sim 4\pi f_{\pi} \sim 1200 \text{ MeV}, \quad M_N \sim 940 \text{ MeV}$

よって

 $m_{SU(2)} \ll \Lambda_{\chi}, M_N$

2フレーバーではあからさまな破れは第0近似で無視して、摂動 で取り入れることが可能。3フレーバーは微妙。

前半のまとめ

カイラル対称性

真空でクォーク対が凝縮することによりカイラル対称性の 自発的破れが起こり、 π がNGボソンとしてあらわれる。 $SU(2)_L \otimes SU(2)_R \rightarrow SU(2)_V$

QCDが先かカイラル対称性が先か?

- 1960 カレント代数 (PCAC) : Nambu
- 1961 対称性の自発的破れ:Nambu、Goldstone
- 1962~ πを含む散乱過程
- 1968 非線形表現:Weinberg
- 1969 一般の非線形表現:CCWZ
 - (1973 漸近自由、QCDの確立)
- 1979 "Folk theorem"、次数勘定:Weinberg --> loopの計算、実用的な有効場の理論
- 1984 カイラル摂動論: Gasser-Leutwyler

有効場の理論

カレント代数の方法

PCAC:軸性カレントの部分的保存 $\partial^{\mu}A^{a}_{\mu}(x) = m_{\pi}^{2}f_{\pi}\pi^{a}(x)$

m_π程度(小さい!)に軸性カレントの保存が破れている。

カレントの交換関係とreduction formulaを使ってπの関与する 過程の散乱振幅を導く:低エネルギー定理

低エネルギー定理の例

Goldberger-Treiman関係式(1π放出) Weinberg-Tomozawa定理(2π放出)

もっと簡単に結果を得られないだろうか? --> ハドロンの自由度の有効ラグランジアンを作って、 ファインマン則を用いて計算する。

線形シグマ模型: $\sigma \geq \pi$ (3成分)のラグランジアン (c.f. 岡さんの講義ノート3.1 ~ Goldstone模型)

M. Gell-Mann, M. Levy, Nuovo Cim. 16, 705 (1960)

SU(2)×SU(2)のカイラル対称性を持つ。

パラメーター:質量 μ 、相互作用の強さ λ

場のカイラル変換:クォーク場で表示 $t = \tau/2$ $\sigma \sim \bar{q}q, \quad \pi \sim \bar{q}i\tau\gamma_5 q$

無限少SU(2)極性変換の下で $\sigma \rightarrow \sigma, \quad \pi \rightarrow \pi - \theta^V \times \pi$

無限少SU(2)軸性変換の下で $\sigma \rightarrow \sigma + \theta^A \cdot \pi, \quad \pi \rightarrow \pi - \theta^A \sigma$

注) 変換後の量が、元の場の1次式になっている:線形表現

カイラル変換でσとπは互いに移り変わる。 このような組み合わせを<mark>カイラルパートナー</mark>と呼ぶ。 対称性が破れていなければ、<mark>縮退した質量</mark>を持つ。

カイラル不変量とO(4)対称性

$\sigma \ge \pi \sigma$ 場をあわせて4成分のカイラル4ベクトルを作る $\phi = (\sigma, \pi)$

カイラル不変な組み合わせ $\sigma^2 + \pi \cdot \pi = \phi^2$

この形でラグランジアンを構成。実際に最初のラグランジアン は、運動項、質量項、相互作用項の全てが*φ*²の形をしている。

カイラル変換は4ベクトルφを4次元空間で回転させることに対 応している。4次元回転対称性:

 $SU(2) \otimes SU(2) \approx O(4)$

線形シグマ模型のラグランジアンは、4成分の**φ**⁴理論と等価。

有効場の理論

線形シグマ模型での自発的対称性の破れ QCDでの自発的対称性の破れの機構:クォーク対凝縮 線形シグマ模型のポテンシャルを書いてみる

μ²> 0のとき:ウィグナー相^{夏の学校講義録 (2002)} 真空はφ=0。π、σの質量はどちらもμ

<mark>μ²< 0</mark>のとき:ゴールドストーン相、 真空はφ≠0で縮退、<mark>自発的対称性の破れ</mark>

有効場の理論

線形シグマ模型での自発的対称性の破れ

 $\mu^2 < 0$ の場合の真空を σ 方向に選ぶ(QCDとの対応)。

 $\langle \sigma \rangle = \sqrt{-\frac{6\mu^2}{\lambda}}$

この真空のまわりの揺らぎ $\tilde{\sigma} = \sigma - \langle \sigma \rangle$ で書き直す

πの質量項がない:NGボソン。カイラル円に沿ったモード

線形模型のラグランジアンと問題点

カイラル不変な組み合わせ

 $\sigma^2 + \boldsymbol{\pi} \cdot \boldsymbol{\pi} = \phi^2$

Weinbergの"定理"によると、最も一般的なラグランジアンを用 いて理論を構成する。

$$(\sigma^2 + \boldsymbol{\pi} \cdot \boldsymbol{\pi})^n \qquad \ln(\sigma^2 + \boldsymbol{\pi} \cdot \boldsymbol{\pi})$$

- などはカイラル不変。どこまで取り入れればいい?
- 一つの指針:繰り込み可能性を条件とする。 繰り込み可能な項は2乗のべキ(質量項+4点相互作用)まで
- 摂動展開は?
- これらを解決するのが(非線形表現に基づく)カイラル摂動論

線形 : 変換が1次式 (1次変換) になっているもの 非線形: そうでないもの

様々な(カイラル)非線形模型が知られていたが、それらは場 の再定義で関係づき、本質的には変換性は一意的

S. Weinberg, Phys. Rev. 166, 1568 (1969), S.R. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2239 (1969) C.G. Callan, S.R. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2247 (1969)

非線形シグマ模型では対称性の自発的破れが理論の中に組み込ま れており、 NGボソンを自発的に破れた空間の座標と同定する。 NGボソン場は、破れていない対称性の下で非線形に変換する。

 $SU(2)_L \otimes SU(2)_R \to SU(2)_V$

破れる前後、両方の対称性の情報を持っている。

以下の非線形模型で使う場

CCWZに従ってカイラル場 *ξ*を導入 $\xi(\pi) = \exp\left\{i\pi/(\sqrt{2}f)\right\}$ $\pi = \tau \cdot \pi/\sqrt{2}$

ξの変換性

$$\xi \to R\xi h^{\dagger} = h\xi L^{\dagger}, \quad \xi^{\dagger} \to L\xi^{\dagger}h^{\dagger} = h\xi^{\dagger}R^{\dagger}$$

 $R \in SU(2)_L, \quad L \in SU(2)_R, \quad h(\pi, R, L) \in SU(2)_V$

 π の変換性は ξ の変換性から定義される、非線形な変換。

メソンのラグランジアンを扱うために U 場を導入

$$U = \xi^2 = \exp\left\{i\sqrt{2\pi}/f\right\} \rightarrow RUL^{\dagger}$$

 $U^{\dagger} = (\xi^{\dagger})^2 \rightarrow LU^{\dagger}R^{\dagger}$

非線形模型でのラグランジアンの例

カイラル不変なラグランジアン:Trはフレーバー空間 $\mathcal{L} = a \operatorname{Tr} \left(\partial_{\mu} U^{\dagger} \partial^{\mu} U \right)$

前にかかる係数は、一般には対称性から決まらない。 今の項の場合は、展開してπ場の最低次に注目すると

$$\mathcal{L} = a \operatorname{Tr} \left[\partial_{\mu} (1 - i\sqrt{2\pi}/f + \cdots) \partial^{\mu} (1 + i\sqrt{2\pi}/f + \cdots) \right]$$
$$= a \frac{2}{f^2} \partial_{\mu} \pi \cdot \partial^{\mu} \pi + \mathcal{O}(\pi^4)$$

これは運動項なので、係数を正しく1/2と規格化するには $a = f^2/4$

展開の高次項:πの4点関数、6点関数、、、 カイラル対称性により相互作用の間に関連がつく。

体系的な理論の構築:次数勘定

ラグランジアンとファインマン図を低エネルギー展開する。

S. Weinberg, Physica A96, 327 (1979).

- 理由1:非線形模型でも、対称性から許されるラグランジアン は無限に存在する。カウンティングで項を整列すれ ば、低エネルギーでは次数の低いものが主要となる。
- 理由2:摂動計算の過程でループ図が出てくると、紫外発散が 発生する。ダイアグラムを整列することで必要な相殺項 をラグランジアンに求めることができる。
- ループ図の発散に対応する次数の相殺項がラグランジアンにあることが保証されれば、次数毎で繰り込み可能になる。
- 低エネルギーで有効かつ体系的な計算が可能な理論?

ラグランジアンの次数勘定

- 系の典型的な小さい運動量スケールを *p* とする。 低エネルギーでは次数の小さいものが重要。
- ラグランジアンのカウンティング
 - 微分: $\partial \sim \mathcal{O}(p^1)$ 運動量の一次
 - クォーク質量: $m \sim \mathcal{O}(p^2)$

あからさまな破れ。GMOR関係式により、クォーク質量は NGボソン質量の2乗に比例。 $(m_{\pi})^2 \approx p^2$

例: $a \operatorname{Tr} (\partial_{\mu} U^{\dagger} \partial^{\mu} U) \sim \mathcal{O}(p^2)$

 $b \text{Tr} \left[(\partial_{\mu} U^{\dagger} \partial^{\mu} U) (U^{\dagger} m + m U) \right] \sim \mathcal{O}(p^4)$

有効場の理論

ファインマン図の各成分のカウンティング

ループ:
$$\int dp^4 \sim \mathcal{O}(p^4)$$

頂点関数:ラグランジアンから決まる次数

プロパゲーター:
$$\frac{1}{p^2} \sim \mathcal{O}(p^{-2})$$

例:

$$p^2$$
 p^2 p^2 $\sim \mathcal{O}(p^{4+2+2-2-2}) = \mathcal{O}(p^4)$

ループの発散はp⁴のラグランジアンの相殺項と打ち消し合う。

NGボソンのみの系では、ローレンツ対称性から微分はかならず2 つ組になって出てくる。つまりpの奇数次の項はない。

 $\mathcal{L} = \sum_{n=1}^{\infty} \mathcal{L}^{(2n)}$ 各次数で対称性の許す項を全て含める。

任意の次数までのラグランジアンを用意し、同じ次数まで興味の ある量のファインマン図を計算する。ループがあらわれる場合は 相殺項で繰り込みができ、有限の結果を得る。

- 最低次:低エネルギー定理の結果を再現。 高次項:体系的な低エネルギー展開に基づく補正
- 1 ループO(p⁴)までの計算:
- J. Gasser, H. Leutwyler, Annals Phys. 158: 142 (1984),
- J. Gasser, H. Leutwyler, Nucl. Phys. B250: 465 (1985)

カイラル摂動論の問題点

低エネルギー定数は対称性から決まらない。

高次に進むほど、対称性で許される項の数が増え、不定パラ メーターも増える。

低エネルギー展開の収束性

ある量を計算しているときに、理想的には高次項の寄与が次第 に小さくなり収束して欲しいが、必ずしもそうとは限らない。

ユニタリー限界の問題

相互作用がエネルギーの正のベキに依存しているので、エネル ギーをあげていくと、散乱振幅は増大する。これは確立の保存

から要請されるS行列のユニタリー性を満たさない。

後半のまとめ

教科書

A. Hosaka, H. Toki, *Quarks, baryons and chiral symmetry* (World Scientific 2001)

群論、カイラル対称性、線形/非線形シグマ模型の解説。その他にスキルミオンや バッグ<mark>模型</mark>の紹介など。

J. Donoghue, E. Golowich, B. R. Holstein, *Dynamics of the standard model* (Cambridge University Press, London, 1992)

カイラル摂動論などの有効理論の解説。その他は標準理論の教科書。

S. Weinberg, The Quantum theory of fields (Cambridge University Press, London, 1996)

19章に大域的対称性の自発的破れについての議論がある。

九後汰一郎,「ゲージ場の量子論」(培風館,1989)

6章に対称性の自発的破れの議論がある。非線形表現について詳しく書かれている。

Appendix

レビュー<mark>論</mark>文(カイラル摂動論)

A. Pich, Rept. Prog. Phys. 58, 563 (1995); hep-ph/9502366,

G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995); hep-ph/9501357,

V. Bernard, N. Kaiser, U-G. Meissner, Int. J. Mod. Phys. E4, 193 (1995); hep-ph/9501384.

重要な原論文

Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961), *ibid*, 124, 246 (1961),

J. Goldstone, Nuovo Cim. 19, 154 (1961),

J. Goldstone, A. Salam, S. Weinberg, Phys. Rev. 127, 965 (1962),

S. Weinberg, Phys. Rev. 166, 1568 (1969),

S.R. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2239 (1969),

C.G. Callan, S.R. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2247 (1969),

S. Weinberg, Physica A96, 327 (1979),

J. Gasser, H. Leutwyler, Annals Phys. 158: 142 (1984),

J. Gasser, H. Leutwyler, Nucl. Phys. B250: 465 (1985).

この講義のファイルと計算ノート

http://www2.yukawa.kyoto-u.ac.jp/~hyodo/publication/09_10Lecture.pdf
http://www2.yukawa.kyoto-u.ac.jp/~hyodo/publication/09_10Lecturenote.pdf
43