Origin of resonances in chiral dynamics

Tetsuo Hyodoa,

Daisuke Jido^b, and Atsushi Hosaka^c

Tokyo Institute of Technology^a YITP, Kyoto^b

RCNP^c 2009, Jan 15th

Watural renormalization scheme

Effective interaction: origin of resonance

 \checkmark Application: $\Lambda(1405)$ and N(1535)

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Dynamical state and CDD pole

Classification of resonances

Resonances in two-body scattering

- Knowledge of interaction (potential)
- Experimental data (cross section, ...)

+ + ...

Dynamical state: two-body molecule, quasi-bound state, ...

e.g.) Deuteron in NN, positronium in e^+e^- , (σ in π π), ...

CDD(≠CCD!) pole: elementary particle, independent state, ...

L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

Dynamical state and CDD pole

Baryon resonances

Meson-baryon molecule (MB) ~ dynamical state 3-quark state (qqq) ~ (representative of) CDD pole

Difficulties: Both arise from QCD No clear separation of energy scale (c.f. J/Ψ)

Find out the (dominant) origin for each resonance.

Dynamical state and CDD pole

Dynamical state and CDD pole (comments)

Model space of scattering and dynamical/CDD Notion of dynamical/CDD depends on the scattering particles under consideration. It is not an inherent property of the resonance state.

e.g.) J/ Ψ : CDD in e⁺e⁻, dynamical in cc

Quark structure (for baryon resonances)

For hadron resonances, dynamical/CDD is not directly related to quark structure.

Mixing of dynamical and CDD When both exist in one system, relative weight is relevant.

Chiral unitary approach

Description of meson-baryon scattering, s-wave resonances

- Interaction <-- chiral symmetry
- Amplitude <-- unitarity (coupled channel)

By construction, generated resonances are all dynamical?

Scattering theory : N/D method

Single-channel scattering, masses: M_T and m

G.F. Chew, S. Mandelstam, Phys. Rev. 119, 467 (1960)

unphysical cut(s)
$$s^- = (M_T - m)^2$$

unitarity cut
 $s^+ = (M_T + m)^2$

Divide T into N(umerator) and D(inominator) unitarity cut --> D, unphysical cut(s) --> N

T(s) = N(s)/D(s) phase space (optical theorem) $ImD(s) = Im[T^{-1}(s)]N(s) = \rho(s)N(s)/2 \text{ for } s > s^+$ $ImN(s) = Im[T(s)]D(s) \text{ for } s < s^-$

Dispersion relation for N and D --> set of integral equations, input : Im[T(s)] for $s < s^-$

 $s = W^2$

General form of the (s-wave) amplitude

Neglect unphysical cut (crossed diagrams), set N=1

U. G. Meissner, J. A. Oller, Nucl. Phys. A673, 311 (2000)

$$T^{-1}(\sqrt{s}) = \tilde{a}(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)}$$

subtraction constant, not determined

pole (and zero) of the amplitude

L. Castillejo, R.H. Dalitz, F.J. Dyson, Phys. Rev. 101, 453 (1956)

unphysical cut(s)
$$s^- = (M_T - m)^2$$

 $\bigcirc \times \times s^+ = (M_T + m)^2$
unitarity cut
 $\bigcirc \times \times \times$

CDD pole(s), R_i, W_i : not known in advance

$$T^{-1}(\sqrt{s}) = \sum_{i} \frac{R_i}{\sqrt{s} - \sqrt{s_i}} + \tilde{a}(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)}$$

CDD pole contribution --> independent particle

G.F. Chew, S.C. Frautschi, Phys. Rev. 124, 264 (1961)

Order by order matching with ChPT

Identify loop function G, the rest contribution --> V⁻¹

$$T^{-1}(\sqrt{s}) = \sum_{i} \frac{R_{i}}{\sqrt{s} - \sqrt{s_{i}}} + \tilde{a}(s_{0}) + \frac{s - s_{0}}{2\pi} \int_{s^{+}}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_{0})}$$
$$- \int_{s^{+}}^{\infty} \left[-i \int \frac{d^{4}q}{(2\pi)^{4}} \frac{2M_{T}}{(P - q)^{2} - M_{T}^{2} + i\epsilon} \frac{1}{q^{2} - m^{2} + i\epsilon} \right]_{\text{dim.reg.}}$$
$$= -\frac{2M_{T}}{(4\pi)^{2}} \left[a + \frac{m^{2} - M_{T}^{2} + s}{2s} \ln \frac{m^{2}}{M_{T}^{2}} + \frac{\bar{q}}{\sqrt{s}} \ln \frac{\phi_{++}(s)\phi_{+-}(s)}{\phi_{-+}(s)\phi_{--}(s)} \right]$$
$$= -G(\sqrt{s}; a) \text{ subtraction constant (cutoff)}$$

$$T(\sqrt{s}) = [V^{-1}(\sqrt{s}) - G(\sqrt{s};a)]^{-1}$$

V? chiral expansion of T, (conceptual) matching with ChPT J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001)

$$T^{(1)} = V^{(1)}, \quad T^{(2)} = V^{(2)}, \quad T^{(3)} = V^{(3)} - V^{(1)}GV^{(1)}, \dots$$

9

 \boldsymbol{a}

Summary of chiral unitary appraoch

Scattering amplitude T

$$T(\sqrt{s}) = \frac{1}{V^{-1}(\sqrt{s}) - G(\sqrt{s};a)} \xrightarrow{\bullet} \overset{\bullet}{\longrightarrow} \overset{\bullet}{\to$$

- $V(\sqrt{s})$: interaction (ChPT at given order)
- $G(\sqrt{s};a)$: loop function
 - : subtraction constant (cutoff parameter)

	ChPT	ChU	
Unitarity	perturbative	exact	
Dynamical resonance	×	\bigcirc	
Crossing symmetry	exact	(perturbative)	
Chiral counting	\bigcirc	×	

Nonrenormalizable --> cutoff theory CDD pole contribution --> V (interaction)

(Known) CDD pole in chiral unitary approach

Explicit resonance field in V (interaction)

U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000) D. Jido, E. Oset, A. Ramos, Phys. Rev. C66, 055203 (2002)

Contracted resonance propagator in higher order V

G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B321, 311 (1989) V. Bernard, N. Kaiser, U.G. Meissner, Nucl. Phys. A615, 483 (1997)

J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D59, 074001 (1999)

Is that all? subtraction constant?

Subtraction constant

Phenomenological (standard) scheme --> V is given, "a" is determined by data

$$T = \frac{1}{(V^{(1)})^{-1} - G(\underline{a})}$$
 leading order

$$T = \frac{1}{(V^{(1)} + V^{(2)})^{-1} - G(\underline{a'})}$$
 next to leading order

$$\uparrow \text{pole} \checkmark \checkmark \checkmark ?$$

"a" represents the effect which is not included in V. CDD pole contribution in G?

Natural renormalization scheme --> fix "a" first, then determine V

exclude CDD pole contribution from G, based on theoretical argument.

Loop function below threshold

Below threshold, G is real and NEGATIVE (~ assume no states below threshold)

$$G(\sqrt{s}) = \underbrace{\sim}_{\sim} \leq 0 \quad (\text{for } \sqrt{s} \leq M_T + m)$$

It is automatically satisfied in 3d cutoff. However, ...

$$G(\sqrt{s};a) = \frac{2M_T}{(4\pi)^2} \left\{ \underline{a} + \frac{m^2 - M_T^2 + s}{2s} \ln \frac{m^2}{M_T^2} + \frac{\bar{q}}{\sqrt{s}} \ln \frac{\phi_{++}(s)\phi_{+-}(s)}{\phi_{-+}(s)\phi_{--}(s)} \right\}$$

Large (positive) "a" can make G positive. Avoid this for s-channel region ($> M_T$),

$$a \le a_{\max}(M_T, m)$$

or equivalently
(G: decreasing),
 $G(\sqrt{s} = M_T) \le 0$

(Explicit) matching with ChPT

V is given by ChPT. At a "low energy", T should be matched with V:

$$G(\sqrt{s} = \mu_m) = 0, \quad \Leftrightarrow \quad T(\mu_m) = V(\mu_m)$$

matching in s-channel region, subtraction constant is real

$$\Rightarrow M_T \le \mu_m \le M_T + m$$

consistent with "low energy" requirement

$$\sqrt{s} = M_T + m \Rightarrow \mathbf{p} = 0, \quad \sqrt{s} = M_T \Rightarrow \omega \sim 0$$

14

Natural renormalization condition : summary

Natural renormalization condition

- Loop function should be negative below threshold
- T matches with V at low energy scale

"a" is uniquely determined such that

 $G(\sqrt{s} = M_T) = 0, \quad \Leftrightarrow \quad T(M_T) = V(M_T)$

matching with low energy interaction

K. Igi, K. Hikasa, Phys. Rev. D59, 034005 (1999) U.G. Meissner, J.A. Oller, Nucl. Phys. A673, 311 (2000)

crossing symmetry (matching with u-channel amplitude)

M.F.M. Lutz, E. Kolomeitsev, Nucl. Phys. A700, 193 (2002)

We regard this condition as the exclusion of the CDD pole contribution from G

Effective interaction: origin of the resonances

Two renormalization schemes

Phenomenological scheme

V is given by ChPT (for instance, leading order term), fit cutoff in G to data

Natural renormalization scheme

determine G to exclude CDD pole contribution, V is to be determined

Same physics (scattering amplitude T)

$$T = \frac{1}{V_{\text{ChPT}}^{-1} - G(a_{\text{pheno}})} = \frac{1}{(V_{\text{natural}})^{-1} - G(a_{\text{natural}})}$$
Teffective interaction Origin of the resonance

Effective interaction: origin of the resonances

Pole in the effective interaction

Leading order V : Weinberg-Tomozawa term

$$V_{\rm WT} = -\frac{C}{2f^2} (\sqrt{s} - M_T) \begin{array}{l} \text{C/f}^2 : \text{coupling constant} \\ \text{no s-wave resonance} \\ T^{-1} = V_{\rm WT}^{-1} - G(a_{\rm pheno}) = (V_{\rm natural})^{-1} - G(a_{\rm natural}) \\ & \uparrow \text{ChPT} \quad \uparrow \text{data fit} \qquad \uparrow \text{given} \end{array}$$

Effective interaction in natural scheme

$$V_{\text{natural}} = -\frac{C}{2f^2} \left(\sqrt{s} - M_T\right) + \frac{C}{2f^2} \frac{\left(\sqrt{s} - M_T\right)^2}{\sqrt{s} - M_{\text{eff}}} \quad \text{polel}$$
$$M_{\text{eff}} = M_T - \frac{16\pi^2 f^2}{CM_T \Delta a}, \quad \Delta a = a_{\text{pheno}} - a_{\text{natural}}$$

Physically meaningful pole : C > 0, $\Delta a < 0$

There is always a pole for $a_{pheno} \neq a_{natural}$ --> energy scale of the effective pole is relevant.

Application: Λ(1405) and N(1535)

100

200

Plah [MeV/c]

300

100

200

P_{lab} [MeV/c]

300

S=-1 and S=0 meson-baryon scatterings

Models for the Meson-baryon scattering :

- E. Oset, A. Ramos, C. Bennhold, Phys. Lett. B527, 99 (2002),
- T. Inoue, E. Oset, M.J. Vicente Vacas, Phys. Rev. C. 65, 035204 (2002)
- T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Phys. Rev. C. 68, 018201 (2003)
- T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Prog. Thor. Phys. 112, 73 (2004)

K-p total cross sections threshold ratios **πΣ** spectrum $\overline{\mathbf{K}}^{0}\mathbf{n}$ К⁻р 50 R_c R_n V 150 40 01 [mp] 02 [mp] distribution 30 0.189 20 2.36 0.664 exp. 50 10 mass 200 300 100 200 100 300 찥 0.624 0.225 1.80 theo. 200 $\pi^+\Sigma^ \pi^{-}\Sigma^{+}$ 150 60 1400 1420 πN scattering amplitude¹³⁸⁰/₄₀₀ 1440 00 [mp] 40 $^{0.6}$ Re T (I=1/2) Im T (I=1/2)20 0.8 0.5 100 200 300 100 200 300 0.4 70 0.6 $\pi^0 \Sigma^0$ $\pi^0\Lambda$ 60 50 0.3 50 ΦΦ 0.4 40 0.2 $\sigma_{T} \, [mb]$ 40 30 30 0.1 0.2 20 20 0.0 10 10

1200

1400

 \sqrt{s} [MeV]

1600

1200

1400

 \sqrt{s} [MeV]

1600

Application: $\Lambda(1405)$ and N(1535)

Comparison of pole positions

Pole of the full amplitude : physical state $z_1^{\Lambda^*} = 1429 - 14i$ MeV, $z_2^{\Lambda^*} = 1397 - 73i$ MeVtwo poles $z^{N^*} = 1493 - 31i$ MeVfor $\Lambda(1405)$

Pole of the V_{WT} + natural : pure dynamical +

 $z_1^{\Lambda^*} = 1417 - 19i \text{ MeV}, \quad z_2^{\Lambda^*} = 1402 - 72i \text{ MeV}$ $z^{N^*} = 1582 - 61i \text{ MeV}$

==> $\Lambda(1405)$ is mostly dynamical state

Application: $\Lambda(1405)$ and N(1535)

Pole in the effective interaction

$$T^{-1} = V_{\rm WT}^{-1} - G(a_{\rm pheno}) = (V_{\rm natural})^{-1} - G(a_{\rm natural})$$

Pole of the effective interaction (Meff) : pure CDD pole
 $z_{\rm eff}^{\Lambda^*} \sim 7.9 \text{ GeV}$ irrelevant!
 $z_{\rm eff}^{N^*} = 1693 \pm 37i \text{ MeV}$ relevant?

Difference of interactions $\Delta V \equiv V_{natural} - V_{WT}$

==> Important CDD pole contribution in N(1535)

Application: $\Lambda(1405)$ and N(1535)

N(1535) coupling strengths

Residues of the pole --> coupling strengths

$$T_{ij}(\sqrt{s}) \sim \frac{g_i g_j}{\sqrt{s} - M_R + i\Gamma_R/2}$$

pole in	property	πN	ηN	ΚΛ	ΚΣ
full T	physical	0.949	1.64	1.45	2.96
V natural	CDD	4.67	2.15	5.71	7.44
WT+natural	Dynamical	0.353	2.11	1.71	2.93

Coupling properties of the physical pole is similar with those of dynamical pole.

Dynamical nature (on top of CDD pole) is also important?

Summary

Summary: formulation

We study the origin (dynamical/CDD) of the resonances in the chiral unitary approach

Natural renormalization scheme

Exclude CDD pole contribution from the loop function, consistent with N/D.

Comparison with phenomenology

--> Pole in the effective interaction We extract the CDD pole contribution hidden in the subtraction constant into effective interaction V.

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. C78, 025203 (2008)

Summary

Summary: application $1 \Lambda(1405)$

The origin of the $\Lambda(1405)$ is dominated by dynamical component.

W Nc scaling analysis

T. Hyodo, D. Jido, R. Loca, Phys. Rev. D77, 056010 (2008) R. Loca, T. Hyodo, D. Jido, Nucl. Phys. A809, 65 (2008)

$--> \Lambda(1405)$ is non-qqq dominant

Electromagnetic property

T. Sekihara, T. Hyodo, D. Jido, Phys. Lett. B669, 133 (2008)

--> relatively large charge radius

= consistent with present analysis

Summary

Summary: application2 N(1535)

The N(1535) consists of both CDD pole and dynamical component.

Comparison of pole position --> large effect of the CDD pole --> 3-quark state? Chiral partner of the nucleon?

Residues (coupling strengths)
--> important role of the dynamical component