$\Lambda(1405)$ in chiral dynamics

Tetsuo Hyodo^{a,b}

TU München^a YITP, Kyoto^b

Introduction : $\Lambda(1405)$

Introduction : (well) known facts on $\Lambda(1405)$

Mass : 1406.5 ± 4.0 MeV Width : 50 ± 2 MeV Decay mode : $\Lambda(1405) \rightarrow (\pi\Sigma)_{I=0}$ 100%

"naive" quark model : p-wave ~1600 MeV?

N. Isgur and G. Karl, PRD18, 4187 (1978)

R.H. Dalitz, T.C. Wong and G. Rajasekaran, PR153, 1617 (1967)

Contents

Contents

Introduction to chiral unitary appraoch

- Nc Behavior and quark structure <u>T. Hyodo, D. Jido, L. Roca, 0712.3347 [hep-ph], Phys. Rev. D, in press.</u>
- Dynamical or CDD (genuine quark state) ? <u>T. Hyodo, D. Jido, A. Hosaka, 0803.2550 [nucl-th]</u>

Phenomenology of KN interaction (main)

- Construction of local KN potential by chiral dynamics
- Implication of the two-pole structure

T. Hyodo, W. Weise, 0712,1613 [nucl-th], Phys. Rev. C, in press.

Application to three-body KNN system

A. Doté, T. Hyodo, W. Weise, 0802.0238 [nucl-th], Nucl. Phys. A, in press

Chiral unitary approach

S = -1, $\overline{K}N$ s-wave scattering : $\Lambda(1405)$ in I=0

- Interaction <-- chiral symmetry
- Amplitude <-- unitarity (coupled channel)

E. Oset, A. Ramos, Nucl. Phys. A635, 99 (1998) J. A. Oller, U. G. Meissner, Phys. Lett. B500, 263 (2001) M.F.M. Lutz, E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002),

.... many others

strong attraction (<- chiral)
bound state below threshold</pre>

non-perturbative framework

Total cross sections of K⁻p scattering

T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Phys. Rev. C68, 018201 (2003)

Description of the resonances

Poles of the amplitude : resonance

Successful description of KN scattering

• Two poles for the $\Lambda(1405)$

Structure of $\Lambda(1405)$ **:** two analysis

Schematic decomposition of $\Lambda(1405)$ $|\Lambda(1405)\rangle = N_{MB}|B\rangle|M\rangle + N_3|qqq\rangle + N_5|qqqq\bar{q}\rangle + \dots$

Analysis of Nc behavior $N_3 << 1$ T. Hyodo, D. Jido, L. Roca, 0712.3347 [hep-ph], Phys. Rev. D, in press. Analysis of natural renormalization **N_{MB} dominates** T. Hyodo, D. Jido, A. Hosaka, 0803.2550 [nucl-th] **Both analyses consistently indicate** the dominance of NMB component Not trivial ! c.f. rho meson, N(1535), ...

Motivation

Deeply bound (few-body) kaonic nuclei?

Potential is purely phenomenological. What does chiral dynamics tell us about it?

Y. Akaishi & T. Yamazaki, Phys. Rev. C <u>65</u> (2002) 044005 T. Yamazaki & Y. Akaishi, Phys. Lett. B <u>535</u> (2002) 70

Construction of the single channel interaction

+ + + ...

Channels 1 and 2 --> effective int. in 1

 $T_{22}^{\text{single}} = V_{22} + V_{22} G_2 T_{22}^{\text{single}}$

tree

effect of channel 2

 $V^{\text{eff}} = V_{11} + V_{12}G_2V_{21} + V_{12}G_2T_{22}^{\text{single}}G_2V_{21}$

 $T_{11} = T^{\text{eff}} = V^{\text{eff}} + V^{\text{eff}}G_1T^{\text{eff}}$ Equivalent to the coupled-channel equations ₁₀

Single channel $\overline{K}N$ interaction with $\pi\Sigma$ dynamics

Strength : comparable with the WT term ~1/2 of phenomenological (AY) potential

Scattering amplitude in $\overline{K}N$ and $\pi\Sigma$

Resonance in KN : around 1420 MeV <-- two-pole structure (coupled-channel) Binding energy : B = 15 MeV <--> 30 MeV

Origin of the two-pole structure

Chiral interaction

Very strong attraction in $\overline{K}N$ (higher energy) --> bound state Strong attraction in $\pi\Sigma$ (lower energy) --> resonance

Two poles : natural consequence of chiral interaction

higher order correction? --> theoretical uncertainty (later) B. Borasoy, R. Nissler, W. Weise, Eur. Phys. J. A25, 79-96 (2005)

ΚN

πΣ

Comparison with phenomenological potential

Chiral interaction

 $V_{ij} = -C_{ij} \frac{\omega_i + \omega_j}{4f^2}$

phenomenological

T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007)

ΚN πΣ $C_{ij} = \begin{pmatrix} 3 & -\sqrt{\frac{3}{2}} \\ -\sqrt{\frac{3}{2}} & (4) \end{pmatrix}$ $v_{ij}(r) \sim -\begin{pmatrix} 436 & 412\\ 412 & 0 \end{pmatrix} g(r)$

Absence of $\pi\Sigma$ diagonal coupling --> absence of $\pi\Sigma$ dynamics, resonance --> strong (x2) attractive interaction in KN

 $\pi\Sigma \rightarrow \pi\Sigma$ attraction : flavor SU(3) symmetry energy dependence : derivative coupling

KN amplitude with local potential

$$U(r,\sqrt{s}) = \frac{M_N V^{\text{eff}}(\sqrt{s})}{2\sqrt{s}\tilde{\omega}(\sqrt{s})}g(r) \qquad g(r) = \frac{e^{-r^2/b^2}}{\pi^{3/2}b^3}$$

 $b = 0.47 \ {\rm fm}$: to reproduce the resonance agreement around threshold : OK

Deviation at lower energy : BS eq. <--> local potential + Schrödinger eq.

Correction of the strength of the potential

Summary 1 : KN interaction

We derive the single-channel local potential based on chiral SU(3) dynamics.

Resonance structure in K̄N appears at around 1420 MeV <-- two-pole Λ(1405). The strength of the K̄N interaction is comparable with the WT term.

Two poles are the consequence of two attractive interactions in KN and πΣ.

Local (non-rel) potential overestimates amplitude at lower energy.

T. Hyodo, W. Weise, 0712,1613 [nucl-th], Phys. Rev. C, in press.

Application to the few-body anti-K system

Application to three-body K-pp system

Hamiltonian : Realistic interactions

 $\hat{H} = \hat{T} + \hat{V}_{NN} + \operatorname{Re} \hat{V}_{\bar{K}N}(\sqrt{s}) - \hat{T}_{CM}$

Realistic NN potential (Av18)

KN potential based on chiral SU(3) dynamics (real part) dispersive effect from imaginary part ~ 3-4 MeV in two-body KN system

Self-consistency of kaon energy and KN interaction

Model wave function

$$J^{P} = 0^{-}, T = 1/2, T_{3} = 1/2$$

$$|\Psi\rangle = \mathcal{N}^{-1}[|\Phi_{+}\rangle + C |\Phi_{-}\rangle]^{\mathsf{T}_{\mathsf{N}} = \mathsf{O}}$$

 $T_N = 1$, dominant, used in Faddeev

Application to the few-body anti-K system

Theoretical uncertainties

Different chrial models (leading order)

Energy dependence of KN interaction

Define antikaon "binding energy"

$$-B_K \equiv \langle \Psi | \hat{H} | \Psi \rangle - \langle \Psi | \hat{H}_N | \Psi \rangle$$

Two options for two-body energy

Type I :
$$\sqrt{s} = M_N + m_K - B_K$$

Type II :
$$\sqrt{s} = M_N + m_K - B_K/2$$

Application to the few-body anti-K system

Summary 2 : K-pp system We study the K-pp system with chiral SU(3) potentials in a variational approach.

With theoretical uncertainties, B.E. = 19 ± 3 MeV $\Gamma(\pi YN) = 40 \sim 70$ MeV

Phenomenological potentialB.E. ~ 48 MeV(~ 2 times stronger than ours) Γ ~ 60 MeV

T. Yamazaki, Y. Akaishi, Phys. Rev. C76, 045201 (2007)

Faddeev with chiral interactionB.E. ~ 79 MeV(separable, non-rel, ...?)Γ~ 74 MeVY. Ikeda, T. Sato, Phys. Rev. C76, 035203 (2007)Γ

No two-nucleon absorption : KNN -> YN ... small? A. Doté, T. Hyodo, W. Weise, 0802.0238 [nucl-th], Nucl. Phys. A, in press