Exotic hadrons in s-wave chiral dynamics

Tetsuo Hyodo^{a,b},Daisuke Jido^b, and Atsushi Hosaka^cTU München^aYITP, Kyoto^bRCNP, Osaka^c
2007, Sep. 11th

Exotic hadrons in hadron spectrum

Observed hadrons in experiments (PDG06) :

N(1535) N(1650) N(1675) N(1680) N(1700) N(1710) N(1720) N(1900) N(1990) N(2000) N(2000)	S_{11} S_{11} D_{15} F_{15} D_{13} P_{11} P_{13} F_{17} F_{15} D_{12}	**** ***** ****** ********************	$\begin{array}{c} \Delta(1750) \\ \Delta(1900) \\ \Delta(1905) \\ \Delta(1910) \\ \Delta(1920) \\ \Delta(1930) \\ \Delta(1940) \\ \Delta(1950) \\ \Delta(2000) \\ \Delta(2150) \\ \Delta(2200) \\ \Delta(2150) \\$	$\begin{array}{c} P_{31} \\ S_{31} \\ F_{35} \\ P_{31} \\ P_{33} \\ D_{35} \\ D_{33} \\ F_{37} \\ F_{35} \\ S_{31} \end{array}$	* ** *** **** **** **** **** ****	A(1670) A(1690) A(1800) A(1810) A(1810) A(1820) A(1830) A(1890) A(2000) A(2000) A(2100) A(2100)	$S_{01} \\ D_{03} \\ S_{01} \\ P_{01} \\ F_{05} \\ D_{05} \\ P_{03} \\ F_{07} \\ G_{07} \\ F_{07} \\ F$	**** *** *** *** *** * * * * * * * * *	$\begin{array}{l} \Sigma(1480) \\ \Sigma(1560) \\ \Sigma(1580) \\ \Sigma(1620) \\ \Sigma(1660) \\ \Sigma(1670) \\ \Sigma(1670) \\ \Sigma(1750) \\ \Sigma(1770) \\ \Sigma(1775) \\ \Sigma(1840) \end{array}$	$D_{13} \\ S_{11} \\ P_{11} \\ D_{13} \\ S_{11} \\ P_{11} \\ D_{15} \\ P_{13}$	* * * * * * * * * * * * * * * * * *	$ \begin{array}{l} \Xi(1690) \\ \Xi(1820) \\ \Xi(1950) \\ \Xi(2030) \\ \Xi(2120) \\ \Xi(2250) \\ \Xi(2370) \\ \Xi(2500) \\ \end{array} $	D ₁₃	* * * * * * * * * * * * * * * * * * *	$\begin{array}{l} \bullet f_0(600)\\ \bullet \rho(770)\\ \bullet \omega(782)\\ \bullet \eta'(958)\\ \bullet \delta_0(980)\\ \bullet \delta_0(980)\\ \bullet \phi(1020)\\ \bullet h_1(1170)\\ \bullet h_1(1235)\\ \bullet \delta_1(1270)\\ \bullet f_1(1285)\\ \bullet \eta(1295)\\ \bullet \eta(1295)\\ \bullet \pi(1300)\\ \bullet \delta_2(1320)\\ \end{array}$	$\begin{array}{c} 0^+(0^{++})\\ 1^+(1^{})\\ 0^-(1^{})\\ 0^+(0^{-+})\\ 1^-(0^{++})\\ 1^-(0^{++})\\ 1^-(0^{++})\\ 0^-(1^{})\\ 1^-(1^{++})\\ 0^+(1^{++})\\ 0^+(2^{++})\\ 0^+(0^{-+})\\ 1^-(0^{-+})\\ 1^-(0^{-+})\\ 1^-(2^{++})$	$\begin{array}{l} \bullet \ \rho(1700)\\ a_2(1700)\\ \bullet \ f_0(1710)\\ \eta(1760)\\ \bullet \ \pi(1800)\\ f_2(1810)\\ X(1835)\\ \bullet \ \phi_3(1850)\\ \eta_2(1870)\\ \rho(1900)\\ f_2(1910)\\ \bullet \ f_2(1910)\\ \bullet \ f_2(1950)\\ \rho_3(1990)\\ \bullet \ f_2(2010)\\ f_0(2020) \end{array}$	$\begin{array}{c} 1^+(1^-)\\ 0^+(0^+)\\ 0^+(0^+)\\ 0^+(0^-)\\ 1^-(0^-)\\ 0^+(2^+)\\ 7^?(7^-)\\ 0^+(2^-)\\ 1^+(1^-)\\ 0^+(2^+)\\ 0^+(2^+)\\ 1^+(3^-)\\ 0^+(2^+)\\ 0^+(2^+)\\ 0^+(2^+)\\ 0^+(2^+)\\ 0^+(0^+)\\ 0^+(2^+)\\ 0^+(0^+)\\ 0^+(2^+)\\$	$\begin{array}{l} \kappa_{0}^{0} \\ \kappa_{0}^{0}(800) \\ \kappa_{1}^{\prime}(892) \\ \kappa_{1}^{\prime}(1270) \\ \kappa_{1}^{\prime}(1400) \\ \kappa_{0}^{\prime}(1410) \\ \kappa_{0}^{\prime}(1430) \\ \kappa_{1}^{\prime}(1430) \\ \kappa_{1}^{\prime}(1650) \\ \kappa_{1}^{\prime}(1650) \\ \kappa_{1}^{\prime}(1650) \\ \kappa_{2}^{\prime}(1770) \\ \kappa_{1}^{\prime}(1780) \end{array}$	$\begin{array}{c} 1/2(0^{-}) \\ 1/2(0^{+}) \\ 1/2(1^{-}) \\ 1/2(1^{+}) \\ 1/2(1^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{-}) \\ 1/2(2^{-}) \\ 1/2(2^{-}) \\ 1/2(2^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(2^{-}) \\ 1/2(3^{-}) \end{array}$	$\begin{array}{l} \mathbf{b}^{d} + [d^{d} \mathcal{B}_{c}^{d}), \\ MIXTURE \\ V_{ab} \mbox{ and } V_{ab} \mbox{ G} \\ Elements \\ \mathbf{b}^{*}_{j} (5732) \\ \hline \mbox{ BOTTOM}, \\ (\mathcal{B} = \pm 1, \\ \mathcal{B}^{*}_{s} \\ \mathcal{B}^{*}_{c} \\ \mathcal{B} \\ \mathcal{B}^{*}_{c} \\ \mathcal{B} \\ \mathcal{C} \\ \end{array}$	-baryon AD- :KM Matrix $1/2(1^{-})$?(?) STRANGE 5 = 71 $0(0^{-})$ $0(1^{-})$?(?) CHARMED $= \pm 1$ $0(0^{-})$
N(2080) N(2090) N(2100) N(2190) N(2200) N(2220) N(2220) N(2250) N(2600) N(2700)	$\begin{array}{c} D_{13} \\ S_{11} \\ P_{11} \\ G_{17} \\ D_{15} \\ H_{19} \\ G_{19} \\ I_{1,11} \\ K_{1,13} \end{array}$	** * **** ** ** ** ** ** ** **	$\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(1)$	<i>K</i> 3,15	* *** ***	Λ(2110) Λ(2325) Λ(2350) Λ(2585)	F ₀₅ D ₀₃ H ₀₉	*** * *** **	$\frac{\Sigma(1840)}{\Sigma(1880)} \frac{\Sigma(1940)}{\Sigma(1915)} \frac{\Sigma(1940)}{\Sigma(2000)} \frac{\Sigma(2030)}{\Sigma(2070)} \frac{\Sigma(2070)}{\Sigma(2100)} \frac{\Sigma(2100)}{\Sigma(2250)} \frac{\Sigma(2250)}{\Sigma(2250)} \Sigma($	P_{13} P_{11} F_{15} D_{13} S_{11} F_{17} F_{15} P_{13} G_{17}	* ** *** * * * * * * * * * * * *	$\frac{\Omega(2230)}{\Omega(2380)^{-}} \frac{\Omega(2470)^{-}}{\Omega(2470)^{-}} \frac{\Lambda_{c}^{+}}{\Lambda_{c}(2593)^{+}} \frac{\Lambda_{c}(2593)^{+}}{\Lambda_{c}(2765)^{+}} \frac{\Lambda_{c}(2765)^{+}}{\Lambda_{c}(2880)^{+}} \frac{\Gamma_{c}(2455)}{\Gamma_{c}(2455)} $		** ** *********************************	$\begin{array}{c} \bullet_{f_0}^{-}(1370)\\ h_1(1380)\\ \bullet_{\pi_1}(1400)\\ \bullet_{\pi_1}(1400)\\ \bullet_{\pi_1}(1420)\\ \bullet_{\pi_1}(1420)\\ \bullet_{\pi_2}(1420)\\ \bullet_{\pi_2}(1420)\\$	$\begin{array}{c} 0+(0++)\\ 7-(1+-)\\ 1-(1-+)\\ 0+(0-+)\\ 0+(1++)\\ 0+(1+-)\\ 0+(2++)\\ 1-(0++)\\ 1+(1)\\ 0+(0++)\\ 0+(0++)\\ 0+(1++)\\ 0+(2++)\\ 0+(2++)\\ 0+(2++)\\ \end{array}$	$f_4(2040)$ $f_4(2050)$ $\pi_2(2100)$ $f_2(2150)$ $f_0(2150)$ $f_0(2200)$ $f_1(2220)$ $f_1(2220)$ $f_2(2250)$ $f_2(2250)$ $f_2(2300)$ $f_2(2300)$ $f_2(2340)$ $g_2(2340)$	$\begin{array}{c} 1^{-(4++)} \\ 0^{+(4++)} \\ 0^{+(2++)} \\ 1^{-(2-+)} \\ 0^{+(0++)} \\ 0^{+(2++)} \\ 0^{+(0++)} \\ 0^{+(0-+)} \\ 0^{+(0-+)} \\ 1^{+(3)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \end{array}$	 ∧₃(1100) ∧₅(1820) ∧(1830) ∧⁶₆(1950) ∧⁶₇(1960) ∧⁶₇(2045) ∧⁶₇(2045) ∧⁶₇(2040) ∧⁶₇(2050) ∧⁶₇(2050) ∧⁶₇(2050) ∧⁶(100) CHAR (C = 	$1/2(3^{-})$ $1/2(2^{-})$ $1/2(0^{-})$ $1/2(0^{+})$ $1/2(2^{+})$ $1/2(2^{-})$ $1/2(2^{-})$ $1/2(3^{+})$ $1/2(3^{-})$ $1/2(4^{-})$ $?^{?}(?^{?})$ MED ± 1 $1/2(0^{-})$	$\begin{array}{c} c \\ \bullet \ \eta_c(1S) \\ \bullet \ J/\psi(1S) \\ \bullet \ \chi_c(1P) \\ \bullet \ \chi_c(1P) \\ \bullet \ \chi_c(1P) \\ \bullet \ \eta_c(2S) \\ \bullet \ \psi(2S) \\ \bullet \ \psi(370) \\ \bullet \ \chi_a(3872) \\ \bullet \ \chi_a(2P) \\ Y(3940) \end{array}$	$ \frac{\overline{c}}{0^+(0^-+)} \\ 0^+(0^++) \\ 0^+(1^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ 0^+(0^-+) \\ 0^-(1^) \\ 0^-(1^) \\ 0^+(2^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ 0^+(2^++) \\ 0^+(2^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ 0^+(2^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) $
~1	3	0	ba	۱r	yc	n	30 S	0.	Σ (2455) Σ (2620) Σ (3000) Σ (3170))	** ** *	$\begin{split} & \Sigma_{c}(2520) \\ & \Sigma_{c}(2800) \\ & \Xi_{c}^{+} \\ & \Xi_{c}^{0} \\ & \Xi_{c}^{-} \\ & \Xi_{c}^{-} \\ & \Xi_{c}^{-} \\ & \Xi_{c}^{-} (2645) \\ & \Xi_{c}(2790) \\ & \Xi_{c}^{-} (2815) \\ & \Omega_{c}^{0} \\ & \Xi_{cc}^{+} \\ & \Lambda_{b}^{0} \end{split}$		*** *** *** *** *** *** *** *** * *	$\begin{array}{c} r_{2}(1565) \\ h_{1}(1595) \\ \bullet \pi_{1}(1600) \\ a_{1}(1640) \\ f_{2}(1640) \\ \bullet \eta_{2}(1645) \\ \bullet \omega(1650) \\ \bullet \omega_{3}(1670) \end{array}$	0 (2 +) 0 (1 +) 1 (1 +) 1 (1 + +) 0 + (2 - +) 0 - (1 -) 0 - (3 -) 1 6	ρ ₉ (250) ₃ (2450) <u>6</u> (2510) OT Further		$\begin{array}{l} D^{\pm} \\ D^{0} \\ D^{0} \\ D^{*}(2007)^{0} \\ D^{*}(2010)^{\pm} \\ D^{*}_{0}(2400)^{\pm} \\ D^{*}_{0}(2420)^{\pm} \\ D^{*}_{1}(2420)^{\pm} \\ D^{*}_{1}(2420)^{\pm} \\ D^{*}_{1}(2420)^{\pm} \\ D^{*}_{1}(240)^{\pm} \\ D^{*}_{1}(240)^{\pm} \\ D^{*}_{1}(240)^{\pm} \\ D^{*}_{2}(240)^{\pm} \\ D^{*}_{2}(250)^{\pm} \\ $	$\begin{array}{c} 1/2(0^-) \\ 1/2(0^-) \\ 1/2(1^-) \\ 1/2(1^-) \\ 1/2(0^+) \\ 1/2(0^+) \\ 1/2(0^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 1/2(2^+) \\ 0(0^-) \\ 0(0^+) \\ 0(1^+) \\ 0(1^+) \end{array}$	$\begin{array}{c} \bullet \psi(4040)\\ \bullet \psi(4160)\\ \forall (4260)\\ \bullet \psi(4415)\\ \hline \\ \hline \\ \hline \\ \hline \\ \eta_{D}(15)\\ \bullet \chi_{B0}(1P)\\ \bullet \chi_{B1}(1P)\\ \bullet \chi_{B1}(1P)\\ \bullet \chi_{B1}(2P)\\ \bullet \chi_{B1}($	$\begin{array}{c} 0^{-}(1^{-}-)\\ 0^{-}(1^{-}-)\\ 0^{-}(1^{-}-)\\ 0^{-}(1^{-}-)\\ \hline \end{array}\\ \hline\\ \hline\\ 0^{+}(0^{-}+)\\ 0^{+}(0^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(1^{-}-)\\ 0^{-}(1^{-}-)\\ 0^{$

Exotic hadrons are indeed exotic !!

Exotic hadrons : experiment vs theory

Exotic hadrons : valence quark-antiquark(s)non-exoticuds, $ud\bar{d}$, $udsu\bar{u}$, $ud\bar{u}\bar{u}$,...exotic $uudd\bar{s}$, $ud\bar{s}\bar{s}$,...

Experimentally, they are exotic ~ 1/300.

Theoretically, are they exotic?
--> There is no simple way to forbid exotic states in QCD, effective models, ...
--> Evidences of multiquark components in non-exotic hadrons.

Why aren't the exotics observed??

Chiral dynamics for non-exotic hadrons

Hadron excited states ~ π

Interaction <-- chiral symmetry

Amplitude <-- unitarity (coupled channel)

With phenomenological vector meson exchange interaction

R.H. Dalitz, and S.F. Tuan, Ann. Phys. (N.Y.) 10, 307 (1960) J.H.W. Wyld, Phys. Rev. 155, 1649 (1967)

Chiral perturbation theory for interaction

N. Kaiser, P. B. Siegel and W. Weise, Nucl. Phys. A594, 325 (1995)
E. Oset and A. Ramos, Nucl. Phys. A635, 99 (1998)
J. A. Oller and U. G. Meissner, Phys. Lett. B500, 263 (2001)
M.F.M. Lutz and E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002)

Chiral dynamics for non-exotic hadrons

Hadron excited states ~ πT

Many hadron resonances are well described.

light	$J^P = 1/2^-$	$\Lambda(1405)$	$\Lambda(1670)$	$\Sigma(1670)$	
baryon		N(1535)	$\Xi(1620)$	$\Xi(1690)$	
	$J^P = 3/2^-$	$\Lambda(1520)$	$\Xi(1820)$	$\Sigma(1670)$	
heavy		$\Lambda_c(2880)$ A	$\Lambda_c(2593)$		$D_s(2317)$
light	$J^P = 1^+$	$b_1(1235)$ i	$h_1(1170)$	$h_1(1380)$	$a_1(1260)$
meson		$f_1(1285)$ I	$K_1(1270)$	$K_1(1440)$	
	$J^P = 0^+$	$\sigma(600)$	$\kappa(900)$	$f_0(980)$	$a_0(980)$

What about exotic hadrons?

Origin of the resonances

Chiral symmetry

Low energy s-wave interaction

Scattering of a target (T) with the pion (Ad)

$$\alpha \begin{bmatrix} \operatorname{Ad}(q) \\ T(p) \end{bmatrix} = \frac{1}{f^2} \frac{p \cdot q}{2M_T} \left\langle \mathbf{F}_T \cdot \mathbf{F}_{\operatorname{Ad}} \right\rangle_{\alpha} + \mathcal{O}\left(\left(\frac{m}{M_T} \right)^2 \right)$$

s-wave : Weinberg-Tomozawa term

$$V_{\alpha} = -\frac{\omega}{2f^2} C_{\alpha,T}$$
$$C_{\alpha,T} \equiv -\langle 2\mathbf{F}_T \cdot \mathbf{F}_{Ad} \rangle_{\alpha} = C_2(T) - C_2(\alpha) + 3 \quad \text{(for } N_f = 3)$$

Coupling : pion decay constant model-independent interaction at low energy

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966)

S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

Chiral symmetry

Coupling strengths : Examples

Coupling strengths : (positive is attractive)

 $C_{\alpha,T} = C_2(T) - C_2(\alpha) + 3$

lpha	1	8	10	$\overline{10}$	27	35
$T = 8(N, \Lambda, \Sigma, \Xi)$	6	3	0	0	-2	
$T = 10(\Delta, \Sigma^*, \Xi^*, \Omega)$		6	3		1	-3

α	$\overline{3}$	6	15	24
$T = \overline{3}(\Lambda_c, \Xi_c)$	3	1	-1	
$T = 6(\Sigma_c, \Xi_c^*, \Omega_c)$	5	3	1	-2

Exotic channels : mostly repulsive
 Attractive interaction : C = 1

Chiral symmetry

Coupling strengths : General expression

For a general target T = [p,q]

$\alpha \in [p,q] \otimes [1,1]$	$C_{lpha,T}$	sign
[p+1, q+1]	-p-q	repulsive
[p+2, q-1]	1-p	
[p - 1, q + 2]	1-q	
[p,q]	3	attractive
[p,q]	3	attractive
[p+1, q-2]	3+q	attractive
[p - 2, q + 1]	3+p	attractive
[p-1,q-1]	4+p+q	attractive

Strength should be integer.
Sign is determined for most cases.

Exotic channels

Exoticness : minimal number of extra \overline{q}q.

$$E = \epsilon \theta(\epsilon) + \nu \theta(\nu) \qquad \epsilon \equiv \frac{p + 2q}{3} - B, \quad \nu \equiv \frac{p - q}{3} - B$$
$$\Delta E = E_{\alpha} - E_T = +1 \text{ is realized when} \qquad \checkmark$$

$$\circ lpha = [p+1, q+1] : C_{lpha, T} = -p - q$$
repulsive

 $\circ \alpha = [p+2, q-1] : C_{\alpha,T} = 1 - p$ attraction : p = 0 then $\nu_T \ge 0 \rightarrow B \ge -q/3$ **not considered here**

$$\circ \alpha = [p-1, q+2] : C_{\alpha,T} = 1-q$$

attraction : $q = 0$ then $\nu_T \le 0 \to B \ge p/3$ OK!

Universal attraction for more "exotic" channel $C_{\text{exotic}} = 1$ for $T = [p, 0], \quad \alpha = [p - 1, 2]$

Unitarization : N/D method

Unitarity cut --> N, unphysical cut --> D

T(s) = N(s)/D(s)

Im $D(s) = \text{Im}[T^{-1}(s)]N(s) = -\rho(s)N(s)$ for $s > s_+$

 $\operatorname{Im} N(s) = \operatorname{Im} [T(s)] D(s) \quad \text{for } s < s_{-}$

Neglect unphysical cut, set N=1

$$T^{-1}(s) = \left(a(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)}\right) + T^{-1}(s)$$

loop function
 $\rightarrow G(s)$ Interaction
(tree level)

subtraction constant (regularization parameter of the loop)

Scattering theory

Renormalization and bound states

Identifying the interaction as $V_{\alpha} = -\frac{\omega}{2f^2}C_{\alpha,T}$

$$T_{\alpha}(\sqrt{s}) = \frac{1}{1 - V_{\alpha}(\sqrt{s})G(\sqrt{s})} V_{\alpha}(\sqrt{s})$$

Renormalization parameter : condition

 $G(\mu) = 0, \quad \Leftrightarrow \quad T(\mu) = V(\mu) \quad \text{at} \quad \mu = M_T$

K. Igi, and K. Hikasa, Phys. Rev. D59, 034005 (1999) M.F.M. Lutz, and E. Kolomeitsev, Nucl. Phys. A700, 193-308 (2002)

Scale at which ChPT works. Matching with the u-channel amplitude : OK

Bound state:

$$1 - V(M_b)G(M_b) = 0$$
 $M_T < M_b < M_T + m$

Scattering theory

Critical attraction

 $1 - V(\sqrt{s})G(\sqrt{s})$: monotonically decreasing.

14

Scattering theory

Critical attraction and exotic channel

m = 368 MeV and f = 93 MeV

Summary 1 : SU(3) limit

We study the exotic bound states in s-wave chiral dynamics in flavor SU(3) limit.

- The interactions in exotic channels are in most cases repulsive.
- There are attractive interactions in exotic channels, with universal and the smallest strength : $C_{\text{exotic}} = 1$
- The strength is not enough to generate a bound state : C_{exotic} < C_{crit}
 - The result is model independent as far as we respect chiral symmetry.

Summary 2 : Physical world

Caution!

- The exotic hadrons here are the s-wave meson-hadron molecule states (1/2⁻ for Θ⁺).
 - We do not exclude the exotics which have other origins (genuine quark state, soliton rotation,...).
 - In practice, SU(3) breaking effect, higher order terms,...

In Nature, it is difficult to generate exotic hadrons as in the same way with $\Lambda(1405)$, $\Lambda(1520)$,... based on chiral interaction.

<u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006)</u> <u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. D 75, 034002 (2007)</u>

Renormalization condition

Scattering amplitude

$$V_{\alpha} = -\frac{\omega}{2f^2} C_{\alpha,T} \text{ tree (ChPT)}$$
$$G(\sqrt{s}) = \frac{2M_T}{(4\pi)^2} \left(a(\mu) + \ln \frac{M_T^2}{\mu^2} + \dots \right) \text{ loop}$$

Subtraction constant $a(\mu)$: condition

$$G(\mu) = 0, \quad \Leftrightarrow \quad T(\mu) = V(\mu) \quad \text{at} \quad \mu = M_T$$

K. Igi, and K. Hikasa, Phys. Rev. D59, 034005 (1999) M.F.M. Lutz, and E. Kolomeitsev, Nucl. Phys. A700, 193-308 (2002)

Physical meaning of the condition?

Consistency with physical loop function

Real part below threshold : negative <-- level repulsion

subtraction constant has an upper limit $G(M_T) \leq 0$, $a \leq a_{\max}$

Matching with ChPT

Match the unitarized amplitude with ChPT

$$G(\mu_m) = 0, \quad \Leftrightarrow \quad T(\mu_m) = V(\mu_m)$$

subtraction constant : real

 $\Rightarrow \mu_m = M_T$ natural unitarization

Effective attraction from the loop

$$T = (V^{-1} - G(a + \Delta a))^{-1} = ((V')^{-1} - G(a))^{-1}$$
$$V = -\frac{\omega}{2f^2}C \sim -\frac{\sqrt{s} - M_T}{2f^2}C$$
$$G(a) = \frac{2M_T}{(4\pi)^2} \left(a(\mu) + \ln\frac{M_T^2}{\mu^2} + \dots\right)$$
$$\Rightarrow (f')^2 = \frac{CM\Delta a}{16\pi^2} (\sqrt{s} - M) + f^2$$

negative $\Delta a \rightarrow$ smaller $f^2 \rightarrow$ effective attraction

<u>T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Phys. Rev. C. 68, 018201 (2003)</u> <u>T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Prog. Thor. Phys. 112, 73 (2004)</u>

The condition $\mu_m = M_T$: largest effective attraction in s-channel scattering region

Pole in the effective interaction

$$T = (V^{-1} - G(a + \Delta a))^{-1} = ((V')^{-1} - G(a))^{-1}$$
Tphenomonological Tnatural
Effective interaction

$$V' = -\frac{8\pi^2}{M\Delta a} \frac{\sqrt{s} - M}{\sqrt{s} - M_{\text{eff.}}}$$

$$= -\frac{C}{2f^2}(\sqrt{s} - M_T) + \frac{C}{2f^2} \frac{(\sqrt{s} - M_T)^2}{\sqrt{s} - M_{\text{eff.}}}$$
pole!

$$M_{\text{eff.}} = M - \frac{16\pi^2 f^2}{CM\Delta a}$$
Physically meaningful pole :

$$C > 0, \quad \Delta a < 0$$
Origin of dynamical pole?

Example : L(1405) and N(1535)

Origin of dynamical pole?

Summary 2 : Natural unitarization

The renormalization condition in the study of exotic hadrons:

The renomlization condition provides the most advantageous to generate a bound state in the s-channel region.

Natural unitarization enables us to extract the low energy structure. Study the origin of the generated resonances using phenomenological subtraction constant.

T. Hyodo, D. Jido, A. Hosaka, in preparation...