Exotic hadrons in s-wave chiral dynamics

Tetsuo Hyodo^a,

YITP, Kyoto^a TU München^a

Pentaquark O+

 $\Theta(1540): J^P = ?, I = 0(?)$

Mass : 1533.6 ± 2.4 MeV Width : 0.9 ± 0.3 MeV Decay mode : $\Theta(1540) \rightarrow KN$

Exotic hadrons in hadron spectrum

Observed hadrons in experiments (PDG06) :

N(1535) N(1650) N(1675) N(1680) N(1700) N(1710) N(1720) N(1900) N(1990) N(2000) N(2000)	S_{11} S_{11} D_{15} F_{15} D_{13} P_{11} P_{13} F_{17} F_{15} D_{12}	**** ***** ****** ********************	$\begin{array}{c} \Delta(1750) \\ \Delta(1900) \\ \Delta(1905) \\ \Delta(1910) \\ \Delta(1920) \\ \Delta(1930) \\ \Delta(1940) \\ \Delta(1950) \\ \Delta(2000) \\ \Delta(2150) \\ \Delta(2200) \\ \Delta(2150) \\$	$\begin{array}{c} P_{31} \\ S_{31} \\ F_{35} \\ P_{31} \\ P_{33} \\ D_{35} \\ D_{33} \\ F_{37} \\ F_{35} \\ S_{31} \end{array}$	* ** *** **** **** **** **** ****	A(1670) A(1690) A(1800) A(1810) A(1810) A(1820) A(1830) A(1890) A(2000) A(2000) A(2100) A(2100)	$S_{01} \\ D_{03} \\ S_{01} \\ P_{01} \\ P_{05} \\ D_{05} \\ P_{03} \\ F_{07} \\ G_{07} \\ F_{07} \\ F$	**** **** *** **** **** * * * * * * *	$\begin{array}{l} \Sigma(1480) \\ \Sigma(1560) \\ \Sigma(1580) \\ \Sigma(1620) \\ \Sigma(1660) \\ \Sigma(1670) \\ \Sigma(1670) \\ \Sigma(1750) \\ \Sigma(1770) \\ \Sigma(1775) \\ \Sigma(1840) \end{array}$	$D_{13} \\ S_{11} \\ P_{11} \\ D_{13} \\ S_{11} \\ P_{11} \\ D_{15} \\ P_{13}$	* * * * * * * * * * * * * * * * * *	$ \begin{array}{l} \Xi(1690) \\ \Xi(1820) \\ \Xi(1950) \\ \Xi(2030) \\ \Xi(2120) \\ \Xi(2250) \\ \Xi(2370) \\ \Xi(2500) \\ \end{array} $	D ₁₃	* * * * * * * * * * * * * * * * * * *	$\begin{array}{l} \bullet f_0(600)\\ \bullet \rho(770)\\ \bullet \omega(782)\\ \bullet \eta'(958)\\ \bullet \delta_0(980)\\ \bullet \delta_0(980)\\ \bullet \phi(1020)\\ \bullet h_1(1170)\\ \bullet h_1(1235)\\ \bullet \delta_1(1270)\\ \bullet f_1(1285)\\ \bullet \eta(1295)\\ \bullet \eta(1295)\\ \bullet \pi(1300)\\ \bullet \delta_2(1320)\\ \end{array}$	$\begin{array}{c} 0^+(0^{++})\\ 1^+(1^{})\\ 0^-(1^{})\\ 0^+(0^{-+})\\ 1^-(0^{++})\\ 1^-(0^{++})\\ 1^-(0^{++})\\ 0^-(1^{})\\ 1^-(1^{++})\\ 0^+(1^{++})\\ 0^+(2^{++})\\ 0^+(0^{-+})\\ 1^-(0^{-+})\\ 1^-(0^{-+})\\ 1^-(2^{++})$	$\begin{array}{l} \bullet \ \rho(1700)\\ a_2(1700)\\ \bullet \ f_0(1710)\\ \eta(1760)\\ \bullet \ \pi(1800)\\ f_2(1810)\\ X(1835)\\ \bullet \ \phi_3(1850)\\ \eta_2(1870)\\ \rho(1900)\\ f_2(1910)\\ \bullet \ f_2(1910)\\ \bullet \ f_2(1950)\\ \rho_3(1990)\\ \bullet \ f_2(2010)\\ f_0(2020) \end{array}$	$\begin{array}{c} 1^+(1^-)\\ 0^+(0^+)\\ 0^+(0^+)\\ 0^+(0^-)\\ 1^-(0^-)\\ 0^+(2^+)\\ 7^?(7^-)\\ 0^+(2^-)\\ 1^+(1^-)\\ 0^+(2^+)\\ 0^+(2^+)\\ 1^+(3^-)\\ 0^+(2^+)\\ 0^+(2^+)\\ 0^+(2^+)\\ 0^+(2^+)\\ 0^+(0^+)\\ 0^+(2^+)\\ 0^+(0^+)\\ 0^+(2^+)\\$	$\begin{array}{l} \kappa_{0}^{0} \\ \kappa_{0}^{0}(800) \\ \kappa_{1}^{\prime}(892) \\ \kappa_{1}^{\prime}(1270) \\ \kappa_{1}^{\prime}(1410) \\ \kappa_{0}^{\prime}(1430) \\ \kappa_{0}^{\prime}(1430) \\ \kappa_{1}^{\prime}(1630) \\ \kappa_{1}^{\prime}(1650) \\ \kappa_{1}^{\prime}(1650) \\ \kappa_{1}^{\prime}(1670) \\ \kappa_{2}^{\prime}(1770) \\ \kappa_{1}^{\prime}(1780) \end{array}$	$\begin{array}{c} 1/2(0^{-}) \\ 1/2(0^{+}) \\ 1/2(1^{-}) \\ 1/2(1^{+}) \\ 1/2(1^{+}) \\ 1/2(2^{+}) \\ 1/2(2^{-}) \\ 1/2(2^{-}) \\ 1/2(2^{-}) \\ 1/2(2^{-}) \\ 1/2(1^{-}) \\ 1/2(1^{-}) \\ 1/2(2^{-}) \\ 1/2(3^{-}) \end{array}$	$\begin{array}{l} \mathbf{b}^{d} + [d^{d} \mathcal{B}_{c}^{d} \mathcal{B}_{c} \\ MIXTURE \\ V_{ab} \ \mathrm{and} \ V_{ub} \ G \\ Elements \\ \mathbf{b}^{d} \ S^{d} \ S^{d} \\ B^{d} \ S^{d} \ S^{d} \\ B^{d} \ S^{d} \ S^{d} \\ B^{d} \ S^{d} \\ S^{d} \ S^{d} \ S^{d} \\ S^{d} \ S^{d} \\ S^{d} \ S^{d} \ S^{d} \\ S^{d} \ S^{d} \ S^{d} \ S^{d} \\ S^{d} \ S^{d} \ S^{d} \\ S^{d} \ S^{d$	-baryon AD- :KM Matrix $1/2(1^{-})$?(?) STRANGE $5 = \pm 1$ $0(0^{-})$ $0(1^{-})$?(?) CHARMED $= \pm 1$ $0(0^{-})$
N(2080) N(2090) N(2100) N(2190) N(2200) N(2220) N(2220) N(2250) N(2600) N(2700)	$\begin{array}{c} D_{13} \\ S_{11} \\ P_{11} \\ G_{17} \\ D_{15} \\ H_{19} \\ G_{19} \\ I_{1,11} \\ K_{1,13} \end{array}$	** * **** ** ** ** ** ** ** **	$\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(2)$ $\Delta(1540)$	<i>K</i> 3,15	* *** ***	Λ(2110) Λ(2325) Λ(2350) Λ(2585)	F ₀₅ D ₀₃ H ₀₉	*** * ***	$\frac{\Sigma(1840)}{\Sigma(1880)} \frac{\Sigma(1940)}{\Sigma(1915)} \frac{\Sigma(1940)}{\Sigma(2000)} \frac{\Sigma(2030)}{\Sigma(2070)} \frac{\Sigma(2070)}{\Sigma(2100)} \frac{\Sigma(2100)}{\Sigma(2250)} \frac{\Sigma(2250)}{\Sigma(2250)} \frac{\Sigma(2100)}{\Sigma(2250)} \frac{\Sigma(2250)}{\Sigma(2250)} \frac{\Sigma(2100)}{\Sigma(2250)} \frac{\Sigma(2250)}{\Sigma(2250)} \Sigma($	P_{13} P_{11} F_{15} D_{13} S_{11} F_{17} F_{15} P_{13} G_{17}	* ** *** * * * * * * * * * * * *	$\frac{\Omega(2230)}{\Omega(2380)^{-}} \frac{\Omega(2470)^{-}}{\Omega(2470)^{-}} \frac{\Lambda_{c}^{+}}{\Lambda_{c}(2593)^{+}} \frac{\Lambda_{c}(2593)^{+}}{\Lambda_{c}(2765)^{+}} \frac{\Lambda_{c}(2880)^{+}}{\Sigma_{c}(2455)} \sum_{c} (2455)^{-} \frac{\Lambda_{c}(2455)^{+}}{\Omega(2455)^{+}} \frac{\Lambda_{c}(2455)^{+}}{\Omega($		** ** *********************************	$\begin{array}{c} \bullet_{f_{0}}^{-}(1370)\\ h_{1}(1380)\\ \bullet_{\pi}_{1}(1400)\\ \bullet_{\pi}(1405)\\ \bullet_{f_{1}}(1420)\\ \bullet_{\omega}(1420)\\ \bullet_{\omega}(1420)\\ \bullet_{\omega}(1450)\\ \bullet_{\rho}(1450)\\ \bullet_{\rho}(1450)\\ \bullet_{f_{1}}(1475)\\ \bullet_{f_{1}}(1550)\\ f_{1}(1510)\\ f_{1}(1555)\\ \bullet_{f_{1}}(1555)\\ \bullet_{f_{1}}(1555$	$\begin{array}{c} 0+(0++)\\ 7-(1+-)\\ 1-(1-+)\\ 0+(0-+)\\ 0+(1++)\\ 0+(1+-)\\ 0+(2++)\\ 1-(0++)\\ 1+(1)\\ 0+(0++)\\ 0+(0++)\\ 0+(1++)\\ 0+(2++)\\ 0+(2++)\\ 0+(2++)\\ \end{array}$	$f_4(2040)$ $f_4(2050)$ $\pi_2(2100)$ $f_2(2150)$ $f_0(2150)$ $f_0(2200)$ $f_1(2220)$ $f_1(2220)$ $f_2(2250)$ $f_2(2250)$ $f_2(2300)$ $f_2(2300)$ $f_2(2340)$ $g_2(2340)$	$\begin{array}{c} 1^{-(4++)} \\ 0^{+(4++)} \\ 0^{+(2++)} \\ 1^{-(2-+)} \\ 0^{+(0++)} \\ 0^{+(2++)} \\ 0^{+(0++)} \\ 0^{+(0-+)} \\ 0^{+(0-+)} \\ 1^{+(3)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \\ 0^{+(2++)} \end{array}$	 ∧₃(1100) ∧₅(1820) ∧(1830) ∧⁶₆(1950) ∧⁶₇(1960) ∧⁶₇(2045) ∧⁶₇(2045) ∧⁶₇(2040) ∧⁶₇(2050) ∧⁶₇(2050) ∧⁶(3100) CHAR (C = 	$1/2(3^{-})$ $1/2(2^{-})$ $1/2(0^{-})$ $1/2(0^{+})$ $1/2(2^{+})$ $1/2(2^{-})$ $1/2(2^{-})$ $1/2(3^{+})$ $1/2(3^{-})$ $1/2(4^{-})$ $?^{?}(?^{?})$ MED ± 1 $1/2(0^{-})$	$\begin{array}{c} c \\ \bullet \ \eta_c(1S) \\ \bullet \ J/\psi(1S) \\ \bullet \ \chi_c(1P) \\ \bullet \ \chi_c(1P) \\ \bullet \ \chi_c(1P) \\ \bullet \ \eta_c(2S) \\ \bullet \ \psi(2S) \\ \bullet \ \psi(370) \\ \bullet \ \chi_a(3872) \\ \bullet \ \chi_a(2P) \\ Y(3940) \end{array}$	$ \frac{\overline{c}}{0^+(0^-+)} \\ 0^+(0^++) \\ 0^+(1^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ 0^+(0^-+) \\ 0^-(1^) \\ 0^-(1^) \\ 0^+(2^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ 0^+(2^++) \\ 0^+(2^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ 0^+(2^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ 0^+(2^++) \\ \overline{c}^2(\overline{c}^{27}) \\ 0^+(2^++) \\ 0^+(2^$
~1	3	0	ba	۱r	yc	n	30 S	0.	Σ (2455) Σ (2620) Σ (3000) Σ (3170))	** ** *	$\begin{split} & \Sigma_{c}(2520) \\ & \Sigma_{c}(2800) \\ & \Xi_{c}^{+} \\ & \Xi_{c}^{0} \\ & \Xi_{c}^{-} \\ & \Xi_{c}^{-} \\ & \Xi_{c}^{-} \\ & \Xi_{c}^{-} (2645) \\ & \Xi_{c}(2790) \\ & \Xi_{c}^{-} (2815) \\ & \Omega_{c}^{0} \\ & \Xi_{cc}^{+} \\ & \Lambda_{b}^{0} \end{split}$		*** *** *** *** *** *** *** *** * *	$\begin{array}{c} r_{2}(1565) \\ h_{1}(1595) \\ \bullet \pi_{1}(1600) \\ a_{1}(1640) \\ f_{2}(1640) \\ \bullet \eta_{2}(1645) \\ \bullet \omega(1650) \\ \bullet \omega_{3}(1670) \end{array}$	0 (2 + -) 0 - (1 + -) 1 - (1 + +) 0 + (2 - +) 0 - (1) 0 - (3) 1 6	ρ ₉ (250) _{3₆(2450) <u>6</u>(2510) OT Further}		$\begin{array}{l} D^{\pm} \\ D^{0} \\ D^{0} \\ D^{*}(2007)^{0} \\ D^{*}(2010)^{\pm} \\ D^{*}_{0}(2400)^{\pm} \\ D^{*}_{0}(2420)^{\pm} \\ D^{*}_{1}(2420)^{\pm} \\ D^{*}_{1}(2420)^{\pm} \\ D^{*}_{1}(2420)^{\pm} \\ D^{*}_{1}(2460)^{\pm} \\ D^{*}_{1}(2460)^{\pm} \\ D^{*}_{2}(2460)^{\pm} \\ D^{*}_{2}(2460)^{\pm} \\ D^{*}_{2}(2640)^{\pm} \\$	$\begin{array}{c} 1/2(0^-) \\ 1/2(0^-) \\ 1/2(1^-) \\ 1/2(1^-) \\ 1/2(0^+) \\ 1/2(0^+) \\ 1/2(0^+) \\ 1/2(2^+) \\ 1/2($	$\begin{array}{c} \bullet \psi(4040)\\ \bullet \psi(4160)\\ \forall (4260)\\ \bullet \psi(4415)\\ \hline \\ \hline \\ \hline \\ \eta_{D}(15)\\ \bullet \chi_{B0}(1P)\\ \bullet \chi_{B1}(1P)\\ \bullet \chi_{B1}(1P)\\ \bullet \chi_{B1}(2P)\\ \bullet \chi_{B1}(2P)\\$	$\begin{array}{c} 0^{-}(1^{-}-)\\ 0^{-}(1^{-}-)\\ 0^{-}(1^{-}-)\\ 0^{-}(1^{-}-)\\ \hline \end{array}\\ \hline\\ \hline\\ \hline\\ 0^{+}(0^{-}+)\\ 0^{+}(0^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(1^{+}+)\\ 0^{+}(2^{+}+)\\ 0^{+}(1^{-}-)\\ 0^{+}(1^{-}-)\\ 0^{-}(1^{-}-)\\ $

Exotic hadrons are indeed exotic !!

Exotic hadrons : experiment vs theory

Exotic hadrons : valence quark-antiquark(s)non-exoticuds, $ud\bar{d}$, $udsu\bar{u}$, $ud\bar{u}\bar{u}$,...exotic $uudd\bar{s}$, $ud\bar{s}\bar{s}$,...

Experimentally, they are exotic ~ 1/300.

Theoretically, are they exotic?
--> There is no simple way to forbid exotic states in QCD, effective models, ...
--> Evidences of multiquark components in non-exotic hadrons.

Why aren't the exotics observed??

Chiral dynamics for non-exotic hadrons

Hadron excited states ~ π

Interaction <-- chiral symmetry

Amplitude <-- unitarity (coupled channel)

With phenomenological vector meson exchange interaction

R.H. Dalitz, and S.F. Tuan, Ann. Phys. (N.Y.) 10, 307 (1960) J.H.W. Wyld, Phys. Rev. 155, 1649 (1967)

Chiral perturbation theory for interaction

N. Kaiser, P. B. Siegel and W. Weise, Nucl. Phys. A594, 325 (1995)
E. Oset and A. Ramos, Nucl. Phys. A635, 99 (1998)
J. A. Oller and U. G. Meissner, Phys. Lett. B500, 263 (2001)
M.F.M. Lutz and E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002)

Chiral dynamics for non-exotic hadrons

Hadron excited states ~ πT

Many hadron resonances are well described.

light	$J^P = 1/2^-$	$\Lambda(1405)$	$\Lambda(1670)$	$\Sigma(1670)$	
baryon		N(1535)	$\Xi(1620)$	$\Xi(1690)$	
	$J^P = 3/2^-$	$\Lambda(1520)$	$\Xi(1820)$	$\Sigma(1670)$	
heavy		$\Lambda_c(2880)$ A	$\Lambda_c(2593)$		$D_s(2317)$
light	$J^P = 1^+$	$b_1(1235)$ i	$h_1(1170)$	$h_1(1380)$	$a_1(1260)$
meson		$f_1(1285)$ I	$K_1(1270)$	$K_1(1440)$	
	$J^P = 0^+$	$\sigma(600)$	$\kappa(900)$	$f_0(980)$	$a_0(980)$

What about exotic hadrons?

Origin of the resonances

Low energy s-wave interaction

Scattering of a target (T) with the pion (Ad)

$$\alpha \begin{bmatrix} \operatorname{Ad}(q) \\ T(p) \end{bmatrix} = \frac{1}{f^2} \frac{p \cdot q}{2M_T} \left\langle \mathbf{F}_T \cdot \mathbf{F}_{\operatorname{Ad}} \right\rangle_{\alpha} + \mathcal{O}\left(\left(\frac{m}{M_T} \right)^2 \right)$$

s-wave : Weinberg-Tomozawa term

$$V_{\alpha} = -\frac{\omega}{2f^2} C_{\alpha,T}$$
$$C_{\alpha,T} \equiv -\langle 2\mathbf{F}_T \cdot \mathbf{F}_{Ad} \rangle_{\alpha} = C_2(T) - C_2(\alpha) + 3 \quad \text{(for } N_f = 3)$$

Coupling : pion decay constant model-independent interaction at low energy

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966)

S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

Coupling strengths : Examples

Coupling strengths : (positive is attractive)

 $C_{\alpha,T} = C_2(T) - C_2(\alpha) + 3$

lpha	1	8	10	$\overline{10}$	27	35
$T = 8(N, \Lambda, \Sigma, \Xi)$	6	3	0	0	-2	
$T = 10(\Delta, \Sigma^*, \Xi^*, \Omega)$		6	3		1	-3

α	$\overline{3}$	6	15	24
$T = \overline{3}(\Lambda_c, \Xi_c)$	3	1	-1	
$T = 6(\Sigma_c, \Xi_c^*, \Omega_c)$	5	3	1	-2

Exotic channels : mostly repulsive
 Attractive interaction : C = 1

Coupling strengths : General expression

For a general target T = [p,q]

$\alpha \in [p,q] \otimes [1,1]$	$C_{lpha,T}$	sign
[p+1, q+1]	-p-q	repulsive
[p+2, q-1]	1-p	
[p - 1, q + 2]	1-q	
[p,q]	3	attractive
[p,q]	3	attractive
[p+1, q-2]	3+q	attractive
[p - 2, q + 1]	3+p	attractive
[p-1,q-1]	4+p+q	attractive

Strength should be integer.
Sign is determined for most cases.

Exoticness

Exoticness : minimal number of extra \overline{q}q.

B : baryon number carried by light quarks

V. Kopeliovich, Phys. Lett. B259, 234 (1991) D. Diakonov and V. Petrov, Phys. Rev. D 69, 056002 (2004)

but...
$$\begin{bmatrix} p,q \end{bmatrix} = \begin{bmatrix} 6,0 \end{bmatrix} = \mathbf{28}, \quad B = 1$$
 uuu ud ud ud
 $E = 2, \quad \epsilon = 1$

E. Jenkins and A.V. Manohar, Phys. Rev. Lett. 93, 022001 (2004)

but...
$$[p,q] = [0,0] = 1$$
, $B = 1$
 $E = 0$, $\epsilon = -1$, $\nu = -1$ **uds**

Exotic channels

Exoticness : minimal number of extra \overline{q}q.

$$E = \epsilon \theta(\epsilon) + \nu \theta(\nu) \qquad \epsilon \equiv \frac{p+2q}{3} - B, \quad \nu \equiv \frac{p-q}{3} - B$$
$$\Delta E = E_{\alpha} - E_T = +1 \text{ is realized when} \qquad \checkmark$$

$$\circ \alpha = [p+1, q+1] : C_{\alpha,T} = -p - q$$
repulsive

 $\circ \alpha = [p+2, q-1] : C_{\alpha,T} = 1 - p$ attraction : p = 0 then $\nu_T \ge 0 \rightarrow B \ge -q/3$ **not considered here**

$$\circ \alpha = [p-1, q+2] : C_{\alpha,T} = 1-q$$

attraction : $q = 0$ then $\nu_T \le 0 \to B \ge p/3$ OK!

Universal attraction for more "exotic" channel $C_{\text{exotic}} = 1$ for $T = [p, 0], \quad \alpha = [p - 1, 2]$

Unitarization : N/D method

Unitarity cut --> N, unphysical cut --> D

T(s) = N(s)/D(s)

Im $D(s) = \text{Im}[T^{-1}(s)]N(s) = -\rho(s)N(s)$ for $s > s_+$

 $\operatorname{Im} N(s) = \operatorname{Im} [T(s)] D(s) \quad \text{for } s < s_{-}$

Neglect unphysical cut, set N=1

$$T^{-1}(s) = \left(a(s_0) + \frac{s - s_0}{2\pi} \int_{s^+}^{\infty} ds' \frac{\rho(s')}{(s' - s)(s' - s_0)}\right) + \mathcal{T}^{-1}(s)$$

loop function
 $\rightarrow G(s)$ Interaction
(tree level)

subtraction constant (regularization parameter of the loop)

Scattering theory

Renormalization and bound states

Identifying the interaction as $V_{\alpha} = -\frac{\omega}{2f^2}C_{\alpha,T}$

$$T_{\alpha}(\sqrt{s}) = \frac{1}{1 - V_{\alpha}(\sqrt{s})G(\sqrt{s})}V_{\alpha}(\sqrt{s})$$

Renormalization parameter : condition

 $G(\mu) = 0, \quad \Leftrightarrow \quad T(\mu) = V(\mu) \quad \text{at} \quad \mu = M_T$

K. Igi, and K. Hikasa, Phys. Rev. D59, 034005 (1999) M.F.M. Lutz, and E. Kolomeitsev, Nucl. Phys. A700, 193-308 (2002)

Scale at which ChPT works. Matching with the u-channel amplitude : OK

Bound state:

$$1 - V(M_b)G(M_b) = 0 \qquad M_T < M_b < M_T + m$$

Scattering theory

Critical attraction

 $1 - V(\sqrt{s})G(\sqrt{s})$: monotonically decreasing.

16

Scattering theory

Critical attraction and exotic channel

m = 368 MeV and f = 93 MeV

Summary 1 : SU(3) limit

We study the exotic bound states in s-wave chiral dynamics in flavor SU(3) limit.

- The interactions in exotic channels are in most cases repulsive.
- There are attractive interactions in exotic channels, with universal and the smallest strength : C_{exotic} = 1
- The strength is not enough to generate a bound state : C_{exotic} < C_{crit}
 - The result is model independent as far as we respect chiral symmetry.

Summary 2 : Physical world

Caution!

- The exotic hadrons here are the s-wave meson-hadron molecule states (1/2⁻ for Θ⁺).
 - We do not exclude the exotics which have other origins (genuine quark state, soliton rotation,...).
 - In practice, SU(3) breaking effect, higher order terms,...

In Nature, it is difficult to generate exotic hadrons as in the same way with $\Lambda(1405)$, $\Lambda(1520)$,... based on chiral interaction.

<u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006)</u> <u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. D 75, 034002 (2007)</u>

Physical meaning of the renormalization condition.

Renormalization condition

Renormalization condition

Scattering amplitude

$$V_{\alpha} = -\frac{\omega}{2f^2} C_{\alpha,T} \text{ tree (ChPT)}$$
$$G(\sqrt{s}) = \frac{2M_T}{(4\pi)^2} \left(a(\mu) + \ln \frac{M_T^2}{\mu^2} + \dots \right) \text{ loop}$$

Subtraction constant $a(\mu)$: condition

$$G(\mu) = 0, \quad \Leftrightarrow \quad T(\mu) = V(\mu) \quad \text{at} \quad \mu = M_T$$

K. Igi, and K. Hikasa, Phys. Rev. D59, 034005 (1999) M.F.M. Lutz, and E. Kolomeitsev, Nucl. Phys. A700, 193-308 (2002)

Physical meaning of the condition?

Matching with ChPT

Match the unitarized amplitude with ChPT

$$G(\mu_m) = 0, \quad \Leftrightarrow \quad T(\mu_m) = V(\mu_m)$$

subtraction constant : real

 \Rightarrow $M_T - m \le \mu_m \le M_T + m$ **natural unitarization**

Renormalization condition

Effective attraction from the loop

$$T = (V^{-1} - G(a + \tilde{a}))^{-1} = ((V')^{-1} - G(a))^{-1}$$
$$V = -\frac{\omega}{2f^2}C \sim -\frac{\sqrt{s} - M_T}{2f^2}C$$
$$G(a) = \frac{2M_T}{(4\pi)^2} \left(a(\mu) + \ln\frac{M_T^2}{\mu^2} + \dots\right)$$

$$\Rightarrow (f')^2 = \frac{CMa}{16\pi^2}(\sqrt{s} - M) + f^2$$

negative $\tilde{a} \rightarrow smaller f^2 \rightarrow effective attraction$

<u>T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Phys. Rev. C. 68, 018201 (2003)</u> <u>T. Hyodo, S.I. Nam, D. Jido, A. Hosaka, Prog. Thor. Phys. 112, 73 (2004)</u>

The condition $\mu_m = M_T$: largest effective attraction in s-channel scattering region

Renormalization condition

Pole in the effective interaction

$$T = (V^{-1} - G(a + \tilde{a}))^{-1} = ((V')^{-1} - G(a))^{-1}$$

Effective interaction

$$V' = -\frac{8\pi^2}{M\tilde{a}}\frac{\sqrt{s}-M}{\sqrt{s}-M_{\text{eff.}}} \text{ pole}$$
$$M_{\text{eff.}} = M - \frac{16\pi^2 f^2}{CM\tilde{a}}$$

Physically meaningful pole :

 $C>0, \quad \tilde{a}<0$

Origin of dynamical pole?

Large Nc limit : introduction

1/Nc : a possible expansion parameter

G. 't Hooft, Nucl. Phys. B72, 461 (1974) E. Witten, Nucl. Phys. B160, 57 (1979)

Scaling of the physical quantities <- Nc² gluons and Nc quarks.

Meson mass : $m \sim \mathcal{O}(1)$

Baryon mass : $M \sim \mathcal{O}(N_c)$

Decay constant : $f \sim \mathcal{O}(\sqrt{N_c})$

MB scattering :

Large Nc limit

Coupling strengths in large Nc limit

WT interaction in large Nc limit

$$V_{\alpha} = -\frac{\omega}{2f^2} C_{\alpha,T} \sim \frac{1}{N_c} \times C_{\alpha,T}$$

Flavor representation of baryons

Coupling strength has linear Nc dependence $C_{\alpha, T}^{*}(N_c) = C_2(T) - C_2(\alpha) + 3$

 $C\left("[p,q]"\right) = \frac{1}{3}\left(-\frac{9}{4} + p^2 + \frac{3p}{2} + pq + q^2\right) + \frac{1}{3}\left(\frac{p}{2} + q\right)N_c + \frac{N_c^2}{12}$

Coupling strengths for the general target

For arbitrary Nc, V_{V}

$$\propto -rac{C}{f^2} \sim -rac{C(N_c)}{N_c}$$

$\alpha \in [p,q] \otimes [1,1]$	C " $lpha$ ", " T " (N_c)	$V(N_c \to \infty)$
[p+1, q+1]	$(3-N_c)/2-p-q$	repulsive
[p+2, q-1]	1-p	
[p - 1, q + 2]	$(5-N_c)/2-q$	repulsive
[p,q]	3	
[p,q]	3	
[p+1, q-2]	$(3+N_c)/2+q$	attractive
[p - 2, q + 1]	3+p	
[p-1,q-1]	$(5+N_c)/2+p+q$	attractive

• No attraction in exotic channels.

Coupling strengths : Examples

Coupling strengths with arbitrary Nc

$$C_{\alpha'', T''}(N_c) = C_2("T") - C_2("\alpha") + 3$$

lpha	"1 "	" <mark>8</mark> "	"10 "	" <mark>10</mark> "	"27 "	"35 "
T = "8"	$\frac{9+N_c}{2}$	3	0	$\frac{3-N_c}{2}$	$\frac{-2-N_c}{2}$	
T = "10"		6	- 3		$\frac{5-N_c}{2}$	$\frac{-3-N_c}{2}$

α	" 3 "	" 6 "	" 15 "	" 2 4"
$T = \mathbf{\tilde{3}}$	3	1	$\frac{1-N_c}{2}$	
T = ``6''	5	3	$\frac{5-N_c}{2}$	$\frac{-2-N_c}{2}$

Exotic attraction -> repulsive Two poles of Λ(1405)?

Large Nc limit

S = -1 I = 0 channel in SU(3) basis

lpha	" 1 "	" 8 _s "	" 8 _a "	"27 "
T = "8"	$\frac{9+N_c}{2}$	3	3	$\frac{-2-N_c}{2}$

20

Nc = 3

Ccrit

27

10

15

5

$$C_{\rm crit}(N_c) = \frac{2[f(N_c)]^2}{m[-G(M_T(N_c) + m)]} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$M_T(N_c) = M_0 \times \frac{N_c}{3} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$f(N_c) = f_0 \times \sqrt{\frac{N_c}{3}} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

\circ Bound state in "1" in the large Nc limit.

20

Large Nc limit

S = -1 I = 0 channel in Isospin basis

Basis transformation via CG Coef. with Nc

$$C_{ij}(N_c) = \begin{pmatrix} \overline{\mathbf{K}} \mathbf{N} & \overline{\mathbf{n}} \mathbf{\Sigma} & \mathbf{n} \mathbf{\Lambda} & \mathbf{K} \mathbf{\Xi} \\ \frac{1}{2}(3+N_c) & -\frac{\sqrt{3}}{2}\sqrt{-1+N_c} & \frac{\sqrt{3}}{2}\sqrt{3+N_c} & 0 \\ -\frac{\sqrt{3}}{2}\sqrt{-1+N_c} & 4 & 0 & \frac{\sqrt{3+N_c}}{2} \\ \frac{\sqrt{3}}{2}\sqrt{3+N_c} & 0 & 0 & -\frac{\sqrt{3}}{2}\sqrt{-1+N_c} \\ 0 & \frac{\sqrt{3+N_c}}{2} & -\frac{\sqrt{3}}{2}\sqrt{-1+N_c} & \frac{1}{2}(9-N_c) \end{pmatrix}$$

Combining with the 1/Nc factor of 1/f², $\circ \overline{K}N \rightarrow \overline{K}N$: attractive at large Nc $\circ \overline{K}N \rightarrow \pi\Sigma$: $\mathcal{O}(1/\sqrt{N_c})$ $\circ \pi\Sigma \rightarrow \pi\Sigma$: $\mathcal{O}(1/N_c)$

Summary 2 : Topics

Physical meaning of the renormalization condition.

The renomlization condition provides the largest strength of the effective attraction in the s-channel region.

Nc dependence of the interaction and bound states in large Nc limit

> Attraction in "1" and KN channels is strong enough to provide a bound state in the large Nc limit.

Discussion : Dependence on the parameters

Lines for $C_{crit} = 1$ in (m, f) plane

 \circ C_{crit} becomes smaller for M_T, m, and f $\searrow_{\frac{32}{32}}$