Exotic hadrons

in s-wave chiral dynamics

Tetsuo Hyodo ${ }^{\text {a }}$,

Daisuke Jido ${ }^{\text {a }}$, and Atsushi Hosaka ${ }^{\text {b }}$

Exotic hadrons

Observed hadrons in experiments (PDG06) :

Introduction

Motivation 1 : Exotic hadrons

Exotic hadrons: states other than $q \bar{q}, q q q$. Experimentally, they are exotic.
~160 mesons $\bigcirc \sim 130$ baryons

1 pentaquark O with *

Theoretically, are they exotic? $-->$ There is no simple way to forbid exotic states in QCD, effective models, ...

Why aren't the exotics observed??

Motivation 2 : Chiral unitary approaches

Hadron excited states $\sim \pi T$

- Interaction <-- chiral symmetry
 - Amplitude <-- unitarity

R.H. Dalitz, and S.F. Tuan, Ann. Phys. (N.Y.) 10, 307 (1960)
J.H.W. Wyld, Phys. Rev. 155, 1649 (1967)
N. Kaiser, P. B. Siegel and W. Weise, Nucl. Phys. A594, 325 (1995)
E. Oset and A. Ramos, Nucl. Phys. A635, 99 (1998)
J. A. Oller and U. G. Meissner, Phys. Lett. B500, 263 (2001)
M.F.M. Lutz and E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002)

Many hadron resonances ($\Lambda(1405), \mathrm{N}(1535)$,
$\Lambda(1520), D_{s}(2317), \ldots$) are well described.

What about exotic hadrons?

Introduction

Origin of the resonances

Trajectory of poles
 D. Jido, et al., Nucl. Phys. A 723, 205 (2003)

Outline

Hadron-NG boson bound state πT

Chiral Symmetry

 s-wave low energy interaction$$
V_{\alpha}=-\frac{\omega}{2 f^{2}} C_{\alpha, T} \quad C_{\text {exotic }}=1
$$

Scattering theory

Critical strength for a bound state

$$
C_{\mathrm{crit}}=\frac{2 f^{2}}{m\left[-G\left(M_{T}+m\right)\right]}
$$

physical values : $C_{\text {exotic }}<C_{\text {crit }}$

Chiral symmetry

Low energy s-wave interaction

Scattering of a target (T) with the pion (Ad)

$$
\alpha\left[\begin{array}{c}
\operatorname{Ad}(q) \backslash \\
T(p) \longrightarrow
\end{array}\right) \frac{1}{f^{2}} \frac{p \cdot q}{2 M_{T}}\left\langle\boldsymbol{F}_{T} \cdot \boldsymbol{F}_{\mathrm{Ad}}\right\rangle_{\alpha}+\mathcal{O}\left(\left(m / M_{T}\right)^{2}\right)
$$

s-wave : Weinberg-Tomozawa term

$$
\begin{aligned}
& V_{\alpha}=-\frac{\omega}{2 f^{2}} C_{\alpha, T} \\
& C_{\alpha, T} \equiv-\left\langle 2 \boldsymbol{F}_{T} \cdot \boldsymbol{F}_{\mathrm{Ad}}\right\rangle_{\alpha}=C_{2}(T)-C_{2}(\alpha)+3 \quad\left(\text { for } N_{f}=3\right)
\end{aligned}
$$

Coupling : pion decay constant

 model-independent interaction at low energyY. Tomozawa, Nuovo Cim. 46A, 707 (1966)
S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

Chiral symmetry

Coupling strengths : Examples

Coupling strengths : (positive is attractive)

$$
C_{\alpha, T}=C_{2}(T)-C_{2}(\alpha)+3
$$

α	$\mathbf{1}$	$\mathbf{8}$	$\mathbf{1 0}$	$\overline{\mathbf{1 0}}$	$\mathbf{2 7}$	35
$T=\mathbf{8}(N, \Lambda, \Sigma, \Xi)$	6	3	0	0	-2	
$T=\mathbf{1 0}\left(\Delta, \Sigma^{*}, \Xi^{*}, \Omega\right)$		6	3		1	-3

α	$\overline{\mathbf{3}}$	$\mathbf{6}$	$\overline{\mathbf{1 5}}$	$\mathbf{2 4}$
$T=\overline{\mathbf{3}}\left(\Lambda_{c}, \Xi_{c}\right)$	3	1	-1	
$T=\mathbf{6}\left(\Sigma_{c}, \Xi_{c}^{*}, \Omega_{c}\right)$	5	3	1	-2

- Exotic channels : mostly repulsive
- Attractive interaction : C = 1

Chiral symmetry

Coupling strengths : General expression

For a general target $T=[p, q]$

$\alpha \in[p, q] \otimes[1,1]$	$C_{\alpha, T}$	sign
$[p+1, q+1]$	$-p-q$	repulsive
$[p+2, q-1]$	$1-p$	
$[p-1, q+2]$	$1-q$	
$[p, q]$	3	attractive
$[p, q]$	3	attractive
$[p+1, q-2]$	$3+q$	attractive
$[p-2, q+1]$	$3+p$	attractive
$[p-1, q-1]$	$4+p+q$	attractive

OStrength should be integer.
Sign is determined for most cases.

Chiral symmetry

Exotic channels

Exoticness : minimal number of extra $\bar{q} q$.

repulsive

○ $\alpha=[p+2, q-1]: C_{\alpha, T}=1-p$
attraction : $p=0$ then $\nu_{T} \geq 0 \rightarrow B \geq-q / 3$
not considered here
○ $\alpha=[p-1, q+2]: C_{\alpha, T}=1-q$
\quad attraction : $q=0$ then $\nu_{T} \leq 0 \rightarrow B \geq p / 3$ OK!
○ $\alpha=[p-1, q+2]: C_{\alpha, T}=1-q$
\quad attraction : $q=0$ then $\nu_{T} \leq 0 \rightarrow B \geq p / 3$ OK!

Universal attraction for more "exotic" channel

$$
C_{\text {exotic }}=1 \quad \text { for } \quad T=[p, 0], \quad \alpha=[p-1,2]
$$

Scattering theory

Renormalization and bound states

Solve the scattering problem with $V_{\alpha}=-\frac{\omega}{2 f^{2}} C_{\alpha, T}$

$$
T=\frac{1}{1-V G} V
$$

Unitarity : OK

Renormalization parameter : condition

$$
G(\mu)=0, \quad \Leftrightarrow \quad T(\mu)=V(\mu) \quad \text { at } \quad \mu=M_{T}
$$

K. Igi, and K. Hikasa, Phys. Rev. D59, 034005 (1999)
M.F.M. Lutz, and E. Kolomeitsev, Nucl. Phys. A700, 193-308 (2002)

Matching with the u-channel amplitude : OK

Bound state:

$$
1-V\left(M_{b}\right) G\left(M_{b}\right)=0 \quad M_{T}<M_{b}<M_{T}+m
$$

Critical attraction

$1-V(\sqrt{s}) G(\sqrt{s})$: monotonically decreasing.
Fixed

$$
G\left(M_{T}\right)=0
$$

$$
1-V G=1
$$

$$
\begin{gathered}
-1.0 \\
-1.5 \\
-2.0
\end{gathered}
$$

Critical attraction : $1-V G=0$ at $\sqrt{s}=M_{T}+m$

$$
\rightarrow C_{\text {crit }}=\frac{2 f^{2}}{m\left[-G\left(M_{T}+m\right)\right]}
$$

$$
3-2
$$

Critical attraction and exotic channel

Strength is not enough.

Large Nc limit

Large Nc limit : introduction

1/Nc : a possible expansion parameter
G. 't Hooft, Nucl. Phys. B72, 461 (1974)
E. Witten, Nucl. Phys. B160, 57 (1979)

Scaling of the physical quantities $<-\mathrm{Nc}^{2}$ gluons and Nc quarks.

Meson mass : $m \sim \mathcal{O}(1)$
Baryon mass : $M \sim \mathcal{O}\left(N_{c}\right)$
Decay constant : $f \sim \mathcal{O}\left(\sqrt{N_{c}}\right)$
MB scattering: $\xrightarrow{\wedge} \sim \mathcal{O}_{(1)}$

Coupling strengths in large Nc limit

WT interaction in large Nc limit

$$
V_{\alpha}=-\frac{\omega}{2 f^{2}} C_{\alpha, T} \sim \frac{1}{N_{c}} \times C_{\alpha, T}
$$

Flavor representation of baryons

$$
[p, q] \rightarrow "[p, q] "=\left[p, q+\frac{N_{c}-3}{2}\right]
$$

Coupling strength has linear Nc dependence

$$
C " \alpha ", " T "\left(N_{c}\right)=C_{2}(" T ")-C_{2}(" \alpha ")+3
$$

$$
C("[p, q] ")=\frac{1}{3}\left(-\frac{9}{4}+p^{2}+\frac{3 p}{2}+p q+q^{2}\right)+\underline{\frac{1}{3}\left(\frac{p}{2}+q\right) N_{c}+\frac{N_{c}^{2}}{12}}
$$

Coupling strengths for the general target

For arbitrary Nc, $V \propto-\frac{C}{f^{2}} \sim-\frac{C\left(N_{c}\right)}{N_{c}}$

$\alpha \in[p, q] \otimes[1,1]$	$C " \alpha ", " T$ " $\left(N_{c}\right)$	$V\left(N_{c} \rightarrow \infty\right)$
$[p+1, q+1]$	$\left(3-N_{c}\right) / 2-p-q$	repulsive
$[p+2, q-1]$	$1-p$	
$[p-1, q+2]$	$\left(5-N_{c}\right) / 2-q$	repulsive
$[p, q]$	3	
$[p, q]$	3	
$[p+1, q-2]$	$\left(3+N_{c}\right) / 2+q$	attractive
$[p-2, q+1]$	$3+p$	
$[p-1, q-1]$	$\left(5+N_{c}\right) / 2+p+q$	attractive

- No attraction in exotic channels.

Chiral symmetry

Coupling strengths : Examples

Coupling strengths with arbitrary Nc

$$
C " \alpha ", " T "\left(N_{c}\right)=C_{2}(" T ")-C_{2}(" \alpha ")+3
$$

α	"1"	" 8 "	"10"	" 10 "	" 27 "	"35"
$T=" 8 "$	$\frac{9+N_{c}}{2}$	3	0	$\frac{3-N_{c}}{2}$	$\frac{-2-N_{c}}{2}$	
$T=" 10 "$		6	3		$\frac{5-N_{c}}{2}$	$\frac{-3-N_{c}}{2}$
α	" $\overline{3}$ "	" 6 "	"15"	"24"		
$T=" \overline{3}$ "	3	1	$\frac{1-N_{c}}{2}$			
$T=" 6 "$	5	3	$\frac{5-N_{c}}{2}$	$\frac{-2-N_{c}}{2}$		

α	"1"	" 8 "	"10"	" 10 "	" 27 "	"35"
$T=" 8 "$	$\frac{9+N_{c}}{2}$	3	0	$\frac{3-N_{c}}{2}$	$\frac{-2-N_{c}}{2}$	
$T=" 10 "$		6	3		$\frac{5-N_{c}}{2}$	$\frac{-3-N_{c}}{2}$
α	" $\overline{3}$ "	" 6 "	"15"	"24"		
$T=" \overline{3}$ "	3	1	$\frac{1-N_{c}}{2}$			
$T=" 6 "$	5	3	$\frac{5-N_{c}}{2}$	$\frac{-2-N_{c}}{2}$		

- Exotic attraction -> repulsive - Two poles of $\Lambda(1405)$?

$\mathrm{S}=-1 \mathrm{I}=0$ channel in $\mathrm{SU}(3)$ basis

α	$" 1 "$	$" 8_{s} "$	$" 8_{a} "$	$" 27 "$
$T=" 8 "$	$\frac{9+N_{c}}{2}$	3	3	$\frac{-2-N_{c}}{2}$

$$
\begin{gathered}
C_{\text {crit }}\left(N_{c}\right)=\frac{2\left[f\left(N_{c}\right)\right]^{2}}{m\left[-G\left(M_{T}\left(N_{c}\right)+m\right)\right]} \\
M_{T}\left(N_{c}\right)=M_{0} \times \frac{N_{c}}{3} \\
f\left(N_{c}\right)=f_{0} \times \sqrt{\frac{N_{c}}{3}}
\end{gathered}
$$

Large Nc limit

$\mathrm{S}=-1 \mathrm{I}=0$ channel in Isospin basis

Basis transformation via CG Coef. with Nc

T.D. Cohen, and R.F. Lebed, Phys. Rev. D 70, 096015 (2004)
$\bar{K} N$
$\boldsymbol{\Pi} \Sigma$

$$
\begin{gathered}
-\frac{\sqrt{3}}{2} \sqrt{-1+N_{c}} \\
4 \\
0 \\
\frac{\sqrt{3+N_{c}}}{2}
\end{gathered}
$$

$\eta \Lambda$
K三
$C_{i j}\left(N_{c}\right)=\left(\begin{array}{c}\frac{1}{2}\left(3+N_{c}\right) \\ -\frac{\sqrt{3}}{2} \sqrt{-1+N_{c}} \\ \frac{\sqrt{3}}{2} \sqrt{3+N_{c}}\end{array}\right.$

$$
0
$$

$$
\begin{gathered}
\frac{\sqrt{3}}{2} \sqrt{3+N_{c}} \\
0 \\
0 \\
-\frac{\sqrt{3}}{2} \sqrt{-1+N_{c}}
\end{gathered}
$$

Combining with the $1 / \mathrm{Nc}$ factor of $1 / \mathbf{f}^{2}$,

- $\overline{\mathbf{K}} \mathbf{N} \rightarrow \overline{\mathbf{K}} \mathbf{N}$: attractive at large $\mathbf{N c}$
- $\overline{\mathbf{K}} \mathbf{N} \rightarrow \boldsymbol{\Pi} \boldsymbol{\Sigma}: \mathcal{O}\left(1 / \sqrt{N_{c}}\right)$
$\bigcirc \boldsymbol{\Pi} \boldsymbol{\Sigma} \boldsymbol{- >} \boldsymbol{\Pi} \boldsymbol{\Sigma}: \mathcal{O}\left(1 / N_{c}\right)$

Summary 1 : SU(3) limit

We study the exotic bound states in s-wave chiral dynamics in flavor SU(3) limit.

The interaction in exotic channels are in most cases repulsive.

There are attractive interactions in exotic channels, with universal and the smallest strength : $C_{\text {exotic }}=1$
The strength is not enough to generate a bound state : $C_{\text {exotic }}<C_{\text {crit }}$

The result is model-independent as far as we respect chiral symmetry.

Summary 2 : Physical world

Caution!

The exotic hadrons here are the s-wave meson-hadron molecule states ($1 / 2^{-}$for Θ^{+}).
We do not exclude the exotics which have other origins (genuine quark state, soliton rotation,...).
In practice, $\mathrm{SU}(3)$ breaking effect, higher order terms,...

In Nature, it is difficult to generate exotic hadrons as in the same way with $\Lambda(1405)$, $\Lambda(1520), \ldots$ based on chiral dynamics.

T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006) T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. D 75, 034002 (2007)

