Exotic Hadrons in s-Wave Chiral Dynamics

Tetsuo Hyodo^aD. Jido^a, and A. Hosaka^bYITP, Kyoto^aRCNP, Osaka^b

Introduction

Motivation 1 : Exotic hadrons

Exotic hadrons : states other than $q\overline{q}$, qqq. Experimentally, they are exotic. PDG(2006) :

Theoretically, are they exotic? --> QCD does not forbid exotic states, effective models neither.

Introduction

Motivation 2 : Chiral unitary approaches

Hadron excited states ~ πT

Interaction <-- chiral symmetry Amplitude <-- unitarity

N. Kaiser, P. B. Siegel and W. Weise, Nucl. Phys. A594, 325 (1995) E. Oset and A. Ramos, Nucl. Phys. A635, 99 (1998) J. A. Oller and U. G. Meissner, Phys. Lett. B500, 263 (2001) M.F.M. Lutz and E. E. Kolomeitsev, Nucl. Phys. A700, 193 (2002)

Many hadron resonances ($\Lambda(1405)$, N(1535), $\Lambda(1520), D_s(2317),...)$ are well described.

--> Examine exotic hadrons in flavor SU(3) symmetric limit.

Low energy s-wave interaction

Scattering of a target (T) with the pion (Ad)

$\alpha \begin{bmatrix} \operatorname{Ad}(q) \\ T(p) \end{bmatrix} = \frac{1}{f^2} \frac{p \cdot q}{2M_T} \left\langle \mathbf{F}_T \cdot \mathbf{F}_{\operatorname{Ad}} \right\rangle_{\alpha} + \mathcal{O}\left((m/M_T)^2 \right)$

In s-wave,

$$V_{\alpha} = -\frac{\omega}{2f^2} C_{\alpha,T}$$

proportional to pion energy pion decay constant (No LEC)

Y. Tomozawa, Nuovo Cim. 46A, 707 (1966) S. Weinberg, Phys. Rev. Lett. 17, 616 (1966)

$$C_{\alpha,T} \equiv -\left\langle 2\mathbf{F}_T \cdot \mathbf{F}_{\mathrm{Ad}} \right\rangle_{\alpha} = C_2(T) - C_2(\alpha) + 3 \quad \text{(for } N_f = 3)$$

Coupling strengths : Examples

Examples of $C\alpha$: (positive is attractive) $C_{\alpha,T} = C_2(T) - C_2(\alpha) + 3$

α	1	8	10	10	27	35
T=8 (Ν,Λ,Σ,Ξ)	6	3	0	0	-2	
T=10(Δ,Σ*,Ξ*,Ω)		6	3		1	-3

α	3	6	15	24
T= <mark>3</mark> (Λ _c ,Ξ _c)	3	1	-1	-2
T=6 (Σ _c ,Ξ _c *,Ω _c)	5	3	1	

Exotic channels : mostly repulsive
 Attractive interaction : C = 1

Coupling strengths : General expression

$$T = [p,q] \qquad \alpha \in [p,q] \otimes [1,1]$$

α	$C_{lpha,T}$	sign
[p+1, q+1]	-p-q	repulsive
[p+2, q-1]	1-p	
[p-1,q+2]	1-q	
[p,q]	3	attractive
[p,q]	3	attractive
[p+1,q-2]	3+q	attractive
[p-2,q+1]	3+p	attractive
[p-1,q-1]	4 + p + q	attractive

C should be integer.
Sign is determined for most cases.

Exoticness

Exoticness : minimal number of extra \overline{q}q.

For [p,q] and baryon number B,

$$E = \epsilon \theta(\epsilon) + \nu \theta(\nu)$$

$$\epsilon \equiv \frac{p + 2q}{3} - B, \quad \nu \equiv \frac{p - q}{3} - B$$

V. Kopeliovich, Phys. Lett. B259, 234 (1991) D. Diakonov and V. Petrov, Phys. Rev. D 69, 056002 (2004)

c.f.
$$[p,q] = [6,0] = \mathbf{28}, \quad B = 1$$

 $E = 2, \quad \epsilon = 1$

E. Jenkins and A.V. Manohar, Phys. Rev. Lett. 93, 022001 (2004)

c.f.
$$[p,q] = [0,0] = \mathbf{1}, \quad B = 1$$

 $E = 0, \quad \epsilon = -1, \quad \nu = -1$

Exotic channels

Exoticness : minimal number of extra \overline{q}q.

For [p,q] and baryon number B,

$$E = \epsilon \theta(\epsilon) + \nu \theta(\nu)$$
 $\epsilon \equiv \frac{p+2q}{3} - B, \quad \nu \equiv \frac{p-q}{3} - B$

 $\Delta E = E_{\alpha} - E_T = +1$ is realized when

$$\begin{array}{l} \circ \ \Delta \epsilon = 1, \ \Delta \nu = 0, \ \epsilon_T \ge 0, \\ \alpha = [p+1, q+1] : \ C_{\alpha,T} = -p - q \quad \text{repulsive} \\ \circ \ \Delta \epsilon = 0, \ \Delta \nu = 1, \ \nu_T \ge 0, \end{array}$$

 $\alpha = [p+2, q-1] : C_{\alpha,T} = 1 - p$ attraction : p = 0 then $\nu_T \ge 0 \rightarrow B \le -q/3$ not considered here

$$\bigcirc \Delta \epsilon = 1, \ \Delta \nu = -1, \ \nu_T \leq 0, \\ \alpha = [p - 1, q + 2] : \ C_{\alpha, T} = 1 - q \\ \text{attraction} : \ q = 0 \text{ then } \nu_T \leq 0 \rightarrow B \geq p/3 \text{ OK!}$$

Universal attraction for more "exotic" channel $C_{\text{exotic}} = 1$ for $T = [p, 0], \quad \alpha = [p - 1, 2]_{9}$

Scattering theory

Renormalization and bound states

Solve the scattering problem with $V_{\alpha} = -\frac{\omega}{2f^2}C_{\alpha,T}$

Renormalization parameter : condition $G(\mu) = 0, \quad \Leftrightarrow \quad T(\mu) = V(\mu) \quad \text{at} \quad \mu = M_T$

K. Igi, and K. Hikasa, Phys. Rev. D59, 034005 (1999) M.F.M. Lutz, and E. Kolomeitsev, Nucl. Phys. A700, 193-308 (2002) **Approximate crossing symmetry : OK**

Bound state:

 $1 - V(M_b)G(M_b) = 0 \qquad M_T < M_b < M_T + m_{10}$

Scattering theory

Critical attraction

 $1 - V(\sqrt{s})G(\sqrt{s})$: monotonically decreasing.

Critical attraction : 1 - VG = 0 at $\sqrt{s} = M_T + m$

$$C_{\rm crit} = \frac{2f^2}{m\left(-G(M_T + m)\right)}$$

11

Scattering theory

Critical attraction and exotic channel

Strength is not enough.

Discussion : Dependence on the parameters

Lines for $C_{crit} = 1$ in (m, f) plane

C_{crit} becomes smaller for M_T ∕, m ∕ and f ∖. o difficult to generate a bound state.

Large Nc limit

Coupling strengths in large Nc limit

In large Nc limit

c.f. T.D. Cohen and R.F. Lebed Phys. Rev. D74, 056006 (2006)

Flavor representation

 $V_{\alpha} = -\frac{\omega}{2f^2} C_{\alpha,T} \sim \frac{1}{N_c} \times C_{\alpha,T}$

Non-trivial Nc dependence

Large Nc limit

Coupling strengths in large Nc limit

$C\alpha$ with arbitrary Nc : (positive is attractive)

α	"1"	"8"	"10"	" 10 "	"27 "	"35"
T="8"	$\frac{9}{2} + \frac{N_c}{2}$	3	0	$\frac{3}{2} - \frac{N_c}{2}$	$-\frac{1}{2} - \frac{N_c}{2}$	
T="10"	Λ(140	5)	3		$\frac{5}{2}$ $-\frac{N_c}{2}$	$-\frac{1}{2} - \frac{N_c}{2}$
	two-p	ole?			I	
α	"3"	<mark>"6"</mark>	" 15 "	"24"		
T="3"	3	1	$-\frac{N_c}{3}$			
T="6"	5	3	$\frac{5}{2} - \frac{N_c}{2}$	$\frac{1}{2} - \frac{5N_c}{6}$		

Exotic attractions --> repulsions

Discussion 1 : large Nc behavior

For arbitrary Nc, $[p,q] \rightarrow \left| p,q + \frac{3-N_c}{2} \right| \qquad V \propto -\frac{1}{f^2}C \sim \frac{1}{N_c}C(N_c)$ $C_{\alpha,\alpha}^{"}(N_c) = V(N_c \to \infty)$ ΔE $\boldsymbol{\alpha}$ $|(3-N_c)/2-p-q$ repulsive [p+1, q+1]1 or 01 - p[p+2, q-1]1 or 0[p-1, q+2] $(5-N_c)/2-q$ repulsive 1 or 0[p,q]3 [p,q]3 [p+1, q-2] | $(3+N_c)/2+q$ attractive 0 or -10 or -1[p-2, q+1]3+p[p-1, q-1] $|(5+N_c)/2 + p + q$ attractive 0 or -1

Exotic attraction --> repulsion
 No attraction in exotic channels.

Summary 1

We study the exotic bound states in s-wave chiral dynamics in flavor SU(3) limit. The interaction in exotic channels are in most cases repulsive. There are attractions in exotic channels, with universal and the smallest strength : $C_{\text{exotic}} = 1$ This is not enough to generate a **bound state :** $C_{\text{exotic}} < C_{\text{crit}}$ No attractive interaction exists in exotic channels in the large Nc limit.

Caution! on the conclusions...

- The exotic hadrons here are the s-wave meson-hadron molecule states ($1/2^{-}$ for Θ^{+}).
 - We do not exclude the exotics which have other origins (genuine quark state, soliton rotation,...)
- In practice, SU(3) breaking effect...

We show that no exotic hadron exists as in the same way with $\Lambda(1405)$, $\Lambda(1520)$, D_s (2317),... based on group theory and chiral dynamics.

<u>T. Hyodo, D. Jido, A. Hosaka, Phys. Rev. Lett. 97, 192002 (2006)</u> <u>T. Hyodo, D. Jido, A. Hosaka, hep-ph/0611004</u>