S-wave exotic resonances induced by chiral interaction

Tetsuo Hyodo^aD. Jido^a, and A. Hosaka^bYITP, Kyoto^aRCNP, Osaka^b

Weinberg-Tomozawa interaction

solution

Chiral unitary model

Flavor SU(3) meson-hadron scatterings (s wave)

N. Kaiser, P. B. Siegel and W. Weise, NPA594, 325, PLB362, 23 (1995)
E. Oset and A. Ramos, NPA635, 99 (1998)
J. A. Oller and U. G. Meissner, PLB500, 263 (2001)

Resonance state

If there is a sufficient attraction, resonances can be dynamically generated.

$$T_{ij}(\sqrt{s}) \sim \frac{g_i g_j}{\sqrt{s} - M_R + i\Gamma_R/2}$$
$$\sim \checkmark \checkmark$$

Position of the pole, Residues

-> Mass, Width, Coupling strengths

Introduction

Poles in the SU(3) limit : Origin of the resonances

D. Jido, et al., Nucl. Phys. A 723, 205 (2003)

Motivation : Exotic hadrons

- What about exotic states? hadronic states other than $q\bar{q}$, qqq: tetra- penta-quarks...
- QCD does not forbid exotic states. Effective models, lattice simulations, ...
- Experimentally, (almost?) completely absent --> highly non-trivial fact
- Can exotic states be generated by ChU?

S. Sarkar, et al., Eur. Phys. J. A24, 287-292 (2005)

--> Study the chiral unitary model systematically in flavor SU(3) limit.

Weinberg-Tomozawa interaction

Weinberg-Tomozawa interaction

Low energy behavior of s-wave amplitude Coupling structure : chiral symmetry

Coupling strength : SU(3) symmetry

Coupling strengths

Examples of C α : (positive is attractive)

$$C_{\alpha} = -\left[C(\alpha) - C(M) - C(T)\right]$$

α	1	8	10	10	27	35
T=8 (Ν,Λ,Σ,Ξ)	6	3	0	0	-2	
T=10(Δ,Σ*,Ξ*,Ω)		6	3		1	-3

α	3	6	15	24
T=3 (Λ _c ,Ξ _c)	3	1	-1	
T= <mark>6 (Σ</mark> c,Ξc*,Ωc)	5	3	1	-2

Can the attraction generate a bound state?

Weinberg-Tomozawa interaction

Coupling strengths

T $ m m $						
I = [p, q]	α	condition	Cα	sign		
$[p,q]\otimes[1,1]$	[p+1,q+1]		-p-q	repulsive		
	[p+2, q-1]	$q \ge 1$	1-p			
/ /	[p-1, q+2]	$p \ge 1$	1-q			
	[p,q]	$p \ge 1$	3	attractive		
$\Delta E = +1$	[p,q]	$q \ge 1$	3	attractive		
	[p+1,q-2]	$q \ge 2$	3+q	attractive		
	[p-2, q+1]	$p \ge 2$	3+p	attractive		
	[p-1, q-1]	$p \ge 1, \ q \ge 1$	4 + p + q	attractive		
En la Milla de la la	The second					

Exotioness : minimal number of extra qq $E = \frac{p+2q}{3} - B + N$, if $N = \frac{p-q}{3} - B > 0$ **Universal attraction for more "exotic" channel** C = 1 for T = [p, 0] and $\alpha = [p-1, 2]$

Unitarization and bound state solution

Renormalization and bound states

Renomalization condition :

 $G(\mu) = 0, \quad \Leftrightarrow \quad T(\mu) = V(\mu) \quad \text{at} \quad \mu = M$

M.F.M. Lutz, and E. Kolomeitsev, NPA 700, 193-308 (2002) K. Igi, and K. Hikasa, PRD59, 034005 (1999)

Approximate crossing symmetry It almost agrees with the natural value of cutoff.

 $a(630 \text{ MeV}) \sim -1.98 \text{ with } M = 1151 \text{ MeV}$ Bound state:

--> $1 - V(M_b)G(M_b) = 0$ $M < M_b < M + m_b$

Unitarization and bound state solution

Parameters for numerical analysis

Mass of the target

Target	Representations	M [MeV]
light horwon	8 (Ν,Λ,Σ,Ξ)	1151
light baryon	10 (Δ,Σ*,Ξ*,Ω)	1382
charm baryon	$\overline{3}(\Lambda_c,\Xi_c)$	2408
	6 (Σ _c ,Ξ _c *,Ω _c)	2534
D meson	3 (D,D _s)	1900
B meson	3 (B,B _s)	5309

Mass of NG boson : m=368 MeV Meson decay constant : f=93 MeV

Unitarization and bound state solution

Numerical result for 1-VG

 $1 - V(M_b)G(M_b) = 0$

No bound state for exotic channel : Strength of the attraction in exotic channel is not enough to generate a bound state.

12

Critical attraction

Since G(M)=0 by renormalization, 1-V(M)G(M) = 1 1-VG is monotonically decreasing.

--> Critical attraction : 1 - VG = 0 at M+m $C_{\text{crit}} = -\frac{2f^2}{mG(M+m)}$

Critical attraction

Critical attraction and exotic channel

Large Nc limit

p

Coupling strengths in large Nc limit

Take large Nc limit

$$V^{(WT)}_{\alpha\beta} \sim -\frac{1}{2f^2} C_{\alpha} \omega_{\alpha} \delta_{\alpha\beta} \sim \frac{1}{N_c} \times C_{\alpha}$$

Flavor representation

$$[q] \rightarrow [p, q + \frac{3 - N_c}{2}] \qquad = -[C(\alpha) - C(M) - C(T)]$$

$$= -[C(\alpha) - C(M) - C(T)]$$

$$= -[Q(\alpha) - C(M) - C(T)]$$

$$C([p,q+\frac{3-N_c}{2}]) = \frac{1}{3}\left(-\frac{9}{4}+p^2+\frac{3q}{2}+pq+q^2\right) + \frac{1}{3}\left(p+\frac{q}{2}\right)N_c + \frac{N_c^2}{12}$$

Non-trivial Nc dependence

Large Nc limit

Coupling strengths in large Nc limit

$C\alpha$ in large Nc : (positive is attractive)

α	1	8	10	10	27	35
T= 8	$\frac{9}{2} + \frac{N_c}{2}$	3	0	$\frac{3}{2} - \frac{N_c}{2}$	$-\frac{1}{2}-\frac{N_c}{2}$	
T=10		6	3		$\frac{5}{2} - \frac{N_c}{2}$	$-\frac{1}{2} - \frac{N_c}{2}$

α	3	6	15	24
T=3	3	1	$-rac{N_c}{3}$	
T=6	5	3	$rac{5}{2} - rac{N_c}{2}$	$\frac{1}{2} - \frac{5N_c}{6}$

Exotic attractions --> repulsions

We study the exotics bound states in chiral unitary approach in flavor SU(3) limit.

We give the general formula of coupling strength of WT interaction. **There are attractions in exotic** channels, with universal and the smallest strength of C=1.

Summary

We find the critical attraction which is the smallest strength to generate a bound state. The attraction in exotic channel is beyond this value. **In large Nc limit, the attraction in** exotic channel turns into repulsive.