Phenomenological study for the Θ⁺ and two-meson coupling

Tetsuo Hyodo^a

and A. Hosaka^a

RCNP, Osaka^a

Contents

Introduction : Flavor SU(3) symmetry

Existence of \Theta^+ + Flavor SU(3) symmetry

Existence of flavor partners of Θ⁺

Assuming the flavor multiplet that Θ^+ belongs to, we examine its properties by symmetry relation, in connection with known baryon resonances.

 \rightarrow to determine the J^P of Θ^+

Phenomenological but model independent analysis up to O(ms)

Simplest assignment for Θ⁺

Test the masses and widths of partners via flavor SU(3) symmetry relations

Mass : Gell-Mann—Okubo formula

$$M(\overline{\mathbf{10}};Y) = M_{\overline{\mathbf{10}}} - aY$$

Two parameters < – Mass of Θ and N*

Width : SU(3) symmetric coupling

$$g_{\Theta KN} = \sqrt{6}g_{N^*\pi N}$$

$$\Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_R^{2l}}$$

One parameter <-- Width of N*

Mass and width [MeV]

 $M(\overline{\mathbf{10}};Y) = M_{\overline{\mathbf{10}}} - aY, \quad g_{\Theta KN} = \sqrt{6}g_{N^*\pi N}, \quad \Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_R^{2l}}$

\mathbf{J}^{P}	Mo	MN	ΜΣ	ME	Γ_{Θ}
1/2	1540	1647	1753	1860	156.1
exp.	Θ(1540)	N(1650)	Σ(1750)	Ξ(1860)	
1/2+					
exp.					
3/2+					
exp.					
3/2					
exp.					

Mass and width [MeV]

 $M(\overline{\mathbf{10}};Y) = M_{\overline{\mathbf{10}}} - aY, \quad g_{\Theta KN} = \sqrt{6}g_{N^*\pi N}, \quad \Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_P^{2l}}$

\mathbf{J}^{P}	Mo	MN	ΜΣ	ME	Γ_{Θ}
1/2	1540	1647	1753	1860	156.1
exp.	Θ(1540)	N(1650)	Σ(1750)	Ξ(1860)	
1/2+	1540	1710	1880	2050	7.2
exp.	Θ(1540)	N(1710)	Σ(1880)	Ξ(2030)	
3/2+					
exp.					
3/2					
exp.					

Mass and width [MeV]

 $M(\overline{\mathbf{10}};Y) = M_{\overline{\mathbf{10}}} - aY, \quad g_{\Theta KN} = \sqrt{6}g_{N^*\pi N}, \quad \Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_P^{2l}}$

\mathbf{J}^{P}	Mo	MN	ΜΣ	ME	Γ_{Θ}
1/2	1540	1647	1753	1860	156.1
exp.	Θ(1540)	N(1650)	Σ (1750)	Ξ(1860)	
1/2+	1540	1710	1880	2050	7.2
exp.	Θ(1540)	N(1710)	Σ(1880)	Ξ(2030)	
3/2+	1540	1720	1900	2080	10.6
exp.	Θ(1540)	N(1720)			
3/2					
exp.					

Mass and width [MeV]

 $M(\overline{10};Y) = M_{\overline{10}} - aY, \quad g_{\Theta KN} = \sqrt{6}g_{N^*\pi N}, \quad \Gamma_R = g_R^2 F_I \frac{p^{2l+1}}{M_R^{2l}}$

\mathbf{J}^{P}	Mo	MN	ΜΣ	ME	Γ_{Θ}
1/2	1540	1647	1753	1860	156.1
exp.	Θ(1540)	N(1650)	Σ (1750)	Ξ(1860)	
1/2+	1540	1710	1880	2050	7.2
exp.	Θ(1540)	N(1710)	Σ(1880)	Ξ(2030)	
3/2+	1540	1720	1900	2080	10.6
exp.	Θ(1540)	N(1720)			
3/2	1540	1700	1860	2020	1.3
exp.	Θ(1540)	N(1700)		Ξ(2030)	

are not reproduced simultaneously.

Octet-antidecuplet mixing

Second simplest assignment for Θ⁺

Mixing is induced by the SU(3) breaking in mass term.

Mass formulae : GMO + mixing (N,Σ)

$$M_{\Theta} = M_{\overline{10}} - 2a \qquad M_{\Xi_{\overline{10}}} = M_{\overline{10}} + a$$

$$M_{\Lambda} = M_{8} \qquad M_{\Xi_{8}} = M_{8} + b + \frac{1}{2}c$$

$$M_{N_{1}} = \left(M_{8} - b + \frac{1}{2}c\right)\cos^{2}\theta_{N} + (M_{\overline{10}} - a)\sin^{2}\theta_{N} - \delta\sin 2\theta_{N}$$

$$M_{N_{2}} = \left(M_{8} - b + \frac{1}{2}c\right)\sin^{2}\theta_{N} + (M_{\overline{10}} - a)\cos^{2}\theta_{N} + \delta\sin 2\theta_{N}$$

$$M_{\Sigma_{1}} = (M_{8} + 2c)\cos^{2}\theta_{\Sigma} + M_{\overline{10}}\sin^{2}\theta_{\Sigma} - \delta\sin 2\theta_{\Sigma}$$

$$M_{\Sigma_{2}} = (M_{8} + 2c)\sin^{2}\theta_{\Sigma} + M_{\overline{10}}\cos^{2}\theta_{\Sigma} + \delta\sin 2\theta_{\Sigma}$$
Masses v.s. 6 parameters

 $J^{P} = 1/2^{-}$: too wide width

8

 $J^{P} = 3/2^{+}$: states are not well established

Mass spectra

Decay width of Θ

N* decay						
$g_{\Theta} = \sqrt{6}(g_{N_2} \cos \theta_N - g_{N_1} \sin \theta_N)$						
$p = 2 p^{2l+1}$ from masses						
$\Gamma_R = g_R^2 F_I$	$\overline{M_R^{2l}}$					
JP	θn [deg]	$\Gamma \Theta [MeV]$				
1/2+	29	29.1				
3/2	33	3.1				

Narrow width

Two-meson coupling

Then, what about two-meson coupling?

: large branching ratio of N* $\rightarrow \pi \pi N$ SU(3) relation enable us to calculate

the cross section of

from the decay of $N^* \rightarrow \pi \pi N$

The structure of the two-meson coupling

Hosaka, Hyodo, Estrada, Oset, Peláez, Vacas, PRC71, 074021 (2005).

- The effect of the two-meson coupling was studied by evaluating the self-energy.
- We examined possible structures, and found that two types of the interaction Lagrangians were important.

These terms provided a sizable contribution.

Two-meson coupling

Branching fraction [%]

JP	state	πN	$\pi\pi N(s)$	$\pi\pi N(v)$
1/2+	N(1440)	65	7.5	<8
	N(1710)	15	25	15
3/2-	N(1520)	55	25	20
	N(1700)	10	<85-95	<35

Still large uncertainty

We impose phenomenological constraints.

Self-enefgy : not too large, but not too small

~ 100 MeV

 $\pi^{-}p \rightarrow K^{-}\Theta^{+}$ at KEK : upper limit is ~ 4.1 µb

< 4.1 μb

Two structures should be added coherently.

-> interference effect among s and v.

Θ production

Summary 1 : mixing scheme

We examine 8–10 mixing scheme for the exotic and non-exotic baryon resonances.

Masses of Θ(1540) and Ξ(1860) are well fitted in the 8–10 mixing scheme with J^P = 1/2⁺ or 3/2⁻ baryons.

Solution Θ A very narrow width of Θ can be obtained for the $J^{P} = 3/2^{-1}$ case.

For both J^P, the mixing angle is close to the ideal angle.

T. Hyodo and A. Hosaka, Phys. Rev. D71, 054017 (2005)

Summary 2 : Two-meson coupling and Θ producion

Based on the mixing scheme, we evaluate the two-meson coupling of Θ , and calculate the reaction process for Θ production

There is an interference effect between two amplitudes, which is prominent for 1/2+ case and rather moderate for 3/2- case

J^P	g^s	g^v	$\sigma_{K^+\!/\!\sigma_{\pi^-}}$	${ m Re}\Sigma_{\Theta}$
$1/2^+$	1.59	-0.27	50	-78 MeV
$3/2^{-}$	0.104	0.209	3	-23 MeV

T. Hyodo and A. Hosaka, Phys. Rev. C72, 055202 (2005)