Photoproduction of K* for the study of $\Lambda(1405)$

Tetsuo Hyodo^a,

A. Hosaka^a, E. Oset^b, and M. J. Vicente Vacas^b RCNP, Osaka^a Valencia Univ.^b 2004, March 29th

Motivation : Two poles?

There are two poles of the scattering amplitude around nominal $\Lambda(1405)$ energy region.

- Cloudy bag model J. Fink, et al., PRC41, 2720
- Chiral unitary model

J. A. Oller, *et al.*, PLB500, 263 E. Oset, *et al.*, PLB527, 99 D. Jido, *et al.*, PRC66, 025203 T. Hyodo, *et al.*, PRC68, 018201 C. Garcia-Recio, *et al.*, PRD67, 076009 D. Jido, *et al.*, NPA725, 181 T. Hyodo, *et al.*, PRC68, 065203

• Quark model : <u>qq-qq-q</u>

A. Zhang, et al., hep-ph/0403210

 $\Lambda(1405):J^P=1/2^-,I=0$

ChU model, T. Hyodo

Flavor SU(3) meson-baryon scatterings (s-wave)

Dynamical generation

 $J^P = 1/2^-$ resonances

 $egin{aligned} \Lambda(1405), \Lambda(1670), \ \Sigma(1620), \Xi(1620), \ N(1535) \end{aligned}$

Framework of the chiral unitary model

$\Lambda(1405)$ in the chiral unitary model

D. Jido, et al., Nucl. Phys. A 723, 205 (2003)

Photoproduction of K* and $\Lambda(1405)$

There is a correlation between polarization of initial photon and final πK angular distribution

(1)
$$\varepsilon_{\mu}(K^{*}) / / \varepsilon_{\mu}(\gamma) : J^{P} = \text{natural}$$

(2) $\varepsilon_{\mu}(K^{*}) \perp \varepsilon_{\mu}(\gamma) : J^{P} = \text{unnatura}$
Clear mechanism

Effective interaction for meson part

 $\widehat{\boldsymbol{\chi}} \quad \widehat{\boldsymbol{\chi}} \quad \mathbf{K} \quad \mathbf{K} \quad \mathbf{Coupling}$ $\mathcal{L}_{K^*K\gamma} = g_{K^*K\gamma} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} (\partial_{\alpha} K_{\beta}^{*-} K^+ + \partial_{\alpha} \bar{K}_{\beta}^{*0} K^0) + \text{h.c.}$

VPP coupling

$$\mathcal{L}_{VPP} = -\frac{ig_{VPP}}{\sqrt{2}} \operatorname{Tr}(V^{\mu}[\partial_{\mu}P, P])$$

Effective interaction for baryon part

ChU amplitude

Σ(1385) pole term

$\simeq \Sigma(1385)$ MB coupling

$$\overleftarrow{\quad} -it_{\Sigma^*i} = c_i \frac{12}{5} \frac{D+F}{2f} \mathbf{S} \cdot \mathbf{k}_i$$

$\widehat{\mathbf{r}} \quad \mathbf{form \ factor} \\ F_f(k_1) = \frac{\Lambda^2 - m_K^2}{\Lambda^2 - (k_1)^2}$

Isospin decomposition of $\pi\Sigma$ states

Since initial state is $\overline{K}N$, we neglect the I=2.

$$rac{d\sigma(\pi^0\Sigma^0)}{dM_I} \propto rac{1}{3} |T^{(0)}|^2$$
 • Pure I=0 amplitude

$$\frac{d\sigma(\pi^{\pm}\Sigma^{\mp})}{dM_{I}} \propto \frac{1}{3} |T^{(0)}|^{2} + \frac{1}{2} |T^{(1)}|^{2} \pm \frac{2}{\sqrt{6}} \operatorname{Re}(T^{(0)}T^{(1)*})$$

Difference among charged states
 -> when summed up, this term vanishes

Invariant mass distributions

11

Summary

We study the structure of $\Lambda(1405)$ using the chiral unitary model.

There are two poles of the scattering amplitude around nominal $\Lambda(1405)$. \bigvee In the $\gamma p \rightarrow K^* \Lambda(1405)$ reaction, Charged πΣ states isolate the higher energy pole. **Sector** Neutral πΣ state gives a clear I=0 distribution.

T. H., A. Hosaka, E. Oset, M. J. Vicente Vacas, nucl-th/0401051