ハドロン物理とΘ+粒子

<u> 兵藤 哲雄</u> 原子核・クォーク核理論グループ D1 <u>2004年2月22日</u>

目次

☆ ハドロン物理の概観

☆ 強い相互作用と量子色力学(QCD)
 ☆ カイラル対称性
 ☆ アプローチ、研究対象
 ☆ 有効理論
 ☆ 格子QCD
 ☆ 有限温度/密度系

🙀 理論研究の現状

🙀 量子数決定のための試み

ハドロン物	理の概	観:強 【 】	い相互 谷場	作用と 人物	量子色力	学(QCD) ロン多	多重項		
バリ	ノオ	ン	(重	重粒	子)	6			
$n(ud)$ $\Sigma^{-}(dds)$ T T T T T T T	p F n F N(1440) F N(1520) L N(1535) S N(1650) S N(1650) S N(1675) L N(1680) F N(1700) L N(1710) F N(1700) F N(1900) F N(1900) F N(2000) F N(2000) F N(2100) F N(2200) L N(2200) L N(2200) F N(2700) K	P_{11} **** P_{11} **** P_{11} **** P_{11} **** P_{11} **** P_{13} **** P_{13} **** P_{13} *** P_{13} ** P_{13} ** P_{13} ** P_{13} ** P_{13} ** P_{11} * P_{11} * P_{11} * P_{11} *** P_{11} *** P_{11} *** P_{13} *** P_{11} *** P_{13} *** P_{11} *** P_{11} *** P_{13} *** P_{13} *** P_{13} *** P_{13} *** P_{13} ***	$\begin{array}{c} \Delta(1232) & F \\ \Delta(1600) & F \\ \Delta(1620) & S \\ \Delta(1700) & E \\ \Delta(1750) & F \\ \Delta(1900) & S \\ \Delta(1905) & F \\ \Delta(1900) & F \\ \Delta(1910) & F \\ \Delta(1920) & F \\ \Delta(1930) & E \\ \Delta(1940) & E \\ \Delta(1950) & F \\ \Delta(2000) & F \\ \Delta(2000) & F \\ \Delta(2150) & S \\ \Delta(2200) & C \\ \Delta(2300) & F \\ \Delta(2350) & E \\ \Delta(2390) & F \\ \Delta(2400) & C \\ \Delta(2420) & F \\ \Delta(2950) & F \\ \Delta(2950) & F \\ \end{array}$	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	**** Σ^+ **** Σ^0 **** Σ^- *** $\Sigma(1385)$ **** $\Sigma(1380)$ **** $\Sigma(1560)$ *** $\Sigma(1560)$ *** $\Sigma(1560)$ *** $\Sigma(1620)$ **** $\Sigma(1670)$ * $\Sigma(1770)$ * $\Sigma(1770)$ * $\Sigma(1770)$ * $\Sigma(1770)$ * $\Sigma(1770)$ * $\Sigma(1770)$ * $\Sigma(170)$ * $\Sigma(170)$ * $\Sigma(1940)$ * $\Sigma(1940)$ $\Sigma(2000)$ $\Sigma(2000)$ $\Sigma(2000)$ $\Sigma(2000)$ $\Sigma(2000)$ $\Sigma(2100)$ $\Sigma(2250)$ $\Sigma(2455)$ $\Sigma(2620)$ $\Sigma(3000)$ $\Sigma(3170)$	$\begin{array}{c} P_{11} & **** \\ P_{11} \\ P_{11} \\ P_{11} \\ P_{11} \\ P_{12} \\ \end{array}$	$=0 = - P_{1}, ****$ $Six S^{+}$ $T_{0} = - S_{10}, S_{10} = - S_{10}$ $S_{10} = - S_{10}, S_{10} = - S_{10}$ $S_{10} = - S_{10} = - S_{10} = - S_{10}$ $S_{10} = - S_{10} = - S$	

ハドロン物理の概観:強い相互作用と量子色力学(QCD) 量子色力学(QCD)

クォーク間の強い相互作用はQCDで記述される。

- 場の量子論:一般に解けない(解を書き下せない)
- -> 結合定数による摂動展開をする。
 - 電磁相互作用、弱い相互作用:OK!
- <u> 強い相互作用(QCD)では・・・</u>
 - 高エネルギー領域: 摂動的QCD OK!
 - 「ニマルギー領域:ハドロン物理」
 - 1. 非摂動的~~
 - 2 ナーの閉じ込め

QCDでそのままハドロン物理はできない!!

ハドロン物理の概観:強い相互作用と量子色力学(QCD) ハドロン物理の目的

カイラル対称性とその破れ

ハドロン物理の概観:カイラル対称性 <u>量子色力学(QCD)</u>

QCDのラグランジアン密度:

 $\mathcal{L}_{QCD} = -\frac{1}{2}G_{\mu\nu}G^{\mu\nu} + (\bar{q}(i\gamma^{\mu}D_{\mu} - m)q)$

カラーSU(3)非可換ゲージ理論

カイラル対称性

- クォーク場を右手系と左手系に分ける。
 - $q_L = P_L q , \quad P_L = \frac{1}{2}(1 \gamma_5)$ $q_R = P_R q , \quad P_R = \frac{1}{2}(1 + \gamma_5)$

右手系と左手系各々で回転。

- $q_R \to Rq_R, \quad R = e^{i\theta_R^a t^a} \in SU(N_f)_R$
- $q_L \to Lq_L, \quad L = e^{i\theta_L^a t^a} \in SU(N_f)_L$

この回転を両方あわせた $(P,I) \in SU(N)$

 $g = (R, L) \in SU(N_f)_R \times SU(N_f)_L$ をカイラル変換という。

クォークの運動項と質量項

運動項:右手系と左手系が分離する。

 $\mathcal{L}_{kinetic} = \bar{q}(i\gamma^{\mu}D_{\mu})q$ $\rightarrow \langle \bar{q}_{L}(i\gamma^{\mu}D_{\mu})q_{L} \rangle + \langle \bar{q}_{R}(i\gamma^{\mu}D_{\mu})q_{R} \rangle$ カイラル変換のもとで不変

質量項:右手系と左手系が混ざる。

 $\mathcal{L}_{mass} = m\bar{q}q$ $\rightarrow m\bar{q}_L q_R + m\bar{q}_R q_L$ カイラル変換のもとで不変でない

自発的な破れとあからさまな破れ

ラグランジアンがクォークの質量項を含む場合

カイラル対称性はあからさまに破れている。現実 の世界では、u、dクォークの(カレント)質量 が非常に小さいことから、近似的にカイラル対称 性が成り立っていると考えられる。

クォーク凝縮の真空期待値が0でない場合 ラグランジアンが対称でも、真空が対称でなけれ ば、カイラル対称性は自発的に破れる。

ハドロン物理におけるカイラル対称性

当対称性の自発的破れに伴い、南部ゴールド ストン (NG) ボソンとしてπ粒子があら われる。 GT関係式、PCAC、軟パイオン定理・・ A. Hosaka and H. Toki, Quarks, baryons and chiral symmetry (World Scientific, Singapore, 2001)

<u>S. Weinberg, *The Quantum theory of fields* volume 2: Modern applications (Cambridge University Press, London, 1996)</u>

B.W. Lee, *Chiral dynamics* **(Gordon and Breach science publishers, New York, 1972)**

有効模型:構成的クォーク模型1

QCDの持つ対称性を指針にして模型をつくる。 1. ハドロンはクォークからできている。 2. u、d、sクォーク間にはSU(3)の対称性がある。 3. SU(3)はsクォークが重いことで破れている。

有効模型:構成的クォーク模型2

より定量的な計算には

- 1. 非相対論的な構成的クォーク
- 2. スピンも含めたSU(6)の対称性
- 3. 適当な閉じ込めポテンシャル

井戸型、調和振動子、、、

- 4. 適当な微細構造を出す相互作用
 - スピン-スピン、スピン-アイソスピン、、、

非相対論的SU(6)クォーク模型

ハドロンの質量スペクトルを体系的によく再現

有効模型:カイラル対称性1

1. クォークを自由度とした場の理論での取り扱い

南部-Jona-Lasinio(NJL)模型

- 1. 自由度はクォークのみ
- 2. 自発的対称性の破れを理論の中でだせる
- 3. 閉じ込めはない
- 3. 繰り込み不可能

有効模型:カイラル対称性2

2. ハドロンを自由度とした場の理論での取り扱い

線形シグマ模型

対称性の破れを結合の強さでコントロールできる
 繰り込み可能

- 非線形シグマ模型(カイラル摂動論)
- 1. 自発的対称性の破れはラグランジアンで実現
- 2.NGボソンの運動量で展開
- 3. 繰り込み不可能

ハドロン物理の概観:アプローチ、研究対象 格子QCD:経路積分

コンピュータの力でQCDを計算しよう!

ハドロンの世界では非摂動効果が大きい -> 摂動しなければいい

経路積分の方法での演算子の期待値

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}\phi \mathcal{O}e^{iS}}{\int \mathcal{D}\phi e^{iS}} \qquad S = \int d^4x \mathcal{L}(\phi)$$

積分測度:

 $\mathcal{D}\phi = \prod_i^\infty d\phi(x_i)$

無限次元の積分

ハドロン物理の概観:アプローチ、研究対象 格子QCD:原理

- 経路積分を実行するために
- 1.時空を離散化:格子間隔

本当は0

2.周期境界条件:格子サイズ
 本当は∞

- 積分 -> 有限次元 (計算可能)
 - $\mathcal{D}\phi = \Pi_i^N d\phi(x_i)$

できるだけ小さいa、大きいLで計算

ハドロン物理の概観:アプローチ、研究対象 格子QCD:実際

研究の現状

◇ 閉じ込め、カイラル相転移 ◇ ハドロン質量(基底状態~第一励起状態?)

格子間隔、格子サイズが十分でない クエンチ近似(クォークの対生成がない) カイラル外挿(クォーク質量を小さくできない) 計算機の力が解決

時空を離散化したことに起因する対称性の破れ?

ハドロン物理の概観:アプローチ、研究対象 有限温度/密度系

ハドロン物理の概観:まとめ

まとめ

ンドロン物理の目的は、多様なハ ドロン現象を、根底にあるQCDか ら理解することである。 シカイラル対称性とその破れが重要 な役割を果たす。 **⑥新粒子、状態の発見などに刺激さ** れ盛んに研究が行われている。

Toward the determination of quantum numbers of Θ^+

Tetsuo Hyodo

RCNP, Osaka

2004, February 13rd

Contents

Present status of studies

- Experiments (what do we know?)
- **Model calculations**
- Analysis based on QCD

\overleftrightarrow Production 1 : $K^+p ightarrow \pi^+K^+n$

- 🙀 Motivation
- **Chiral model for the reaction**
- ☆ Spin and parity
- Numerical results
- \simeq Production 2 : $\vec{p}\vec{p} \rightarrow \Sigma^+\Theta^+$
 - **Model independent analysis**
 - Numerical results

Experiment at SPring-8

LEPS, T. Nakano, et al., Phys. Rev. Lett. 91, 012002 (2003)

Other experiments

 $K^+Xe \rightarrow K^0pXe'$ DIANA, V.V. Barmin, et al., Phys. Atom. Nucl. 66, 1715-1718 (2003) $\gamma d
ightarrow K^+ K^- pn$ CLAS, S. Stepanyan, et al., Phys. Rev. Lett. 91, 252001 (2003) $\gamma p
ightarrow n K^+ K^0$ SAPHIR, J. Barth, et al., Phys. Lett. B 572, 127-132 (2003) $\gamma p
ightarrow \pi^+ K^- K^+ n$ CLAS, V. Kubarovsky, et al., Phys. Rev. Lett. 92, 032001 (2004) mass ~ 1540 MeV width < 9 MeV $\stackrel{\scriptstyle \sim}{=} S = +1 (Y = 2)$ $\stackrel{\checkmark}{=} Q = +1 (I_3 = 0)$

Theory papers

☆ ☆

Prejudice?

Pentaquark state? It could be 7-, 9-, ... quark state.

P. Bicudo, et al., Phys. Rev. D 69, 011503 (2004)

F. J. Llanes-Estrada, et al., nucl-th/0311020

T. Kishimoto, et al., hep-ex/0312003

Anti-decuplet? It could be a member of 27, 35, ...

 $3 \times 3 \times 3 \times 3 \times \overline{3} \sim \{1, 8, 10, \overline{10}, 27, 35\}$

Positive parity? Not yet determined experimentally.

Model calculations : Prediction?

D. Diakonov, et al., Z. Phys. A 359, 305 (1997)

Chiral quark soliton model : 1/2+, I=0

	Т	Y	Mass in MeV	Width in MeV	Possible candidate
Z^+	0	2	1530	X	
$N_{\overline{10}}$	1/2	1	1710 (input)	~ 40	$N(1710)P_{11}$
$\Sigma_{\overline{10}}$	1	0	1890	~ 70	$\Sigma(1880)P_{11}$
$\Xi_{3/2}$	3/2	-1	2070	> 140	$\Xi(2030)?$

PDG estimate : $\Gamma_{N} \sim 100 (50 - 250) \text{ MeV}$ $\Gamma_{\Sigma} \sim 80 - 260$

$Ξ_{3/2}$ resonance : M_{Ξ} = 1862 MeV, Γ_{Ξ} < 18 MeV

NA49, C. Alt, et al., Phys. Rev. Lett. 92, 042003 (2004)

Miss!! : Γ_Θ ~ 30 MeV <u>R.L. Jaffe, hep-ph/0401187</u>

Model calculations

Chiral potential

Single particle levels of quarks cross as the strength of pion cloud changes.

Strong π : 1/2⁺

Weak π : 1/2⁻

A. Hosaka, Phys. Lett. B 571, 55-60 (2003)

Model calculations

Diquark picture / mixing with octet L=1 -> 1/2⁺

R.L. Jaffe, et al., Phys. Rev. Lett. 91, 232003 (2003)

Analysis based on QCD

QCD sum rule

no parity projection

S.L. Zhu, Phys. Rev. Lett. 91, 232002 (2003)

R.D. Matheus, et al., Phys. Lett. B 578, 323-329 (2004)

parity projection -> 1/2-

J. Sugiyama, et al., Phys. Lett. B 581, 167-174 (2004)

Attice QCD

parity projection -> 1/2-

F. Csikor, et al., JHEP 0311, 070 (2003)

S. Sasaki, hep-lat/0310014

F.X. Lee, K.F. Liu, et al., (Kentucky group)

Motivation : Spin parity determination

No consensus for spin and parity. It is important to determine the quantum numbers for further theoretical studies.

Find a reaction where the qualitatively different results depending on the quantum numbers are observed.

Motivation : Photo-production?

• Easy to handle the experiments

W. Liu, et al.,	Phys. Rev. C 68, 045203 (2003)
S. I. Nam, et al.,	Phys. Lett. B 579, 43-51 (2004)
W. Liu, et al.,	nucl-th/0309023
Y. Oh, <i>et al.</i> ,	Phys. Rev. D 69, 014009 (2004)
Q. Zao, et al.,	hep-ph/0310350
W. Liu, et al.,	nucl-th/0310087
K. Nakayama, et al.,	hep-ph/0310350
Y. Oh, et al.,	hep-ph/0312229
B. Yu, et al.,	nucl-th/0312075
Q. Zao, et al.,	hep-ph/0312348

Model (mechanism) dependence

Initial cm energy ~ 2 GeV (p_{cm} ~ 750 MeV) not low energy -> linear or nonlinear? N* resonances, K* exchange, κ exchange, ...

Form factor dependence Monopole, dipole, ..., value of Λ, ... Unknown parameters γΘΘ coupling, K*pΘ coupling, ...

Motivation : Advantage of hadronic process

We propose

$$K^+p
ightarrow \pi^+\Theta^+
ightarrow \pi^+K^+n(K^0p)$$

 Low energy model is sufficient (p_{cm} ~ 350 MeV)
 Decay is considered -> background estimation -> Width independent

Hadronic process : clear mechanism

to extract a qualitative behavior which depends on the quantum numbers of Θ^+ .

Determination of quantum numbers

Chiral model for the reaction: Background

E. Oset and M. J. Vicente Vacas, PLB386, 39 (1996)

Vertices <- chiral Lagrangian

Chiral model for the reaction: Resonance term

Spin and parity : $KN \rightarrow \Theta \rightarrow KN$

1/2⁻ (KN s-wave resonance) $\stackrel{\smile}{\rightarrow} M_R = 1540 \text{ MeV}$ 1/2⁺ , 3/2⁺ (KN p-wave resonance)

Spin and parity : Resonance amplitude

Resonance term for $K^+p \rightarrow \pi^+K^+n$

$$-i\tilde{t}_{i}^{(s)} = \frac{g_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} \left\{ G(M_{I})(a_{i} + c_{i}) - \frac{1}{3}\bar{G}(M_{I})b_{i} \right\} \boldsymbol{\sigma} \cdot \boldsymbol{k}_{in}S_{I}(i) ,$$

$$-i\tilde{t}_{i}^{(p,1/2)} = \frac{\bar{g}_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} \bar{G}(M_{I}) \left\{ \frac{1}{3}b_{i}\boldsymbol{k}_{in}^{2} - a_{i} + d_{i} \right\} \boldsymbol{\sigma} \cdot \boldsymbol{q}'S_{I}(i) ,$$

$$-i\tilde{t}_{i}^{(p,3/2)} = \frac{\tilde{g}_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} \bar{G}(M_{I}) \frac{1}{3}b_{i} \left\{ (\boldsymbol{k}_{in} \cdot \boldsymbol{q}')(\boldsymbol{\sigma} \cdot \boldsymbol{k}_{in}) - \frac{1}{3}\boldsymbol{k}_{in}^{2}\boldsymbol{\sigma} \cdot \boldsymbol{q}' \right\} S_{I}(i) .$$

Numerical results : Angular dependence

Numerical results : Mass distributions

$$I,J^{P}=0,1/2^{-}$$

--- $I,J^{P}=0,1/2^{+}$ $k_{in}(Lab) = 850 \text{ MeV/c}$
--- $I,J^{P}=0,3/2^{+}$ $\theta = 0 \text{ deg}$

Numerical results : Polarization test

Numerical results : Angular dependence 2

Numerical results : Mass distributions 2

Numerical results : Incomplete polarization

Conclusion

We calculate the $K^+p \rightarrow \pi^+K^+n$ reaction using a chiral model, assuming the possible quantum numbers of Θ^+ baryon.

If we find the resonance in the polarization test, the quantum numbers of Θ⁺ can be determined as I=0, J^P=1/2⁺

<u>T. Hyodo, *et al.*, Phys. Lett. B579, 290-298 (2004)</u> <u>E. Oset, *et al.*, nucl-th/0312014, Hyp03 proceedings</u>

Production 2 : $\vec{p}\vec{p} \rightarrow \Sigma^+ \Theta^+$

Model independent analysis

At the threshold (final state : s-wave), S=0 (Spin aligned) $\rightarrow \rightarrow : 1/2^+$ S=1 (Spin anti-aligned) $\rightarrow \leftarrow : 1/2^-$ <- P and J conservations A.W. Thomas, *et al.*, hep-ph/0312083

Production 2 : $\vec{p}\vec{p} \rightarrow \Sigma^+ \Theta^+$

Numerical results

Positive parity 1/2⁺

Negative parity 1/2

S.I. Nam, et al., hep-ph/0401074