Toward the determination of quantum numbers of Θ^+

Tetsuo Hyodo

RCNP, Osaka

2004, February 13rd

Contents

Present status of studies

- Experiments (what do we know?)
- **Model calculations**
- Analysis based on QCD

\overleftrightarrow Production 1 : $K^+p ightarrow \pi^+K^+n$

- 🙀 Motivation
- **Chiral model for the reaction**
- ☆ Spin and parity
- Numerical results
- \simeq Production 2 : $\vec{p}\vec{p} \rightarrow \Sigma^+\Theta^+$
 - **Model independent analysis**
 - Numerical results

Experiment at SPring-8

LEPS, T. Nakano, et al., Phys. Rev. Lett. 91, 012002 (2003)

3

Other experiments

 $K^+Xe \rightarrow K^0pXe'$ DIANA, V.V. Barmin, et al., Phys. Atom. Nucl. 66, 1715-1718 (2003) $\gamma d
ightarrow K^+ K^- pn$ CLAS, S. Stepanyan, et al., Phys. Rev. Lett. 91, 252001 (2003) $\gamma p
ightarrow n K^+ K_0^0$ SAPHIR, J. Barth, et al., Phys. Lett. B 572, 127-132 (2003) $\gamma p
ightarrow \pi^+ K^- K^+ n$ CLAS, V. Kubarovsky, et al., Phys. Rev. Lett. 92, 032001 (2004) mass ~ 1540 MeV width < 9 MeV $\stackrel{\scriptstyle \sim}{=} S = +1 (Y = 2)$ $\stackrel{\checkmark}{=} Q = +1 (I_3 = 0)$

☆ ☆

Prejudice?

Pentaquark state? It could be 7-, 9-, ... quark state.

P. Bicudo, et al., Phys. Rev. D 69, 011503 (2004)

F. J. Llanes-Estrada, et al., nucl-th/0311020

T. Kishimoto, et al., hep-ex/0312003

Anti-decuplet? It could be a member of 27, 35, ...

 $3 \times 3 \times 3 \times 3 \times \overline{3} \sim \{1, 8, 10, \overline{10}, 27, 35\}$

Positive parity? Not yet determined experimentally.

Model calculations : Prediction?

D. Diakonov, et al., Z. Phys. A 359, 305 (1997)

Chiral quark soliton model : 1/2+, I=0

	Т	Y	Mass in MeV	Width in MeV	Possible candidate
Z^+	0	2	1530	15	
$N_{\overline{10}}$	1/2	1	1710 (input)	~ 40	$N(1710)P_{11}$
$\Sigma_{\overline{10}}$	1	0	1890	~ 70	$\Sigma(1880)P_{11}$
$\Xi_{3/2}$	3/2	-1	2070	> 140	$\Xi(2030)?$

♀ PDG estimate : Γ_N ~ 100 (50 - 250) MeVΓ_Σ ~ 80 - 260 $<math>♀ Ξ_{3/2}$ resonance : $M_{=} = 1862$ MeV, Γ₌ < 18 MeV

NA49, C. Alt, et al., Phys. Rev. Lett. 92, 042003 (2004)

Model calculations

Chiral potential

Single particle levels of quarks cross as the strength of pion cloud changes.

Strong π : 1/2⁺

Weak π : 1/2⁻

A. Hosaka, Phys. Lett. B 571, 55-60 (2003)

Model calculations

Diquark picture / mixing with octet L=1 -> 1/2⁺

R.L. Jaffe, et al., Phys. Rev. Lett. 91, 232003 (2003)

Analysis based on QCD

QCD sum rule

no parity projection

S.L. Zhu, Phys. Rev. Lett. 91, 232002 (2003)

R.D. Matheus, et al., Phys. Lett. B 578, 323-329 (2004)

parity projection -> 1/2-

J. Sugiyama, et al., Phys. Lett. B 581, 167-174 (2004)

Attice QCD

parity projection -> 1/2-

F. Csikor, et al., JHEP 0311, 070 (2003)

S. Sasaki, hep-lat/0310014

F.X. Lee, K.F. Liu, et al., (Kentucky group)

Motivation : Spin parity determination

No consensus for spin and parity. It is important to determine the quantum numbers for further theoretical studies.

Find a reaction where the qualitatively different results depending on the quantum numbers are observed.

Motivation : Photo-production?

• Easy to handle the experiments

W. Liu, et al.,	Phys. Rev. C 68, 045203 (2003)
S. I. Nam, et al.,	Phys. Lett. B 579, 43-51 (2004)
W. Liu, et al.,	nucl-th/0309023
Y. Oh, <i>et al.</i> ,	Phys. Rev. D 69, 014009 (2004)
Q. Zao, et al.,	hep-ph/0310350
W. Liu, et al.,	nucl-th/0310087
K. Nakayama, et al.,	hep-ph/0310350
Y. Oh, et al.,	hep-ph/0312229
B. Yu, et al.,	nucl-th/0312075
Q. Zao, et al.,	hep-ph/0312348

Model (mechanism) dependence

Initial cm energy ~ 2 GeV (p_{cm} ~ 750 MeV) not low energy -> linear or nonlinear? N* resonances, K* exchange, κ exchange, ...

Form factor dependence Monopole, dipole, ..., value of Λ, ... Unknown parameters γΘΘ coupling, K*pΘ coupling, ...

Motivation : Advantage of hadronic process

We propose

$$K^+p
ightarrow \pi^+\Theta^+
ightarrow \pi^+K^+n(K^0p)$$

 Low energy model is sufficient (p_{cm} ~ 350 MeV)
 Decay is considered -> background estimation -> Width independent

Hadronic process : clear mechanism

to extract a qualitative behavior which depends on the quantum numbers of Θ^+ .

Determination of quantum numbers

Chiral model for the reaction: Background

E. Oset and M. J. Vicente Vacas, PLB386, 39 (1996)

Vertices <- chiral Lagrangian

Chiral model for the reaction: Resonance term

Spin and parity : $KN \rightarrow \Theta \rightarrow KN$

1/2⁻ (KN s-wave resonance) $\stackrel{\smile}{\rightarrow} M_R = 1540 \text{ MeV}$ 1/2⁺ , 3/2⁺ (KN p-wave resonance)

Spin and parity : Resonance amplitude

Resonance term for $K^+p \rightarrow \pi^+K^+n$

$$-i\tilde{t}_{i}^{(s)} = \frac{g_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} \left\{ G(M_{I})(a_{i} + c_{i}) - \frac{1}{3}\bar{G}(M_{I})b_{i} \right\} \boldsymbol{\sigma} \cdot \boldsymbol{k}_{in}S_{I}(i) ,$$

$$-i\tilde{t}_{i}^{(p,1/2)} = \frac{\bar{g}_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} \bar{G}(M_{I}) \left\{ \frac{1}{3}b_{i}\boldsymbol{k}_{in}^{2} - a_{i} + d_{i} \right\} \boldsymbol{\sigma} \cdot \boldsymbol{q}'S_{I}(i) ,$$

$$-i\tilde{t}_{i}^{(p,3/2)} = \frac{\tilde{g}_{K^{+}n}^{2}}{M_{I} - M_{R} + i\Gamma/2} \bar{G}(M_{I}) \frac{1}{3}b_{i} \left\{ (\boldsymbol{k}_{in} \cdot \boldsymbol{q}')(\boldsymbol{\sigma} \cdot \boldsymbol{k}_{in}) - \frac{1}{3}\boldsymbol{k}_{in}^{2}\boldsymbol{\sigma} \cdot \boldsymbol{q}' \right\} S_{I}(i) .$$

Numerical results : Angular dependence

Numerical results : Mass distributions

$$I,J^{P}=0,1/2^{-}$$

--- $I,J^{P}=0,1/2^{+}$ $k_{in}(Lab) = 850 \text{ MeV/c}$
--- $I,J^{P}=0,3/2^{+}$ $\theta = 0 \text{ deg}$

Numerical results : Polarization test

Numerical results : Angular dependence 2

Numerical results : Mass distributions 2

Numerical results : Incomplete polarization

Conclusion

We calculate the $K^+p \rightarrow \pi^+K^+n$ reaction using a chiral model, assuming the possible quantum numbers of Θ^+ baryon.

If we find the resonance in the polarization test, the quantum numbers of Θ⁺ can be determined as I=0, J^P=1/2⁺

<u>T. Hyodo, *et al.*, Phys. Lett. B579, 290-298 (2004)</u> <u>E. Oset, *et al.*, nucl-th/0312014, Hyp03 proceedings</u>

Production 2 : $\vec{p}\vec{p} \rightarrow \Sigma^+\Theta^+$

Model independent analysis

At the threshold (final state : s-wave), S=0 (Spin aligned) $\rightarrow \rightarrow : 1/2^+$ S=1 (Spin anti-aligned) $\rightarrow \leftarrow : 1/2^-$ <- P and J conservations A.W. Thomas, *et al.*, hep-ph/0312083

Production 2 : $\vec{p}\vec{p} \rightarrow \Sigma^+ \Theta^+$

Numerical results

Positive parity 1/2⁺

Negative parity 1/2

S.I. Nam, et al., hep-ph/0401074